二氧化碳年中总结合集12篇

时间:2023-03-15 14:56:40

二氧化碳年中总结

二氧化碳年中总结篇1

中图分类号:F205 文献标识码:A 文章编号:1008-2670(2011)05-0090-06

收稿日期:2011-06-28

作者简介:王宜虎(1973-),男,山东滕州人,山东财经大学经济学院副教授,博士,研究方向:环境经济学和区域经济学。

一、 引言

近200年来,随着人口持续增加以及工业化、城市化进程的不断加速,世界能源消费剧增,生态环境不断恶化,特别是气候变暖已严重威胁到人类的可持续发展,而温室气体排放则是全球气候变暖的元凶,温室气体中二氧化碳又是最主要的一种,因此实现二氧化碳的减排是应对气候变化的重中之重。目前,我国的二氧化碳排放量仅次于美国,居世界第二位,虽然按照《京都议定书》的规定,在2012年之前发展中国家没有减排二氧化碳的指标,但是可以预料到,随着中国经济的发展和工业化进程的加快,中国面临的二氧化碳减排义务将是十分艰巨的。山东省作为我国的人口和经济大省,一直是我国的高碳排放区,中国能源报告(2008)的数据显示,2005年山东省二氧化碳排放量居全国第一位。近年来,山东的碳排放量仍在持续增长,持续稳居全国首位。因此如何控制和减少碳排放已成为一项日益紧迫的重大课题。

目前,国内外均有学者对二氧化碳排放进行研究。York利用STIRPAT模型研究了二氧化碳排放量与人口之间的关系[1];Cole发现二氧化碳排放量与人均收入之间符合库兹涅茨曲线[2],而Friedl与杜婷婷分别应用奥地利和中国的数据发现二者之间是“N”形曲线关系[3,4];徐国泉等采用对数平均权重分解法,定量分析能源结构、能源效率和经济发展等因素变化对中国人均碳排放的影响[5];张雷通过对发达国家和发展中国家的对比研究发现,经济结构多元化导致了能源需求降低,从而降低了碳排放[6]。这些研究着重从碳排放与人口及经济发展的关系角度进行分析,探讨的是整个国家的碳排放问题。也有一些研究从区域角度探讨碳排放问题,邹秀萍、王伟林、李国志等分别对我国省级区域碳排放、江苏省的碳排放、我国碳排放的区域差异等进行了研究[7-9]。本文根据山东省1995-2009年的产业发展和碳排放数据,分析山东省产业发展碳排放的影响因素,并提出相应的碳减排措施。

二、 模型构建

(一) 数据来源与处理

经济数据来源于《山东统计年鉴》,为剔除经济发展中的价格变化因素,所有经济数据均已换算为1995年可比价格。按照山东统计年鉴对GDP的划分原则,将经济系统的二氧化碳排放量(生活用能源排放除外)分解为:第一产业、工业、建筑业、交通运输仓储邮政业、批发零售住宿餐饮业和其他第三产业。由于生活消费能源没有相对应的GDP值,为了更好地说明GDP和二氧化碳排放的关系,在本文的研究中不涉及生活消费能源,即总二氧化碳排放量不包括生活消费能源排放,仅指生产部门的二氧化碳排放。

能源数据采用1995-2009年《中国能源统计年鉴》上的数据,在计算碳排放量时,只计算能源的终端消费量,而不计算加工转换过程以及运输和分配、储存过程中的损失量,另外,电力和热力的碳排放按火力发电和供热投入的能源计算,也不再计算能源终端消费部门电力和热力的碳排放。

能源消费碳排放量使用各种能源的消费量乘以各自的碳排放系数,其计算公式为:

Cit=∑(Eijt×ηj)(1)

山东财政学院学报2011年第5期王宜虎:山东省碳排放的因素分解实证分析其中,Cit为行业i第t年的二氧化碳排放总量;Eijt为行业i第t年第j种能源的消费量;ηj为第j种能源的碳排放系数。由于原始统计时各种能源的消费量均为实物统计量,测算时必须转换为标准统计量,具体的换算方法根据2009年《中国能源统计年鉴》提供的各种能源折合标准煤的参考系数计算(表1)。能源碳排放系数根据2006 年IPCC国家温室气体清单指南的缺省值,并将能量单位由J转化为标准煤,具体转化系数为1×104t标准煤等于2.93×105GJ。各种能源的碳排放系数见表2。

(二) 模型选择

对二氧化碳排放进行分解的主要目的就是为了获得在一定时期内不同因素对碳排放的影响程度。常用的方法有Laspeyres指数分解法、Paasche分解法以及Sun的完全结构分解法,这些方法的主要缺陷是不能同时对多个因素进行分解,或者分解后的残差比较大。由于迪氏对数指标分解法(LMDI)不仅可以对所有因素进行无残差分解,还可以运用到部分残缺数据集的分解上,因此,国际上许多学者广泛采用迪氏对数指标分解法(LMDI)对能源环境进行分解研究。本文也运用迪氏对数指标分解法(LMDI)研究山东省六大分类部门对二氧化碳排放总量的生产效应、结构效应以及规模效应,从总体上把握各部门对二氧化碳排放的贡献强度。

根据LMDI,从0年到t年的总二氧化碳排放差值称为总效应ΔEtot。ΔEtot由三部分组成:由生产规模扩大或者缩小产生的生产效应(ΔEpdn),由经济结构调整导致二氧化碳排放变化的结构效应(ΔEstr),由二氧化碳排放强度改变而引起的强度效应(ΔEint)。因此:

ΔEtot=Et-E0=ΔEpdn+ΔEstr+ΔEint(2)

根据Ang提出的LMDI分解方法[10],(2)式右边的每一项可以表示为:

