电源技术论文合集12篇

时间:2023-03-15 14:56:08

电源技术论文

电源技术论文篇1

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

电源技术论文篇2

2能源互联网技术框架分析

2.1能源互联网构成

构建“能源互联网”的主要目的是优化能源结构(更多应用新能源)、提高能源效率(发挥不同能源优势和新型负荷的技术优势),从而改善用户体验。优化能源互联网资源,首先需要确认能源互联网构成要素,界定优化范围。根据文献[1]和[2]描述,结合智能电网研究成果,图1描述了能源互联网总体构成:电、供热及供冷等形式的能源输入通过与信息等支撑系统有机融合,构成协同工作的现代“综合能源供给系统”。该系统内多种能源(化石能源、可再生能源)通过电、冷、热和储能等形式之间的协调调度供给,达到能源高效利用、满足用户多种能源应用需求、提高社会供能可靠性和安全性等目的;同时,通过多种能源系统的整体协调,还有助于消除能源供应瓶颈,提高各能源设备利用效率。不同能源对环境的影响不同,传统能源供应体系中,特定能源已经形成了相对稳定的消费市场,比如石油主要用于交通、化工、发电等行业;天然气则主要于日常生活、供热、发电、交通等领域。可再生能源目前几乎全部用来发电。一次能源长期以来形成了自身的产业链条,不同种类能源间互相补充空间有限。但是,电能可以充当不同能源间的桥梁。目前可再生能源绝大部分转化为电能。如果通过电能用绿色可再生能源替换其他高污染一次能源,可以提高能源消费的整体环境友好程度。要实现这种能源的优化供给需要具备几个条件:①要具备不同种类能源间的(供求关系等)信息互通;②要具备能源输出互相替代的必要技术手段,即通过电能能够满足被替代能源消费主体的需求;③要能够给能源消费者清晰、及时的引导信号,吸引能源消费主体参与能源消费优化配置。具备以上条件,配合必要的技术手段,最终实现社会能源的整体优化利用。实现这一目标可以通过技术手段构建“能源互联网”。

2.2能源互联网技术框架

为了达到上述整体优化目标,在明确能源“互联”范围基础上,需要进一步研究合理的能源互联网技术框架,应用先进技术发挥多种能源与用户互联、互动的整体优势。这种能源互联网技术框架设计的唯一目的是发挥技术优势,从技术角度提高能源的使用效率。在不存在政策、市场和技术条件限制的前提下,设计满足上述条件的能源互联网技术框架模型,如图2所示。图2所示“能源互联网技术框架”包括“市场环境”、“能源供给、转化和消费”、“信息支持”以及“调度控制”4个部分。市场环境包括能源供给侧市场和能源需求侧市场。其中,能源供给侧市场负责不同种类能源的市场价格信号,调节市场能源供应结构(可以在这个环节使用价格信号或补贴鼓励使用清洁能源,减小环境污染);能源需求侧市场负责吸引可控负荷和具有反向送电(或其他能源形式)的“发用电联合体”参与需求侧调度控制的价格或其他激励信号,以鼓励负荷参与需求侧响应。能源供给、转化及消费是能源互联网中的能源流,也是整个技术框架的最终优化协调对象。多种能源发出的电、热、冷等能量形式通过输电电网、管网或者运输通道最终抵达用户侧,满足用户的用能需求。能源互联网框架在以上基础上,加强了对分布式电源和微电网的支持,同时应用各种储能以及电转化为气体等技术,结合信息共享和多种能源的成本对比,以电能为中心实现有目标(优化或降低污染、提高清洁能源比例等)的多种能源间的替代和转换。消费环节除了包括传统用户还增加了智能可控用户以及可以反向供能的发用电联合体等。信息共享支持是整个技术框架中的信息流。“高速、可靠和安全”的未来信息网络技术是实现能源互联网技术框架下大量数据采集、传输、分析再到优化计算的基础条件。在信息技术支持下,为保障整个能源框架的安全优化运行,需要设置必要的运营管理机构,对能源进行集中调度管理,这种调度管理可以采用与外部市场环境相适应的商业运营模式并根据能源管理范围进行分级设计。同时针对用户侧可控负荷和具有发电及其他供能(供热、制冷等)能力的“发用电联合体”在自愿的前提下可以直接参与或通过“负荷调度控制”,应用“虚拟发电厂”技术参与能源互联网的调度控制。这种基于信息共享的通过能源整体调度控制实现能源的整体优化利用是能源互联网技术框架的核心内容。

2.3能源互联网优化控制概念模型

在上述能源互联网技术框架内能源消费有如下特性。(1)能源供应能够“互联”。能源互联网技术框架下不同能源间可以相互支持以及一定程度上的替代转换。这种互联可以通过控制系统实现面向用户最终需求的“应用转化”,也可以直接通过能源间的转换与替代实现。(2)能源互联后不影响用户的使用。方便用户安全高效使用,原来互相割裂的能源供应“互联”后应提升用户体验,不影响用户的正常使用。(3)能源互联后能够优化。能源互联网技术框架下的能源供应应该比“互联”之前有更高的效率。可见,能源互联网是一个以对能源进行整体优化为目标的复杂能源供用系统,为了实现整体优化的目的,需要建立相应的优化模型。综上所述,不同种类能源消费行为的成本是变动的,同时,不同种类能源供应对环境的影响不同。再考虑到新型负荷的可控性,建立如下能源互联网优化模型。以上模型的物理意义是在满足能源总供给与需求之间平衡和能源与供给消费约束的前提下,追求能源供应总成本最低或者污染排放最小等优化目标。能源互联网的优化模型根据不同市场运营规则细节上将有所不同,这里讨论的优化模型是对能源互联网技术框架的一种目的性描述,求解该模型需要确定不同能源的成本函数和其他约束条件,这些约束条件与具体的能源互联网运营规则和物理环境密切相关。