ΔEqdn=∑iEi,t-Ei,0ln(Ei,tEi,0)ln(-YtY0)(3)

ΔEstr=∑i=Ei,t-Ei,0ln(Ei,tEi,0)ln(Si,tSi,0)(4)

ΔEint=∑iEi,t-Ei,0ln(Ei,tEi,0)ln(Ii,tIi,0)(5)

式中,Y代表年度GDP值;Ei,t是第t年行业i的总二氧化碳排放;Si,t是第t年行业i的GDP占总GDP的份额(Yi,t/Yt);Ii,t是第t年行业的二氧化碳排放强度(Ei,t/Yi,t)。

计算某一行业的三种效应按下列三式进行:

ΔEi,pdn=Ei,t-Ei,0ln(Ei,tEi,0)ln(YtY0)(6)

ΔEi,str=Ei,t-Ei,0ln(Ei,tEi,0)ln(Si,tSi,0)(7)

ΔEi,int=Ei,t-Ei,0ln(Ei,tEi,0)ln(Ii,tIi,0)(8)

三、研究结果分析

运用LMDI对山东省1995-2009年六类行业的二氧化碳排放和GDP数据进行分解,得到如下结果:

(一)总效应

山东省在1995-2009年间经济飞速发展,按可比价计算,GDP年均增长率高达12.37%。经济的强劲增长带来了能源消耗的快速上升以及二氧化碳排放量的迅速增加,15年间二氧化碳排放量增长了3.57倍,二氧化碳排放总量净增长8425.75万吨。

图1是山东省总二氧化碳排放分解效应图。从图中可以看出,造成山东省二氧化碳排放增长的主要原因是生产规模的扩大,2008-2009年为11960.45万吨,是1995-1996年的30.43倍;而GDP的结构调整对碳排放的增加也起了一定的作用,但是相较于生产规模的扩大,其程度很小。所以从总体上看,山东省经济结构调整并没有减少二氧化碳的排放,反而由于工业规模的迅速增加,而在一定程度上增加了二氧化碳的排放。最后二氧化碳排放强度效应一直是负效应,对山东省二氧化碳排放的增加起到了较大的节制作用,并且这种节制作用不断增强,2008-2009年的强度效应为-3534.71万吨,是1995-1996年的6倍多。

(二)生产效应

图2是各行业二氧化碳排放的生产效应图示。从图中可以看出,工业部门二氧化碳的生产效应最大,从1995-1996年的326.65万吨增加到2008-2009年的9796.51万吨,这主要是由山东省国民经济中工业所占的比重最大,生产规模不断扩大的结果。在工业部门中高能耗的重化工工业所占比重较大,并且近几年生产规模不断扩大,导致了山东省工业二氧化碳排放的迅速增加。

其他行业中,二氧化碳排放的生产效应较大的是交通运输仓储邮政业。2008-2009年由其生产导致的二氧化碳排放增加值为950.49万吨。据统计,在很多国家中,交通运输的能源消耗量都约占全部终端能源消费的1/4到1/3,占全部石油制品消耗量的90%左右[11]。因此,交通运输业也是一个值得关注的须减排行业。而像批发零售住宿餐饮业、第一产业、其他第三产业,它们二氧化碳排放的生产效应相对而言较小。

图11996-2009年二氧化碳排放的总效应图21996-2009年各部门二氧化碳排放的生产效应图31996-2009年各部门二氧化碳排放的结构效应图41996-2009年各部门二氧化碳排放的强度效应注:图2-4中A-第一产业、B-工业、C-建筑业、D-交通运输仓储邮政业、E-批发零售住宿餐饮业、F-其他第三产业。

(三)结构效应

图3是各行业二氧化碳排放的结构效应图示。从图中可以看出,1995-2009年山东省工业内部的结构调整并没有对工业节能减排起到积极的正面作用,工业二氧化碳排放的结构效应仍然持续增加,仍在推动二氧化碳排放总量的增加。其他行业中,交通运输仓储邮政业的结构效应也在持续增加,表明其结构调整对二氧化碳的减排也没有起到积极作用;批发零售住宿餐饮业的结构效应也表现为持续小幅增加,但不很明显。第一产业的二氧化碳排放结构效应呈明显下降趋势,表明近年来对于结构调整降低二氧化碳排放最显著的是第一产业,其次是其他第三产业和建筑业。

(四) 强度效应

图4是各行业二氧化碳排放的强度效应图示。从图中可以看出,就整个国民经济而言,工业二氧化碳排放强度效应下降的幅度最为明显,其次为其他第三产业,其他行业的二氧化碳排放强度效应变化不大,有的偶有反复,只有交通运输仓储邮政业的强度效应在2005年以后表现出一定程度的正效应。由此可以推断,强度效应主要是由工业部门二氧化碳排放强度的降低引起的,工业部门的强度效应很好地制约了工业二氧化碳排放的增长速度和总量增长。具体来看,从1995-2009年间,工业部门的二氧化碳排放强度整体上保持递减的态势,只在1998年、2003年、2005年有小幅反弹。到2009年,工业部门二氧化碳排放的强度效应达到-3419.43万吨,是1996年-397.68万吨的8.6倍。由此也可以看出,山东省工业部门节能减排工作取得了一定的成就。

四、 结论与建议

(一)结论

通过以上对山东省产业碳排放总量进行指数分解的实证研究,可以得出以下结论:

(1)山东省碳排放总量的上升主要是由于生产规模扩大造成的结果,经济结构的调整也对碳排放总量的上升起到一定的促进作用。

(2)由于山东省碳排放强度的降低,碳排放的强度效应大大减小,有力地遏制了能源消费总量的上升。

(3)从生产效应、结构效应和强度效应来分析,工业是碳排放的主体,不论是其生产规模的扩大还是其结构的变化都极大地导致了碳排放量的增加,虽然工业碳排放强度的不断减小也对碳排放量产生较大的遏制作用,但是仍不及生产效应和结构效应对碳排放量的促进作用。

(二)建议

实证分析显示,经济产出的持续增长是山东省碳排放增长的主导因素。然而经济产出的增长是满足人民生存与发展基本需求的必要条件,因此目前节能减排政策的制定不能寄希望于控制经济产出规模,而应着眼于优化结构与提高效率,具体建议如下:

(1)调整产业结构。产业结构的变化对山东省现阶段碳排放表现出正效应,这与以调整产业结构推动节能减排的初衷有较大差距。其原因与山东省一度强调重化工业的发展战略不无关系。山东省在经济发展过程中曾大力发展石化、钢铁、纺织等高能耗行业,消耗了大量能源,严重减缓了碳排放强度的下降。因此,应进一步优化产业结构,减少对第二产业(工业)的过分依赖。一方面努力在重化工业领域进行资源整合,加快产品升级换代步伐,适当发展低能耗产业,逐步减小高能耗行业产值占整个工业产出的比例;另一方面,要大力发展高新技术产业和现代服务业,不断提高第三产业在国民经济中的比重,尽快使山东经济完成从外延粗放型向内涵集约型的转变。

(2)提高能源利用效率。尽管山东省碳排放强度总体处于下降趋势,但是同发达国家和地区相比,仍然有很大差距。企业生产应加大对先进节能技术的倾斜性投资,推动能源利用环节创新技术的研发与推广,逐步淘汰高能耗的设备,改进生产工艺,提高能源利用效率。同时,应尽快促成各行业制定《节能法》实施细则,加大《节能法》贯彻力度,从法律层面保障能源效率的持续提高。

(3)改善能源结构。考虑到山东以煤炭为主的能源资源禀赋的制约,要保持能源结构对碳排放的负效应并加以增强,主要出路应该在于发展非化石能源。应有计划地扶持核电、风电、水电、太阳能及生物质能项目,努力保持非化石能源比重的持续增长态势。在化石能源中,相对低碳的天然气在一次能源消费中长期呈现过低比例,应通过调整产业政策及国际贸易政策促进天然气产业的发展。

(4)推进碳减排政策创新。将碳排放作为区域经济发展绩效的考核指标,提出单位GDP的碳减排比例,不断推进政府进行碳减排的政策创新,如开展碳排放权交易、实施碳减排补贴政策等,从而不断推进碳减排。

参考文献:

[1]YORK R, ROSA E A, DIETA T, STRPAT.IPAT and IMPACT: Analytic Tools for Unpacking the Driving Forces of Environmental Impacts[J].Ecological Economics, 2003(3): 351-365.

[2]COLE M A. Development, Trade and the Environment: How Robust is the Environmental Kunzets Cuvre[J]. Environment and Development Economics, 2003(8): 557-580.

[3]FRIEDL B, GETZNER M. Determinates of CO2 Emissions in A Small Open Economy[J]. Ecological Economics, 2003(1):133-148.

[4]杜婷婷,毛锋,罗锐.中国经济增长与CO2排放演化探析[J].中国人口•资源与环境,2007,17(2):94-99.

[5]徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口•资源与环境,2006,16(6):158-161.

[6]张雷.中国一次能源消费的碳排放区域格局变化[J].地理研究,2006,25(1):1-7.

[7]邹秀萍,陈劭锋,宁淼,刘扬.中国省级区域碳排放影响因素的实证分析[J].生态经济,2009(3):34-37.

[8]王伟林,黄贤金.区域碳排放强度变化的因素分解模型及实证分析―以江苏省为例[J].生态经济,2008(12):32-35.

[9]李国志,李宗植.中国二氧化碳排放的区域差异和影响因素研究.中国人口•资源与环境,2010,20(5):22-27.

[10]ANG B W. Decomposition Analysis for Policy Making Inevergy: Which is the Preferred Method[J]. Energy Policy, 2004, 32 (9):1131-1139.

[11]齐玉春,董云社.中国能源领域温室气体排放现状及减排对策研究[J].地理科学,2004(5):528-534.

An Empirical Analysis of the Factor Decomposition of Carbon Emission

in Shandong Province

WANG Yihu

二氧化碳年中总结篇2

中国二氧化碳排放量于2006年超过美国,位居世界第一,而且近几年来中国的二氧化碳排放量持续增加,2012年全年排放量达到8106.43百万吨。中国曾承诺将采取有效措施减少二氧化碳排放,并于2030年前停止增加二氧化碳的排放量。在实施减排任务同时对中国二氧化碳排放现状及影响因素有一个细致的了解是十分有必要的。

一、中国二氧化碳排放来源

化石能源的消耗是造成二氧化碳排放的重要原因,中国经济自改革开放以来迅猛发展,其中第二产业1978年至2015年的平均比重达到45%,第二产业的能源消耗总量占到总能源消耗量的80%以上,由此推断,第二产业,尤其是工业部门是二氧化碳排放的重要来源。

在第二产业内部,不同细分行业的二氧化碳排放量存在差异,排在前五位的分别是电力、热力的生产和供应业,石油加工、炼焦及核燃料加工业,黑色金属冶炼及压延业,非金属矿物制品业和化学原料及化学制品制造业,分别占到40.1%、24.2%、7.3%、6.7%和6%。

农业活动的二氧化碳排放量占全国二氧化碳排放总量比例较低,而且农业生态系统在相当大的程度上能够减少因人类活动造成的二氧化碳排放。但是,中国大规模的砍伐树林、毁坏良田、破坏湿地等活动使农业生态系统的吸碳能力大幅度下降。