3能源互联网研究现状

上述“能源互联网”技术框架是对未来能源整体供用体系的概念性设想,关于未来的能源发展,国内外普遍开展了基于先进信息通信技术的包含能源互动思想(包含能源间的转化和替代)的相关研究。除了文献[1]中关于“能源互联网”的设想外,美国各大研究机构和高校都在进行相关研究。在用户互动方面,美国在需求侧响应方面已经进入实际应用阶段,电网中出现了专职的“调荷服务商”用于为电网提供负荷调度服务;能源的互联与转换方面,美国发电公司长期根据市场需要选择出售天然气与电力的比例。欧盟也在开展“智能能源的未来网络”(FINSENY)项目,研究将能源与信息的整合,汇集了能源和ICT(信息通信技术)行业的关键技术以确定智能能源系统对ICT的要求,从而提供创新性的能源解决方案以优化能源传输,改变人们的能源消费方式,减少CO2的排放,改善生活环境[3]。日本则在微网及分布式电源基础上致力于研究冠名为“电力路由器”的电能控制技术及相关装备[4]。在国内,关于未来能源供应技术的研究一直受到高度重视,国家电网公司明确“能源互联网”是未来的智能电网,智能电网是承载第三次工业革命的基础平台,对第三次工业革命具有全局性的推动作用。目前,国家电网公司已积极开展、部署相关研究工作。北京市科委组织了“第三次工业革命”和“能源互联网”专家研讨会,并启动了相关软课题研究,以期形成详细的能源互联网调研报告和路线图。中国能源发展目前面临总量供应(石油、天然气对外依存度高)、资源配置(能源与生产力分布不均衡)、能源效率(大量煤炭直接燃烧,整体能效偏低)、生态环境(土壤、水质、大气污染)四大问题。针对以上问题,可以采用增加清洁能源发电比例、提高能源效率的方法加以改善。本文所述能源互联网技术框架统一配置能源资源,从能源供给和使用2个方面进行整体优化,基于信息共享建立必要的市场调节机制,优化引导能源的开发和使用,最终实现增加清洁能源发电比例、提高能源效率,以电能为中心统一优化配置能源资源;使能源发展方式由消耗型向可持续、可再生和更环保的发展轨迹过渡;实现能源供应安全、清洁、环保与友好地发展[5-11]。

电源技术论文篇3

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

电源技术论文篇4

论文摘要:通过对我国电力系统继电保护技术发展现状的分析,探讨继电保护的任务和基本要求。从分析当前继电保护装置的广泛应用,提出保护装置维护的几点建议,结合实际情况,探讨继电保护发展的趋势。关键字:继电保护;电力;维护 1 前言 电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。 2 继电保护发展的现状 上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。 目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。 3 电力系统中继电保护的配置与应用 3.1 继电保护装置的任务 继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。 3.2 继电保护装置的基本要求 选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。 灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。 速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。 可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。 3.3 保护装置的应用 继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸

电源技术论文篇5

基本的拓扑包括BUCK、BOOST、BUCK-BOOST、CUK、正激变换器、反激、半桥、全桥、推挽变换器。在课堂教学中应该使学生熟练掌握其工作原理、应用场所、电流连续和电流断续的工作波形、拓扑中的关键参数的计算,为学生设计基本的开关电源电路打下坚实的基础,这是第一层次,要求学生必须熟练掌握。尤其要着重讲解基本拓扑BUCK变换器,因为很多拓扑结构甚至是基本拓扑都可以由BUCK变换器变换得来。如果能在课堂上重点讲解BUCK变换器,使学生完全掌握BUCK变换器的原理和波形,对学生后期的开关电源学习将会大有助益。第二层次是以基本拓扑为核心部分的主功率电路各部分参数计算,相当于电源工程师的项目计算书部分,这也是电源工程师必须掌握的基本技能。由于课上时间有限,教师在课上会把拓扑中关键器件主要参数的计算方法给出,不可能把所有的参数计算一遍,所以导致有些学生就停滞在这个层次上,没有在课下把所有的参数,尤其是关系到器件选型的参数进行设计,为了解决这个问题,在课程中后期安排学生团队制作实物开关电源,在这个过程中就必须要对每个计算参数都要反复核算,这个教学环节取得了较好的效果。第三层次是主功率电路器件选型和调试,基本上只有参加过实物制作、电子设计大赛、实习项目的学生有机会达到这一步,通过实际存在的问题,就问题去解决,才会在实践当中结合他们上课学习的电源理论切实地体会调试电路的乐趣。

1.2PWM和PFC控制芯片

这部分会通过调研报告的形式让学生先去搜集相关PWM和PFC控制芯片的最新信息,先让学生去感知、去了解现在出来最新的控制芯片已经可以做到哪些功能了,此外重要的是积累总结每一个拓扑可以有哪些控制芯片来控制。让他们自己去发现问题,感知问题,带着问题和好奇,在课堂上授课教师会深入讲解PWM控制芯片的基本控制原理,通过工程项目详细讲解如何快速掌握一个新的控制芯片每个引脚的功能,电路的设计方法、元器件参数计算方法,使学生掌握如何用控制芯片来控制变换器实现电能的变换,学会设计控制芯片与变换器的连接电路,即检测电路和功率管的驱动电路。在课堂上教会学生使用PWM控制芯片数据说明书设计控制电路达到层次一,在课程学时中专门安排学生学习控制芯片电路的设计方法和参数计算方法达到层次二,不仅让学生掌握一种控制芯片的电路设计方法,更重要的是举一反三,在以后的设计和工作岗位上面对新的平台和控制芯片依然可以设计出符合要求的电路。

1.3变压器和电感设计

授课教师在课堂教学中依据教学改革培养电源工程师为目标不仅要介绍变压器和电感的各个参数的计算方法,还会结合实际项目讲授变压器同名端和异名端在实际电源制作时的注意事项,变压器的制作方法,掌握电压器参数的测试方法和测试工具,掌握用示波器和信号发生器测试变压器的匝比和同名端的方法。变压器和电感的设计直接关系到隔离型变换器的性能,很多学生对变压器和电感磁路设计部分学习起来会有些困难,所以这部分将作为课程的难点来重点讲解。

1.4保护电路设计

课堂教学中一部分学时将用来着重讲解各种保护电路,包括输入输出过压保护、过温保护、过流保护、输入欠压保护等。将采用调研报告、启发式和讨论式等教学方法引导学生去积累这些保护电路,学会在不同平台、不同应用场合使用不同的保护电路。

1.5闭环电路调试

结合自动控制原理课程的相关知识,着重讲解开关电源闭环电路的设计和分析,尤其是PID调节器的调试方法,结合实际项目演示电源工程师闭环电路调试过程,激发学生学习开关电源的学习兴趣,通过实物和仿真软件让学生体验调试的乐趣,这部分是开关电源课程重点讲解的内容,要联系实际项目,是课程的核心内容。以上5个部分是课程的主要教学内容块,完全按照培养电源工程师的目标下制定的教学计划,可以做到较好地给学生从课堂到就业的过渡,而不再是到了工作岗位上感觉课堂学习的东西和实际工作联系不紧密,什么知识什么技能都要工作之后学习。在课堂上,保证学生完全掌握第一个层次,通过课后作业、课堂实际项目案例、电源制作等形式的教学方法使大部分学生掌握层次二,在平时的教学中注意动手能力强或者电路设计能力强的学生,通过带学生电子设计大赛、创新大赛,或者学生在项目中辅助教师担任研发助理的工作等,使一部分学生研发能力可以快速提高,培养成具有基本技能的初级电源工程师。

2课程考核方式改革

考虑到开关电源课程的实践性强的特点,着重考核学生掌握所学的基本电路拓扑理论和技能,能综合运用所学知识和技能去分析电路、调试和测试电路、分析电路故障及排除电路故障的能力。

2.1制作电源实物

基于课堂系统的理论学习,独立制作75W单管正激变换器实物的能力考核,该正激变换器采用何种磁复位技术不限,根据班级人数,3~4名同学为一个小组,明确不同分工,共同制作出一款正激变换器。同时培养学生的团队合作意识,考核的内容也要增加当该团队遇到分歧和困难的时候,是如何解决的。

2.2课堂表现

主要是包括回答问题的情况,对问题分析的程度,出勤率,在平时小组讨论时的表现和活跃程度。

2.3科研报告、口头汇报

通过让学生搜索近3年国内外开关电源、尤其是通信电源技术和产品的最新发展概况,增强学生的自我学习能力,在以后的学习和工作中掌握更新自己开关电源知识体系的能力,这是我们教学的重点,不只是教会学生电源的基本知识,还要教学学生学习探索开关电源领域的学习方法。选取部分优秀学生的科研报告由学生浓缩成5分钟的口头汇报结合PPT、实物动画等多媒体展示方法在上课前5分钟做口头汇报分享给学生们。不仅较好地激发学生学习开关电源的兴趣也能够充分锻炼学生的公开演讲能力。

2.4作业

作业着重在学生是否是自己独立完成的电路设计,而不是应付了事。哪怕学生的设计内容很少,但是只要是他们自己经过思考得来的就要比其参考其他人的作业效果要好很多。

电源技术论文篇6

---微处理器、FPGA和ASIC在上电和断电期间通常要求内核与I/O电压之间具有某种特定的关系,而这种关系在实际操作中是很难控制的,尤其是当电源的数目较多的时候。当不同类型的电源(模块、开关稳压器和负载点转换器)混合使用时,该问题会进一步复杂化。最简单的解决方案就是将电源按序排列,但是,在某些场合,这种做法是不足够的。一种更受青睐而且往往是强制性的解决方案是使各个电源在上电和断电期间彼此跟踪。

电源排序

---简单地按某种预先确定的顺序来接通或关断电源的做法一般被称为“排序”。排序通常能够通过采用电源监控器或简单的数字逻辑电路来控制电源的接通/关断(或RUN/SS)引脚而得以实现。图1a和1b示出了采用一个LTC2902四通道电源监控器来对4个电源进行排序的情形。

---不幸的是,单靠排序有时是不够的。许多数字IC都在其I/O和内核电源之间规定了一个最大电压差,一旦它被超过则IC将会受损。在这些场合,对应的解决方案是使电源电压彼此跟踪。

电源跟踪

---排序只是简单地规定了电源斜坡上升或斜坡下降的顺序,并且假定每个电源都在下一个电源开始变化之前转换。电源跟踪可确保电源之间的关系在整个上电和断电过程中都是可以预测。

---图2示出了三种不同的电源跟踪形式。最常见是重合跟踪(见图2a),此时,各电压在达到其调节值之前是相等的。当采用偏移跟踪时(见图2b),各电压以相同的速率斜坡上升,但被预先设定的电压偏移或延时所分离。最后,当采用比例制跟踪时(见图2c),各电压同时开始斜坡上升,但速率不同。

---实际上,随着设计精细等级的不断提升,能够使各电源相互跟踪。三种最常见的方法是(1)在电源之间采用钳位二极管;(2)布设与输出端串联的MOSFET;(3)利用反馈网络来控制输出。

---如欲将各电源之间的电压差保持在一个或两个二极管压降之内,则可在电源轨之间采用钳位二极管或晶体管,这种解决方案虽然粗暴,但却简单(见图3)。在低电流条件下,该技术会是有效的,然而在高电流水平时,采用这种方法的后果则可能是灾难性。同步开关电源能够供应和吸收大量的电流。如果电压较高的电源斜坡上升速率高于电压较低的电源,则二极管或FET将接通,以便对电压较低的电源进行上拉操作。电压较低的电源将因此而吸收较多的电流,从而会有巨大的电流流过。这有可能导致电源超过容许的电压差,甚至引发器件故障。完全依靠二极管或FET钳位来实现跟踪功能并非最佳的解决方案。