二、二氧化碳排放现状

2000年至2012年,中国全国的二氧化碳排放总量从5389百万吨增长至16572百万吨,具体来看,2000年二氧化碳排放量排在前五的省市区分别为辽宁、广东、河北、山东和山西,到2012年二氧化碳排放总量排在前五的则分别为山东、江苏、广东、河北和内蒙古,虽然排序发生了一些变化,但排在前五位的省市占比加总基本保持在35%左右,这说明我国二氧化碳排放的集中度基本保持不变。2000年至2012年中国全国的二氧化碳平均年增长幅度达到为9.81%,其中,海南、宁夏、内蒙古、陕西、青海、山东、广西、新疆、福建、云南、江苏、湖南、浙江和河南大于全国的二氧化碳平均增长速度,因此,这些地区的减排任务严峻。海南、宁夏两地的增长速度大一部分原因在于其基数小,但若不引起重视,这两地的二氧化碳排放量将超过其他地区。此外,值得注意的是内蒙古2012年的二氧化碳排放量已经位居第五,若仍然保持目前的增长速度,势必会成为中国最大的二氧化碳排放地区。

从地区来看,2000年中国东部、中部和西部的二氧化碳排放量分别为2633百万吨、1757百万吨和999百万吨,比重分别为48.87%、32.60%和18.53%;2012年中国东部、中部和西部的二氧化碳排放量分别为7733百万吨、5340百万吨和3500百万吨,比重分别为46.66%、32.22%和21.12%。2000年至2012年,虽然三大地区对二氧化碳排放量的贡献度排序依然为东部、中部和西部,但是东部的贡献度明显下降,中部基本保持不变,而西部的贡献度明显上升。东部、中部、西部和全国的二氧化碳排放量年平均增速为9.39%、9.71%、11.01%、9.81%,西部地区的增速明显高于其他两个地区和全国平均水平。

三、二氧化碳排放因素分析

人口、经济增长、技术水平是影响二氧化碳排放的主要因素。

人口增长会通过两种方式影响二氧化碳的排放:一是人口数量的增加会使得对能源的消费增加,进而导致二氧化碳排放量的增加;二是人口的增加可能会导致森林、湿地、草原等生态系统的破坏,减少其二氧化碳的吸收能力,间接造成二氧化碳排放量的增加。

经济增长影响二氧化碳排放主要通过三种途径:规模效应、结构效应和技术效应。规模效应对二氧化碳排放有促进作用,而结构效应和技术效应对二氧化碳排放有抑制作用。在经济增长初期,经济的增长主要依靠扩大生产规模,即扩要劳动力、资本、自然资源等生产要素投入量来保持经济的快速增长,这会造成二氧化碳排放量的大量增加。随着经济的增长,经济结构发生改变,过去高污染的工业经济开始转向清洁的技术型、服务型经济,结构效应对二氧化碳排放的抑制作用开始显现。另外,经济增长带来的技术进步也进一步抑制了二氧化碳的排放。总结来说,二氧化碳排放与经济增长之间存在一个“倒U”型的关系,即二氧化碳排放量在初期随着经济的增长而增加,当经济发展达到一个临界点后,二氧化碳排放量随经济增长而开始减少,这就是库兹涅茨曲线。

技术水平可以通过三大主要途径影响二氧化碳的排放。第一,技术水平的提高可以实现节能产品的生产和应用,这将减少化石能源的使用量,进而减少二氧化碳的排放量;第二,技术水平的提高可增加对可再生清洁能源的利用,降低对化石能源的依赖程度;第三,随着技术水平的不断提高,人类社会的经济发展模式发生改变,从以能源为要素投入的经济增长方式逐渐过渡到以资本为要素投入的经济发展方式。

四、结语

目前中国二氧化碳排放情况依然严峻,西部地区是未来二氧化碳减排应该着重注意的区域。在实行二氧化碳减排工作时,要充分认识到人口、经济增长以及技术水平对其的影响作用,将他们纳入一个统一的工作框架,制定一系列有效措施,以此实现在2030年前停止增加二氧化碳排放量的目标。

参考文献:

[1] 韩玉军,陆D. 经济增长与环境的关系――基于对CO_2环境库兹涅茨曲线的实证研究[J]. 经济理论与经济管理,2009.

二氧化碳年中总结篇3

一、引言

十一届全国人大三次会议提出我国在发展未来经济时,积极发展以低碳排放为特征的产业体系和消费模式,针对全球气候变化问题,积极参与国际合作,采取合理的措施来共同解决全球气候变化给经济发展所带来的困扰。当前,能源问题和气候安全已经成为全球经济发展的重要影响因素,能源和气候变化成为威胁经济发展的因素,而这两个因素都与高碳排放密切相关:一方面,碳密集的能源生产方式和能源消费方式,给全球经济的发展带来了极大的影响,导致能源使用短缺。能源属于不可再生资源,资源的短缺将造成能源的不可持续。另一方面,高碳排放会给生态环境带来威胁,导致生态环境被破坏,出现大气污染、温室效应等环境问题,这些问题的出现会对人们的生活造成威胁。2012年1月根据国务院关于印发“十二五”控制温室气体排放的通知,我国以到2015年全国单位国内生产总值二氧化碳排放比2010年下降17%为目标,积极应对全球气候变化。其中要求各地区也应充分认识并控制温室气体的排放,到2015年吉林省单位国内生产总值二氧化碳排放要比2010年下降17%。

综上所述,研究吉林省二氧化碳排放与经济发展之间的关系对于吉林省经济发展和环境建设具有重大意义,应从我国当前经济发展现实出发,发展能耗低、污染低、碳排放低的低碳经济,适合世界经济的发展潮流,符合我国当前的经济发展现状,是我国经济实现可持续发展的重要措施,所以各个地区要根据自身经济发展的实际情况来发展低碳经济,促进各地区经济发展的同时,保护生态环境。

二、文献综述

1991年美国两位经济学家Grossman和Kruger首先提出环境库兹涅茨曲线理论,并研究了两者之间的关系。之后很多学者纷纷进行了这方面的研究; 2004年Martines-Zarzoso等发现人均收入与人均二氧化碳排放存在N型关系。

近些年,国内许多的学者也纷纷置身于二氧化碳环境库兹涅茨曲线的研究,2009年林伯强、蒋竺钧,运用二氧化碳环境库兹涅茨曲线研究了我国二氧化碳排放的拐点,并进行了预测。2009年韩玉军、陆在文章中认为收入水平不同的国家有着不同类型的二氧化碳环境库兹涅茨曲线;2010年许广月、宋德勇在论文中认为中国东部和中部地区存在人均碳排放的二氧化碳环境库兹涅茨曲线,但西部地区不存在。还有许多例如陆虹(2009)吕志鹏(2012)邵锋祥、屈小娥、席瑶(2012)等学者都运用二氧化碳环境库兹涅茨曲线研究了经济增长与二氧化碳排放之间的关系,但对吉林省的具体研究相对其他地区较少。

三、吉林省二氧化碳环境库兹涅茨曲线

近几年全球化问题得到广泛关注,许多学者也置身于这一问题的研究,库兹涅茨曲线慢慢应用于二氧化碳排放与人均收入的关系。本文利用二氧化碳的环境库兹涅茨曲线模型分析,描述了人均二氧化碳排放和人均收入的关系。并分析推算碳排放时候存在拐点及达到观点的时间路径。

(一)模型、指标与数据

1. 二氧化碳排放EKC曲线模型构建

模型以人均收入作为解释变量,设三次方程式并采用对数形式。

模型的表达式为:

LNPC=α+β1LNPY+β2LNPY2+β3LNPY3(1)

表达式中:α为截距项,β1、β2和β3分别为LNPY、LNPY2、LNPY3的估计系数

2. 数据的来源与处理

数据样本区间为1993-2011年,研究这一区间中吉林省人均二氧化碳排放(PC)和人均收入(PY)的关系。人均二氧化碳排放为历年吉林省二氧化碳排放总量与吉林省总人口数之比;人均收入则为历年吉林省地区生产总值与吉林省总人口数之比表示。吉林省地区生产总值和人口数据来源于《2012年吉林省统计年鉴》,地区生产总值以1993年不变价格计算。

(二)实证结果与分析

对模型进行拟合,结果得出:

LNPC =0.022233512- 58.1950848734 LNPY + 7.68173747313 LNPY2- 0.333824991434L LNPY3

该模型经检验合格,所以运用该模型。

Ekc曲线的判定标准为

模型结果分析β10,β3

根据表一所示本文模型结果分析β10,β3

计算吉林省EKC曲线的拐点,可根据公式

拐点=exp(-β1/2β2)

得出两个拐点分别为43.28859(元)和99289.68823(元),其中拐点一43.28859(元)不具经济学意义,故不做分析,拐点二为99289.68823(元)当吉林省人均收入小于99289.68823(元)时二氧化碳的排放随着人均收入的增加而增加;反之,当二氧化碳的排放随着人均收入的增加而减少。通过以上的分析我们可以总结出吉林省经济增长与二氧化碳排放的现状与未来。

四、影响二氧化碳排放的因素及其存在问题

(一)影响二氧化碳排放的因素选取

现如今存在着许多碳排放的影响因素,本文我们选取产业结构、能源强度、经济发展水平、技术进步和制度因素等五项因素来分析。

1. 产业结构(CY),产业结构直接影响着二氧化碳碳排放,优化产业结构是减少二氧化碳排放的主要途径,本文选取三大产业中对二氧化碳排放最具影响的第二产业,以吉林省1993~2012年历年第二产业的增加值与吉林省生产总值之比表示产业结构。

2. 能源强度(ENG),能源强度的大小影响着二氧化碳的排放,经济发展水平低的时期,能源消耗大,利用率低,二氧化碳的排放量大,但经济发展水平高的时期,能源消耗量虽大,但能源利用率得到提高,二氧化碳的排放量就会相对减轻。本文以1993~2012年历年吉林省能源消耗量与吉林省生产总值之比表示能源强度。

3. 经济发展水平(PGDP),经济发展水平低时,环境的质量会随着经济的增长而下降,但经过某一拐点后,环境质量就会有上升的迹象,经济发展水平可以很好地的衡量二氧化碳排放。本文以吉林省1993~2012年历年人均GDP表示经济发展水平。

4. 技术的发展(R&D),技术的发展特别是对对减少碳排放的技术等环保科技的投入和研发,可以很好地减轻二氧化碳的排放量,本文以吉林省1993~2012年历年R&D即发展经费支出表示技术进步。

5. 制度因素(SYS),政府对外开放的程度高,对环境监管力度的加强,可以使二氧化碳排放总量降低,本文以吉林省1993~2012年历年进出口贸易总额与吉林省地区生产总值之比表示制度因素。

6. 二氧化碳排放总量(CO2),以吉林省1993~2012年历年二氧化碳排放总量表示。

(二)模型设定与分析

1. 模型的设定

根据变量的选取,所构建的模型如下。

CO2=α+β1CY+β2ENG+β3PGDP+β4R&D+β5SYS (4-1)

其中对变量CO2、R&D各取对数,分别记为LNCO2、LNR&D,模型最终为

LNCO2=α+β1CY+β2EN

G+β3PGDP+β4LNR&D+β5S

YS (4-2)