---另一种跟踪解决方案是在电源的输出端与负载之间布设串联MOSFET。在图4中,一个LTC2921跟踪三个电源。当首次施加电源时,MOSFET被关断且电源被允许以其自然速率斜坡上升。当电压稳定下来之后,MOSFET被同时接通,使得负载上的电压相互跟踪。这种技术需要用于驱动MOSFET和监视电源电压的电路,而且,当电流水平上升时,MOSFET中的压降和功耗便成为了一个问题。此外,这种拓扑结构还因为每个电源上的负载电容和负载电流可能有所不同的缘故,而使得电压的同步斜坡下降比较难以实现。

---第三种方法是利用反馈网络来调节输出电压,以此来使电源相互跟踪。最简单的实现方法是将电流注入电源的反馈节点。在图5中,一个LTC2923跟踪两个电源。生成了一个主斜坡,而且电路被连接至其他从属电源的误差放大器反馈节点,从而使其输出跟随该主斜坡。该电路还使得电压能够一同斜坡下降。该技术是最精巧的,因为它不需要采用串联MOSFET或钳位二极管。然而,并不是所有的电源都具有可以使用的反馈节点,而且,虽然许多电源模块都具有一个修整引脚,但是一般来说输出电压只能在一个很小的范围内调节。因此,大多数实际解决方案均要求采用了上述几类技术的某种组合。

设计实例

---图6中的电路在利用3.3V电源生成2.5V和1.8V电源的情况下实现了电源跟踪。在本例中采用了LTC2923,3.3V电源受控于一个N沟道MOSFET,而2.5V和1.8VDC/DC转换器则是通过其反馈节点得以控制的。

---当3.3V输入电源接通时,晶体管Q1和两个DC/DC转换器被保持在关断状态。当3.3V输入上升(利用电阻器RONA和RONB在ON引脚上进行检测)之后,Q1的栅极由一个内部充电泵缓慢地接通。由于Q1被配置为一个N沟道源极跟随器,因此,RAMP引脚电平开始上升,并提供用于系统的主电压斜坡。

---当针对重合跟踪来对TRACK1和TRACK2引脚上的电阻器进行配置时,电流被强迫流入或流出DC/DC转换器反馈节点,这样其输出将跟踪RAMP引脚电平的变化。图2a中的示波器扫迹便是采用该电路生成的。

-

--一旦达到最终电压,LTC2923的FB1和FB2引脚将呈高阻抗状态。如果ON引脚被一个漏极开路逻辑器件拉至低电平,则输出将尾随降至低电平。通过改变与TRACK1和TRACK2引脚相连的电阻器阻值,可使同一个电路进行比例制跟踪或偏移跟踪模式的斜坡上升。图2b和2c中给出的示波器扫迹便是以这种方式生成的。另一种电阻器选择能够采用3.3V电源作为基准电压斜坡来对1.8V和2.5V电源进行排序(见图7)。对于需要三个以上电源的系统,可通过RAMP引脚对多个LTC2923控制器进行菊链式连接,以便控制数目不限的电源。

电源技术论文篇7

论文摘要:近年来,我国各行各业竞相发展,依靠机电一体化技术,大幅度地提高产品的性能、质量和可靠性,提高制造水平,增加产品的应变能力,提高劳动生产率,节约大量能源和材料消耗。煤炭系统也在利用机电一体化技术改造旧设备和开发新产品方面做了大量的工作,取得一定的成效。它已使人们清楚地认识到,机电一体化技术和产品的发展,是实现高效、安全、机械化采煤和煤矿机电产品更新换代的重要途径。本文对机电一体化技术在煤矿中的应用进行阐述,并对其发展趋势进行分析。 论文关键词:机电一体化技术 煤矿 应用 发展趋势 1 概述 机电一体化技术就是机械、计算机、信息处理和自动控制技术综合运用的复合技术,是微电子技术向传统机械工程渗透而形成的融合机械工程、电气工程、计算机技术、信息技术等为一体的新兴综合技术。机电一体化技术顺应了当今科学技术发展的规律,显示了强大的生命力。由于煤炭生产是将数百、数千万吨煤炭从地层深处采掘、运送到地面,因此需采用大量的机电设备才能实现这一目标,而机电一体化煤矿产品则是实现高产高效的最好选择。机电一体化将机械与电子技术融为一体,使物流、能流、信息流融为一体。 2 机电一体化技术在煤矿中的主要应用 2.1 机电一体化技术在提升机中的应用 矿井提升机是目前煤矿机电一体化、自动化水平最高的设备,全数字化交直流提升机。尤其是内装式提升机,从结构上将滚筒和驱动合为一体,机械结构大大简化,充分体现了机械-电力电子-计算机-自动控制的综合体。而全数字化提升机高度可靠,采用总线方式,大大简化了电器安装,此外,硬件配置简单,互相兼容。“九五”期间,国产数字化直流提升机已成为煤矿提升机的首选机型。我国研制成功的具有自主知识产权的全数字化提升机,其核心部分ASCS是由双CPU构成的计算机系统,其性能先进、操作简便、准确可靠。此外,我国还应用SIMADYND和S7研制成功了第一台交-交变频器供电的交流提升机。目前,最大装机容量已达到5000kW,主、副井提升机可做到全自动化,不需要专门的绞车司机。 2.2 机电一体化技术在采煤机中的应用 电牵引采煤机是机电一体化技术在采煤机的一个典型应用。与液压牵引相比,它具有一下特点:①良好的牵引特性:可以在采煤机前进时提供牵引力,使其克服阻力移动,也可以在采煤机下滑时进行发电制动,向电网反馈电能。②可用于大倾角煤层:牵引电动机轴端装有停机时防止机器下滑的制动器,因为它的设计制动力矩为电动机额定转矩的1.6~2.0倍,所以电牵引采煤机可用在40°~50°倾角的煤层,而不需要其它防滑装置。③运行可靠,使用寿命长,电牵引和液压牵引不同,前者除电动机的电刷和整流子有磨a损外,其它元件均无磨损,因此工作可靠,故障少,寿命长,维修工作量小。④反应灵敏,动态特性好:电控系统能及时调整各种参数,防止采煤机超载运行。⑤结构简单、效率高:电牵引采煤机机械传动结构简单、尺寸小、重量轻,电能转换为机械能只做一次转换,效率可达99%,而液压采煤机的效率只有65%-70%左右。 1991年煤炭总院上海分院与波兰玛克公司合作,研制成功我国第一台采用交流变频调速MG344-PWD型薄煤层强力爬底板电牵引采煤机以来,我国的电牵引采煤机有了较快的发展。国内上海天地公司、太原矿山机械厂、西安煤机厂、鸡西煤机厂等都生产交流变频和直流电牵引采煤机,而且得到了广泛的应用。经过近20年的研制开发,我国的电牵引采煤机一逐步走向成熟,为煤矿生产技术的进步起到了积极的推动作用。 2.3 机电一体化技术在带式输送机中的应用 带式输送机由于长距离连续输送、输送量大、运行可靠、效率高和易于实现自动化等特点,已成为我国煤矿井下原煤输送系统的主要运输设备。因此,成为近几年来机电一体化技术的研究重点。目前主要采用机、电、液一体化的CST可控软启动装置。它是一种专门为平滑起动运送大惯性载荷,如煤炭或金属矿石的长距离皮带运输机而设计的软驱动装置。一条皮带运输机可以由一台或几台CST驱动。由于尚未解决动态分析和在线监控技术以及启动延迟技术,我国带式输送机的中间驱动点不能不知过多,一般为3点驱动,这样就限制了输送机的单机长度和运量。而且,输送机的监控设备功能少、可靠性较差、灵敏度和寿命都较低,和发达国家相比存在显著的差距。 2.4 其他煤矿机电一体化装置 液压支架

电源技术论文篇8

2高职通信电源中电子技术课程联系化教学设计举例

通信电源和电子技术有很强的联系性和依赖性,这种联系性和依赖性虽然也能跨越到其他通信专业课程,但通信电源和电子技术的联系性和依赖性更高。高职学生的特点之一是学习不积极、高中理科基础差、自学能力低,对知识的连贯性掌握技能就更差。项目库中每个项目的实施需要相关课程群合作完成,例如将电子技术中的功率因数概念的教学和通信电源的直流不间断电源中的有源功率因数校正电路结合起来讲,学生更易于对功率因数概念的理解,也能很好地掌握通信电源的直流不间断电源中的有源功率因数校正电路的原理。通信电源课程根据教学计划需求就能完成对应电子技术基础教学任务。在相关通信电源知识群中由项目驱动完成电子技术基础教学任务后,通信电源教学任务也同步完成最终结果。因此,教学设计者应能够依据人才培养方案来建立通信电源和电子技术课程间联系构架和设计跨课程的教学项目,在教学活动中,动态地将通信电源和通信电子技术课程进行联系,形成具有活力的知识连贯体,并根据与通信电源课程群的知识联系性来设计电子技术课程的项目库。通过对高职通信电源专业联系化教学的现状分析和对通信电源专业的人才培养方案和教学计划剖析后,我们应首先对通信电源和通信电子技术进行联系化设计,提出对电子技术教学的设计方案,例如将电子技术专业课程中的电路与信号、模拟电子技术融入通信电源的配电和防雷来讲授,将数字电子技术融入通信电源的UPS和整流来讲授。电子技术的应用、电子技术实训、电子产品设计与制作与通信电源的设备实训相关联,进行项目关联设计试点。基于联系需求将通信电源和电子技术课程的这些环节紧密相关,层次清晰,环环相扣。从而实现,在高职通信电源专业技能培养的生命周期过程中的前后紧密联系,并最终形成通信电源专业的教学表现结果。

电源技术论文篇9

移动电源结构一般由电压转换电路、可充电电芯或电芯组、外壳组成。其中电压转换电路分为充电电路、升压电路、管理控制IC以及保护电路。充电电路用以保证输入端能以恒流和恒压的方式为电芯充电。升压电路的作用是将电芯电压提升到输出端额定电压。管理控制IC起到电量监控和开关控制的作用。保护电路用以提供过充电、过放电等保护作用。电芯根据电解质材料不同大致分为液态锂离子电池和聚合物锂离子电池两大类。外壳的主要作用包括机械防护、散热和阻燃等。各组件应当以适当的方式连线、支撑并固定。使用人员可接触区应当有适当保护,以保证不会产生机械危险。

1.2电性能输出

电压为移动电源最基本的参数,电压过高、过低都会对被充电设备造成一定程度上的损害。测量时移动电源应在达到充电饱和状态30min后,空载情况下使用功率计测量其输出电压。测量的输出电压值与额定电压容差为±5%[2]。常温放电性能是移动电源最为重要的参数,此参数标志着移动电源的实际输出容量。移动电源应在23±2℃环境温度下,以额定输入电压和电流进行充电,直至饱和状态。静置30min后,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间[3]。输出容量等于放电电流乘以放电时间。测量的移动电源输出容量应不低于其额定容量。转换效率测量时使用直流电源模拟电芯接入电路板输入端,直流电源输出电压调至电芯组标称电压。电路板输出端连接电子负载,调节电子负载使得电路板输出为额定输出。仪表连接示意图见下图1。电流表和电压表测量得到输出端Iout和Uout、输63入端Iin和Uin可以通过公式η=Uout·IoutUin·Iin(1)计算得到转换效率,转换效率应不小于85%。