1993-2012年的二氧化碳排放总量为被解释变量,其与影响二氧化碳碳排放的因素为解释变量,运用EVIEWS6.0对模型进行回归分析。分析结果如下:

LNCO2=7.8721-1.490955CY+1285.1

52ENG+3.87PGDP+0.47854LNR&D+1.1

05797SYS(4-2)

2. 模型的分析

产业结构(CY)是由第二产业的增加值表示的,产业结构的回归系数为-1.490955,在1%水平下为正态分布,每增加一个百分点,二氧化碳的排放量也随之增加。吉林省产业结构由第二产业为主,碳排放也是由第二产业排放量占很大的比重,说明二氧化碳的排放量随着第二产业的能源消耗增加而加剧。

能源强度(ENG)的增加会使二氧化碳排放有这相应增加,表格中能源强度的回归系数为1285.152,系数检验值在1%水平线上通过显著性检验,从1993~2012年的能源强度的变化可以看出,这一区间的能源强度在逐渐减小,说明按照这一趋势,能源强度的逐步下降代表经济发展水平逐步提升,能源的利用率得到提高,使二氧化碳排放速度逐步放缓,从而减轻二氧化碳的排放量。

经济发展水平(PGDP)的回归系数为3.87,系数检验值在1%水平上通过显著性检验,表示人均收入GDP每增加一个百分点,二氧化碳排放就会上升,说明二氧化碳排放还未经过拐点,二氧碳排放随着经济的增长而增加,人们的思想还为提升到对高环境质量的渴望。

技术的进步(R&D)加强可以使二氧化碳排放减少,表格中回归系数为0.478542,表示技术进步rd每增加一个百分点,二氧化碳排放就能够相应的下降,但技术进步rd的系数检验并不显著,说明技术的进步虽然可以减少二氧化碳的排放量,但吉林省的技术发展相对落后,并不能很好地减轻二氧化碳的排放。还应当加强技术进步,提高能源利用效率。

制度因素(SYS)是由对外开放度表示的,制度因素的回归系数为1.105797,表示制度因素每增加一个百分点,二氧化碳排放量就会加大。这说明吉林省对外开放力度较低,政府对环境监管的执行力度不够。所以二氧化碳排放量会增大。

(三)吉林省二氧化碳排放所存在的问题

通过因素影响的分析,我们分析目前吉林省二氧碳排放所存在的问题。

1. 重型产业结构,导致碳排放强度大

吉林省以重工业为主,电力、机械设备、汽车、化工、建材等重工业成为吉林省经济增长的主要力量。重工业具有高资源消耗、高污染、碳排放强度大的经济发展特点,在重工业发展中对资源的需求量必然会增大,而吉林省又是以煤炭资源为主的大省,所以在高度的经济发展过程中必然会引起碳排放量的增大,排放强度大,会成为制约吉林省发展低碳经济的阻碍因素。在未来,吉林省要想发展低碳经济,必须考虑使用清洁能源来代替煤炭能源,降低碳排放量。

2. 以煤为主的能源结构,清洁能源发展水平低

受能源资源的限制,吉林省的能源生产和能源消费以煤炭和石油为主,而以水电为主的清洁能源却只占很少的比例。吉林省有着丰富的天然气资源,但是天然气的使用率很低,低于全国平均水平;吉林省境内有着丰富的风能资源,目前基本尚未开发;吉林省有着丰富的煤层气资源,但是对煤层气资源的利用仍然处于起步阶段,在使用时存在着排空浪费现象。可以这样说,吉林省有着各种各样的清洁能源,但是目前仍以煤炭资源为主,清洁能源的开发程度低,使用效率低。

经济发展水平提高,人民生活水平明显提高,但人民对能源的消费需求加大。

随着吉林省经济发展水平的不断提高,人民生活水平明显提高,人民对能源的消费需求加大,但对节能减排的意识并没有普及。比如吉林省的地理位置比较特殊,冬季寒冷且时间漫长,煤炭成为居民冬季御寒的主要能源。人民生活水平明显提高,人均住房面积大幅提高,居民对煤炭的需求量大增,人均煤炭消费量增加,煤炭消费量的增加必然导致碳排放的增加,大量的二氧化碳排入空气中,必然会带来环境污染。不光是对住房的需求,人们对生活的物质需求和消耗都使得二氧化碳碳排放的增加,严重制约了吉林省低碳经济的发展。

3. 吉林省环保技术水平低,节能减排效果不明显

通过对模型的分析,吉林省的技术进步虽然在一定程度上可以减轻二氧化碳的排放,但我们从中也发现了这种影响十分微弱,这说明吉林省在环境保护上的科技投入并不充足,环保技术水平低。技术的进步发展可以充分将二氧化碳排放量减轻,而吉林省节能减排的效果并不明显。

4. 政府对外开放程度不够,环境制度不完善

吉林省属于对外开放程度比较低的东北部地区,健全的市场经济体系还未形成于经济活动中,政府对环境监管力度薄弱,使得二氧化碳排放量不断升高。

五、对策

(一)加大科技投入,发展知识和技术密集型为主的低碳产业

技术进步可以在一定程度上减轻吉林省二氧化碳的排放量,吉林省可以采取加大科技投入的措施来降低二氧化碳的排放量,通过发展知识密集型和技术密集型的低碳产业来降低碳排放量。

知识和技术密集型产业属于低碳产业,该产业的主要特点是能耗低、物耗低,可以降低生产过程中的碳排放量。吉林省的经济发展以重工业为主,重工业生产过程中需要大量的煤炭资源,能耗高导致碳排放量高,从而对生态环境造成严重的影响,影响吉林省经济的可持续性发展。吉林省在经济发展过程中,应通过投入资金加大科技投入来转变吉林省的经济发展结构,逐步发展知识和技术密集型为主的低碳产业,通过经济结构的转型,发展耗能低的信息产业和现代服务业等,从而降低二氧化碳的排放量,实现吉林省经济的持续、快速和健康发展。

(二)优化能源结构,减少对煤炭的过度依赖

目前,从我国的能源结构来看,煤炭占70%左右的比重,远远高于世界30%左右的比重。吉林省在发展经济的过程中,以重工业为主,对煤炭的依赖程度非常大,已经成为我国煤炭消费的主要省份,由于煤炭的碳排放量非常高,因此吉林省近几年的碳排放量非常高,对环境造成严重的威胁。吉林省要想实现经济的可持续性发展,必须优化经济发展中的能源结构,减少对煤炭资源的过度依赖,增加经济发展中可再生能源和新能源的充分利用。

吉林省在经济发展中要重视对可再生资源和新能源的利用,通过能源的替代,来降低碳的排放量,从而保护生态环境,实现经济的可持续发展。当前我国在经济发展中非常重视对生态环境的保护,已经将可再生资源提到了经济发展的重要位置。吉林省可以充分利用国家的政策,来进行能源的替代,利用低碳能源来减少二氧化碳的排放量,提高新能源和可再生能源在能源利用中的比重,减少对煤炭的过度依赖,最终实现经济的稳定发展。

(三)转变经济增长方式,调整产业结构

吉林省的经济发展以第二产业为主,一般来说,第二产业与第三产业相比,对能源的消耗量大,导致二氧化碳的排放量也比较高。从吉林省的经济结构来看,重工业在经济发展中处于主导地位,是导致吉林省碳排放量高的主要原因。随着世界经济的快速发展和全球经济一体化,当今世界已经进入信息时代,科技可以提高劳动生产率,可以促进经济的发展。因此,对于吉林省来说,必须转变当前的经济增长方式,调整产业结构,实现第二产业向第三产业的转变,同时,大力发展第三产业可以降低对煤炭的依赖程度,实现低碳经济的顺利转变,减少经济发展中碳排放对生态环境造成的严重影响,逐渐降低碳排放量,保护生态环境,实现吉林省经济的长远发展。

(四)发展具有低碳特征的环保产业发展模式

随着国家对低碳经济重视程度的提高,吉林省对促进环保产业发展的产业结构进行优化,逐步发展能耗低、二氧化碳排放量低的食品、医药、新型能源化工等先进制造业为主体的新型工业机构,但是从吉林省目前的经济发展结构来看,仍然是以汽车制造、机械、化工和建筑等国际公认的高碳产业为主,高碳产业在发展过程中,对煤炭资源的依赖程度比较大,面对日益增加的碳排放量,面对生态环境的日益恶化,吉林省要维持经济的长远发展,应该充分发挥科学技术在经济发展中的重要作用,通过科技来降低生产企业的碳排放量,发展具有低碳特征的环保产业,从而提高能源的利用效率,优化能源的利用结构,使生态环境与经济发展相协调,而不是以牺牲环境为代价来换取经济的发展。

吉林省在发展低碳环保产业的过程中,可以利用吉林省科学研究院的优势来为低碳环保产业的发展提供平台;培养低碳产业发展的专业人才,为低碳产业的发展提供人才保障;政府可以通过相关的政策扶持等来发展低碳环保产业,既能达到保护生态环境的目的,也能促进经济的快速发展,从根本上减轻吉林省二氧化碳的排放量。

(五)改变工业品出口结构,实现吉林对外贸易的可持续发展

目前,吉林省工业品出口结构中,仍然以能耗高、排放量高的工业品为主导,在工业生产过程中导致碳排放量较高。为实现吉林对外贸易的可持续发展,吉林省应该通过改变工业品的出口结构来降低工业生产中二氧化碳的排放量。

吉林省政府可以通过贸易政策调整来改变工业品的出口结构,近年来,随着吉林省产品出口的迅速发展,为了促进工业品的出口,国家通过关税调整政策来降低出口工业品的能耗和排放量,对高耗能、高排放量的出口产品征收高出口关税;对低耗能、低排放量的出口产品征收较低的出口关税。

这些措施的实施,既可以通过国际贸易来达到节能降耗,降低二氧化碳排放量的目的,也可以通过工业品出口结构的完善,来增加出口工业品的产品附加值,促进出口工业的深加工,提高出口工业品的技术含量,提高吉林省出口工业品在世界市场上的市场份额与竞争能力。通过技术创新来降低吉林省二氧化碳的排放量,发展科技含量低、无污染的第三产业,促进吉林省整体经济的发展,促进吉林省低碳经济的发展,改善吉林省的生态环境,改善经济发展所产生的环境污染问题。

参考文献:

[1]林伯强,蒋竺钧.中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J].管理世界,2009(04).

[2]韩玉军,陆.经济增长与环境的关系――基于对CO2环境库兹涅茨曲线的实证研究 [J].经济理论与经济管理,2007(03).

[3]许广月,宋德勇.中国碳排放环境库兹涅茨曲线的实证研究――基于省域面板数据[J]中国工业经济,2010(05).

[4]吕志鹏.辽宁省碳排放与经济发展关系研究――基于环境库兹涅茨曲线的分析[J].调研世界,2012(04).

[5]邵锋祥,屈小娥,席瑶.陕西省碳排放环境库兹涅茨曲线级影响因素――基于1978~2008年的实证分析[J].干旱区资源与环境,2012(08).

[6]刘华军,闫庆悦,孙曰瑶.中国二氧化碳排放的环境库兹涅茨曲线――基于时间序列与版面数据的经验估计[J].中国科技论坛,2011(04).

[7]陆红.中国环境问题与经济发展的关系分析――以大气污染为例[J].财经研究,2000(10).