1.3安全性

移动电源的安全性包括:过充电保护、过放电保护、短路保护、发热和防火等[4]。1)过充电保护。测量移动电源过充电保护时,移动电源在充电饱和状态下,使用直流源输入,持续加载充电12h,设置直流源输出电压为移动电源额定输入电压的1.2倍,输出电流为移动电源额定输入电流。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。2)过放电保护。移动电源放电至输出终止状态下,测量其过放电保护性能。在输出端接30Ω负载,持续加载放电24h。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。3)短路保护。短路保护为防止使用中正负极短路时提供的保护。测量时使移动电源在充电饱和状态下,将输出端正负两极,使用0.1Ω电阻短路24h。整个过程中移动电源应不泄露,不破裂,不起火,不爆炸。4)发热。移动电源在工作状态时,不应对使用人员造成热危险。测量其发热温度应在正常负载条件下工作直至温度稳定,使用数据采集器和热电偶测量移动电源外壳温度值。接触温度限值是塑料外壳为95℃,金属外壳为70℃,玻璃、瓷料和釉料为80℃。测量温度应低于各使用材料的发热限值[5]。5)防火。移动电源外壳应当使用V-1级材料进行阻燃防火保护。试验样品选用移动电源外壳,试验火焰顶端与样品相接触,施加燃烧30s,然后移开火焰停烧60s,然后不管样品是否还在燃烧,再在同一部位重复烧30s。合格判据为在试验期间,当试验火焰第二次施加后,样品延续燃烧不得超过1min,而且样品不得完全烧尽。

1.4环境适应性

移动电源环境适应性包括:高温放电、低温放电、温度循环、恒定湿热、振动、自由跌落、重物冲击和机械冲击[6]。高温放电测量中,移动电源在充电饱和后,放入55±2℃的温度试验箱中恒温放置2h,最后以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。低温放电测量中,移动电源在充电饱和后,放入-10±2℃的温度试验箱中恒温放置2h,最后以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。温度循环测量中,移动电源在充电饱和后,放入温度为75±2℃的温度试验箱中,保持6h后,将温度试验箱温度设置为-40±2℃,并保持6h,温度转换时间不大于30min,上述过程循环10次,如图2所示。温度循环试验结束后,取出在环境温度23±2℃的条件下搁置2h,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。图2温度循环示意图恒定湿热测量中,移动电源在充电饱和后,放入温度为40±2℃,相对湿度为90%—95%的温度试验箱中搁置48h后,再取出在环境温度23±2℃的条件下搁置2h,以额定输出电流进行放电,直至移动电源放电输出终止,记录放电时间,计算输出容量,其容量应不低于额定容量。振动测量中,移动电源在充电饱和后,将其安装在振动台台面上,按以下所述振动频率和振幅对振动台进行设置,X,Y,Z3个方向每个方向从10—55Hz循环扫频,持续时间为3h,扫频速率为1oct/min。频率在10—30Hz范围内时,位移幅值为0.38mm,频率在30—55Hz范围内时,位移幅值为0.19mm。振动结束后,移动电源应不泄露,不破裂,不起火,不爆炸。结果位置跌落到水平表面试验台上,跌落高度为1000±10mm,试验次数为3次。水平表面试验台应当是由至少13mm厚的硬木安装在两层胶合板上组成,每一层胶合板的厚度为19—20mm,然后放在一水泥基座上或等效的无弹性的地面上。跌落试验结束后,移动电源应不泄露,不破裂,不起火,不爆炸。重物冲击测量中,移动电源放置于平面,并将一个Φ15.8±0.2mm的钢柱置于电池中心,钢柱的纵轴平行于平面,让质量9.1±0.1kg的重物从610±25mm高度自由落到中心上方的钢柱上,样品纵轴要平行于平面,垂直于钢柱纵轴,试验次数为1次。重物冲击试验全过程中,移动电源应不泄露,不破裂,不起火,不爆炸。机械冲击测量技术中,移动电源在充电饱和后,采用钢性固定的方法固定在冲击试验台上。在3个相互垂直的方向上各承受一次冲击。冲击在最初的3ms内,最小平均加速度为735m/s2,峰值加速度应在1225m/s2和1715m/s2之间,脉冲持续时间为6±1ms。机械冲击试验结束后,移动电源应不泄露,不破裂,不起火,不爆炸。

1.5电磁兼容性

移动电源应满足静电放电抗扰度[2]要求。使用静电放电模拟器施加干扰信号,严酷等级为接触放电±4kV,空气放电±8kV。静电放电抗扰度试验全过程,移动电源应不泄露,不破裂,不起火,不爆炸。

电源技术论文篇10

变电站网络设计涉及多种因素,其主要原则包括:

(1)数据业务分类。

变电站中各种数据业务通信要求不同,利用变电站数据业务分类的特性,组建不同特点的通信网络,在多种信息混合的情况下保证实时信息传递的实时性和可靠性是网络设计的基础。信息多样化和传递实时性是通信系统中的一对矛盾体,解决这个矛盾是选择网络通信方案的基本原则。

(2)网络互通和隔离。

通信网络应提供IED互联的便利性、灵活性,为变电站自动化技术的发展预留空间;同时网络应满足各个系统间隔离的要求,以保证各个专业系统(保护、自动化)互不影响。互通和隔离是一对矛盾,构建变电站通信网络应该妥善解决这个矛盾。

(3)通信系统的建设成本。

变电站通信系统的性能与成本是网络设计中的另一对矛盾,较高的性能要求,往往导致较高的建设成本。降低成本的途径一是采用合理的网络结构设计,避免复杂的网络结构,减少通信设备数量;二是采用标准、成熟、流行的技术;三是合理配置网络资源,裕度考虑合理。

1.2“两层一网”整体构架

本研究根据网络设计原则,综合考虑智能变电站网络性能要求和建设成本,利用数据通信业务分类的特性,组建“两层一网”通信网络。“两层一网”中,两层指站控层、设备层,“一网”指全站MMS\GOOSE\SV合一网络。在“两层一网”两层网络方案中,笔者采用无源光网络技术,组建统一通信网络,。本研究通过采用面向连接、接近电路交换特点的交换技术(MPLS-TP)替代以太网技术,构建逻辑网络。通过网络互连使得变电站成为一个整体,变电站中任意两个IED设备通过统一网络可以直接实现通信,通过网络互连使得变电站成为一个整体,便于发挥各种自动化保护、测控系统的整体效益;同时,可以充分利用网络提供的广播、组播技术实现保护、测控数据的一对多的跨间隔传递,大幅度提高通信的效率。

1.3无源光网络的设计

本研究变电站通信网络设计采用“两层一网”结构,通过引入无源光网络技术PON,将整个通信资源划分为许多小时间片实现数据的传输和交换,其关键技术主要包括无源光网络技术、分组交换技术、并行网络技术和逻辑子网技术等。

(1)无源光网络技术

智能变电站网络引入了无源光网络技术PON,PON技术将整个通信资源划分为许多小时间片实现数据的传输和交换,多倍地增加通信资源数量;每一路数据占有一个专属自己的时间片,各路数据之间不产生资源竞争。系统通过无源光网络的应用提高设备集成度和网络覆盖能力,引入高精度时间同步技术以提供具有亚微秒精度的同步控制环境;通过采用多重路径快速保护机制,提高数据传递可靠性,增强网络的鲁棒性和生存能力;通过采用专用业务网络技术,提供传递高速同步控制为基本业务兼容信息网、多媒体数据业务的综合通信平台。

(2)分组交换技术

为克服以太网交换技术的不足,“两层一网”网络设计中采用面向连接、接近电路交换特点的分组交换技术(MPLS-TP)替代以太网技术作为实时交换机的基本技术体制。分组交换技术采用固定的分组连接,每一个连接固定分配一定的资源,基本保证连接的资源不受干扰;通信网络可以为每两个IED设备之间提供固定的连接和固定的带宽。这种技术在数据传递前通过带宽资源分配机制确定资源,在数据传递过程中固定不变,强调面向连接、严格控制、资源独占和通信保障,因此该技术可以保证通信的可靠性,提供固定的通信时延。

(3)并行网络技术

在统一物理网络的基础上,本研究采用并行网络技术,实现IED设备由单点接入到双网络接入的转变,提高系统的可靠性和稳定性。具体组网中,主备两全相同的交换机和接入网络组成并行网络,IED设备配置P模块接口,采用标准的PRP方式(即双路并发、主动放弃方式,IEC62439),实现主备网络无缝、无损的保护切换。全站设备以并行网络保护方式接入,实现覆盖全系统的N-1保护和全路径端到端的1+1保护。

(4)逻辑子网技术

本研究根据数据业务的类型对通信网络资源进行实质性的划分,依据高级、紧急、快速业务资源专用,低级、慢速业务资源复用,各类业务之间资源占用互不影响的原则,利用可预配置时分复用交换技术,将一个物理网络划分成若干独立的逻辑子网分别传递不同类型的业务。本研究通过资源划分,将智能变电站典型业务分成GOOSE逻辑子网、SV逻辑子网和MMS逻辑子网3个逻辑平面,各业务之间逻辑隔离,互不影响,提高了数据传输可靠性。

2实验结果与分析

以国网公司220-A1-1通用设计方案为例,变电站规模为主变3台,220kV采用双母线接线、出线6回,110kV单母线三分段接线、出线12回,35kV单母线分段接线、出线8回。本研究采用“三层两网”组网方案,冗余双网配置,全站需配置站控层中心交换机4台、间隔层交换机8台、过程层交换机39台,合计51台交换机,网络设备投资约190万元。笔者按本研究“两层一网”组网方案,构建无源光网络,冗余双网配置,全站设A、B两个网,A网核心交换机冗余配置、双主工作模式,主要接入主变间隔保护一、220kV间隔线路、母线保护一、110kV间隔和35kV间隔;B网核心交换机冗余配置、双主工作模式,主要接入主变间隔保护二、220kV间隔线路、母线保护二。全站共需配置4台实时交换机。网络设备投资约60万元,较“三层两网”方案,交换机数量减少47台,投资减少130万元。

电源技术论文篇11

中国经济的持续增速,导致电力供应再度出现了严重的短缺,全国目前已经有22个省市相继“拉闸限电”,一些地区的企业不得不采取“停四开三”,直接影响到各地经济的发展和人民群众的正常生活。电力供应短缺,对于电力改革的实施计划产生了不利影响,供应不足造成“电力市场”无法按期建立。老的垄断管理体系解体了,新的市场体系建立不起来,2011年电力行业将会出现非常复杂的局面,电力改革何去何从成了中国发展的一个新的忧虑。 曾经被寄以厚望的新一轮“电力改革”,正在因为全国性缺电遭遇空前的尴尬,由于权利的重叠和体制矛盾,新成立的国家电力监管委员会和新改组的国家发展和改革委员会对于电力改革具体措施上出现了政令不协调,让电力企业感到无所适从。改革的前景陷入迷茫,连最权威的改革者们也无法预测这一改革将会产生如何的结果。在电力改革的乱麻中,老百姓直接的感受除了“拉闸限电”,就是电价上涨,还有各个部门之间的互相指责,难怪老百姓发牢骚:电力改革越改越乱。电力改革会不会真的“越改越乱”? 作为电力改革的重要步骤之一的“解体原国家电力”的任务已经完成,然而结果却是一个老老虎顿时裂变为12个新老虎,形成了国家电网和南方电网两大电网集团,以及5大电网集团公司,还有5大发电集团公司。在实际生产能力没有相应扩大和执行层也没有加强的前提下,领导机构聚增,使得已经极低的电力行业资产利润率进一步下滑。人们看到的是:办公大楼越来越多,老总副总越来越多,工资待遇越来越高,拉闸限电越来越频繁,电力企业的综合经济效益还不如改革之前。 实际上电力改革早在撤消电力部,成立国家电力公司时就已经开始。然而,改革的进度和成效都令人“沮丧”,国务院不得不推进新一轮的电力改革。电力是一个与公共利益密切相关的行业,需要很强的公共意识,企业是以追求利益最大化为目标的,两者存在非常大的矛盾,让一个企业去承担公共义务是没有道理的,将公共利益简单地交给一个利益集团的“改革”就更是个问题。电力部企业化后,垄断经营等问题非但没有解决,许多方面的弊病更加变本加厉,公共意识完全被“商品经济”意识淹没了。欺行霸市,腐败奢华,占据了近两万亿的国有资产,最后只给政府100多亿的“利润”,最终犯了众怒,使得一些领导同志不管电力改革应该如何实施,采用什么方式,非要将国电公司先解体不可,实际上整个中国社会对于电力改革感情因素超越理智。 电力改革所出现的问题归根到底是生产力和生产关系的不协调。问题是我们可不可能通过改变生产关系来达到发展生产力的目的,我们的意识可不可能去改变已经存在的“现实”。电力工业的生产方式已经延续了100多年,新中国的电力生产供应体系从1945年中国共产党接管东北至今,也已经建立了近60年。它的管理体系是与其生产方式共同生长起来的,生产关系和生产力之间虽然存在不少问题,但是基本上还是平衡的。今天,我们打破这一平衡的目的究竟是为了什么?是希望重新划分利益格局,引进竞争机制,从而打破垄断,增加政府干预权威?还是,提高生产效率,降低供电成本,减少资源浪费和环境污染,使电力能够支持中国的可持续发展?当然,国家电力公司这样规模的垄断企业,在世界上任何国家政府都是无法容忍其存在的。但是,我们通过改革所要达到的“最终目的”是最关键的因素。 目前正在实施的“厂网分开”和“竞价上网”,主要为解决发电和输配电之间的问题,可是发电环节的垄断因素有限,垄断在输配电环节更为突出,而这一垄断是现有供电方式和技术决定的,目前的改革措施能否在不改变生产方式的条件下,改变电力垄断的本质?“厂网分开”虽可以使各大发电企业向电网“平等”送电售电,避免歧视,增加一些企业投资建设电厂的积极性;“竞价上网”也可能增加电网的收益。但凡事都是有一利必

电源技术论文篇12

自2006年11月中共中央政治局常委会决定引进美国西屋公司三代核电AP1000先进技术、成立国家核电技术公司以来,国家核电技术公司牵头高质量地完成了我国三代核电自主化依托项目国际招标的最终合同谈判工作,于2007年7月24日在人民大会堂和美国西屋联合体签订了三代核电技术转让合同。两年多来,技术转让合同项下的34个技转任务包已经全部打开,累计接收并向国内60多家指定技转用户分发21个工作包58175份技术文件及195项计算机软件。通过组织开展对我国引进的先进核电技术的消化、吸收和再创新,不仅直接带动了我国核电产业的研发设计、设备与材料制造、工程建造与管理、调试与运行服务等环节的技术进步,而且有效填补了我国核电产业过去受制于人的空白领域,为推动我国核电产业整体能力的提升提供了强有力的支撑。 一、通过AP1000先进核电技术的引进,直接带动了我国先进核电的建设,世界首批三代核电AP1000机组落户中国。 2007年12月31日,我国第三代核电自主化依托项目开工令。目前,在我国建设的世界首批三代核电AP1000机组已经有3台先后全面进入主体工程建设阶段,分别是浙江三门核电站1号机组、2号机组和山东海阳核电站1号机组。 浙江三门核电站1号机组,不仅是世界AP1000核电技术的首堆,而且在建设中连创纪录,一举刷新我国核电建设十大纪录…… 据统计,我国现在在建的3台AP1000三代核电机组施工进展总体进展顺利。三门、海阳两个厂址,到2009年底已经完成包括核岛负挖、第一罐混凝土浇注、最大结构模块CA20模块就位等关键里程碑节点目标18个。 按照工程建设进度计划,到2014年12月,我国在建的4台AP1000核电机组将先后实现首次并网,届时将全面确立我国在使用三代核电AP1000先进技术发展核电上的领先地位。我国在通过自主化依托项目4台核电机组的成功建设,全面掌握引进的三代核电先进技术,还将通过消化、吸收和再创新,形成我国具有自主知识产权的大型先进压水堆核电CAP1400的技术品牌。 二、通过AP1000先进核电技术的引进,完善并逐步形成完整的核电产业链,直接推动着我国核电事业的发展。 在引进消化吸收AP1000核电技术过程中,国家核电技术公司为了在对接世界先进核电技术中,形成三代核电自主化发展的整体链条,增强在关键领域的带动能力,在我国核电产业配套的缺失或薄弱环节,开展相关核心产业战略布局,取得了明显的成效,为我国三代先进核电的规模化、批量化和自主化发展提供保障条件。 在研发设计环节,加大基础研发投入,成立了国家核电技术研发中心和核电软件工程技术研究中心。 在工程管理领域,依托设计力量,成立世界首家AP1000核电建设工程管理的专业化公司,通过队伍建设、程序文件以及IMS系统的建设和完善,能力大幅度提升,有力地保障了依托项目、后续工程建设目标的实现。 在设备和产品制造领域,组建世界首家AP1000钢制安全壳和模块生产厂,产品研制生产取得成功;组建锆业公司,成立核级锆材研发和检测中心,将彻底改变现阶段我国核级锆材全部依赖进口的历史,并形成自主品牌技术。 在运行服务环节,三代核电站数字化仪控和保护系统研制,以及核电站全寿期服务的业务能力建设正在积极推进。这些战略布局的深入推进,已经并必将在保障我国三代核电自主化建设过程中,发挥重要的支撑和保障作用。 三、通过AP1000先进核电技术的引进,带动了与核电相关的科研、冶金、装备制造、信息化等多个学科、多个产业的发展。 在引进AP1000先进核电技术的过程中,国家核电技术公司以“中国创造”为理念,按照全面推进、重点突破的工作原则,着力解决我国核电发展中关键设备长期受制于人的突出问题,切实提升我国装备制造业的整体水平和市场竞争能力。 两年来,国家核电技术公司与哈电、上电、东电、沈鼓、一重、二重、大重、大起、太重、宝钢、太钢和鞍钢等国内装备制造企业建立了紧密的合作关系,通过定期或不定期的高层协商机制和建立三代核电合格供应商机制,有效地协调关键设备国产化进程中的重大问题,促进其管理水平提升和核安全文化建设工作。 2009年,国家核电技术公司先后组织召

友情链接