[8]张亚欣,张平宇.吉林省低碳经济发展水平评价[J]干旱区资源与环境,2011(06).

[9]张丽峰.我国产业结构、能源结构和碳排放关系研究[J].干旱区资源与环境,2011(05).

[10]GrossmanG.M., Krueger A.B..Environmental Impacts of a North American Free Trade Agreement[N].National Bureau of Economic Research Working Paper,1991.

[11]Martin Wagner.The Carbon Kuzne

ts Curve: A Cloudy Picture Emitted by Bad Econometrics?[J].Resource and Energy Economics,2008(30).

[12]GaleottiM.,LanzaA.,Pauli,F..Reasse

ssing the Environmental Kuznets Curve for CO2 Emissions : A Robustness Exercise[J].Ecological Economics,2006(57).

二氧化碳年中总结篇4

随着2009年11月25日中国宣布了“碳减排”目标,“低碳经济”的提法在2009年年底迅速兴起,“碳减排”也在2010年年初渐渐成为了最热的新闻关键词之一。然而,长期以来媒体“碳减排”的相关报道存在若干误区。笔者择其较为典型的部分,试辨析如下。

一、二氧化碳不是大气污染物

在媒体报道中不难见到这样的新闻标题:《商用车二氧化碳污染严重》、《“清洁煤炭”技术可减少二氧化碳污染》、《降低污染,把二氧化碳埋藏在海底》……这些文章中都把二氧化碳和二氧化硫等作为大气污染物来看待。实际上,从法律角度分析,目前在我国二氧化碳还并不是大气污染物。我国《大气污染防治法》没有明确列举大气污染物的种类,按照该法第七条规定,我国法定大气污染物的种类,实际是由国家《大气污染物综合排放标准》 (GB16297―1996)以及地方大气污染物排放标准、行业性大气污染物排放标准具体规定的。《大气污染物综合排放标准》规定了33种大气污染物的排放限值,“二氧化碳”并不在其列。而其他标准虽有的与规定略有不同,也都没有列入“二氧化碳”。如《广东省大气污染物排放限值标准》中规定了37种大气污染物,把“一氧化碳”列入其中,但是也没有把二氧化碳作为大气污染物加以限制。其实,二氧化碳是否应列入大气污染物名单,在法学理论界依然有争议。作为自然界不可或缺的物质,把二氧化碳简单地看成是一种污染物,也确实是值得商榷的。

二、“节能减排”中的“减排”,其实并不是“碳减排”

“节能减排”几乎成为有关“低碳”新闻报道中最常见的词语之一。实际上,作为我国一项政策的“节能减排”,现阶段是指实现《国民经济和社会发展第十一个五年规划纲要》中“单位国内生产总值能耗降低20%左右,主要污染物排放总量减少10%的约束性指标”。“节能减排”中的“减排”一词根本不是指“碳减排”,而是指“主要污染物减排”。“节能减排”作为政策名称出现时,“减排”的含义是非常明确的。如2007年11月17日《国务院批转节能减排统计监测及考核实施方案和办法的通知》,通知中的“减排”对象,就专门是指“十一五规划”确定实施排放总量控制的两项污染物:化学需氧量(COD)和二氧化硫。虽然,“污染物和温室气体主要源于化石燃料的燃烧,两者具有一定的同源性,其控制手段也有一定的一致性”、“以二氧化硫为主的污染物减排对温室气体减排有明显协同作用”①。但是,把法律上不是大气污染物的二氧化碳,当成了着眼于“主要污染物排放总量减少”的“节能减排”政策中的“减排”对象,无疑是一种误读。

三、节能未必减排、减排未必节能

现在,很多“碳减排”新闻报道默认了这样一个前提:“碳减排”是“节约能源”的必然结果。甚至认为“节约能源”和“碳减排”是一体的。于是,不少报道也就专注于《节约能源法》等法律法规和相关政策的实施,将之视为实现“碳减排”的“不二法门”。实际上,消耗的能源较少,不代表二氧化碳排放较少。以中美能源消耗和“碳排放”情况比较为例:美国2008年能源消费总量为2299.0百万吨标准油当量,中国为2002.52百万吨标准油当量②,美国消耗的能源远多于中国。但是,2008年 “中国和美国的二氧化碳排放总量大体相当”③。中国能源消耗少于美国的情况下,碳排放却与美国“大体相当”,主要原因是“以煤为主”的能源结构(煤炭的“单位热量二氧化碳碳排放量”高于石油和天然气),低碳能源使用偏少。通过比较也揭示了这样的事实:节约能源只是实现“碳减排”的途径之一。能源结构不调整的情况下,很有可能出现“节能不减排”的情况;而扩大能源结构中低碳能源的比例之后,消耗能源增多,碳排放未必增多。寻求“碳减排”的政策路径,不能视野单一,只在节约能源方面下功夫。

值得注意的是,其实存在“减排不节能”的情况――把排放的二氧化碳收集起来,用各种方法储存以避免其排放到大气中的“碳捕集与封存”(CCS)技术,是现阶段公认的短期实现“碳减排”最重要的技术之一。但是碳捕集与封存技术却是“一项高耗能、高成本的技术”,按我国目前火电厂的情况,使用这项技术“增加了1/4的耗电量、耗煤量”,“发一度电几乎要增加30%~50%的能耗”④。为了实现“碳减排”,在这种情况下其实和“节约能源”背道而驰了。■

参考文献

①《中国污染物减排显著带动二氧化碳减排》,新华网,09年12月15日

②《气候变暖变冷对中国都是巨大挑战》,中国能源网,2010年1月25日

③《中美二氧化碳排放总量大体相当》,《中国经济导报》,2008年10月30日

二氧化碳年中总结篇5

中图分类号 文献标识码 文章编号

自上世纪70年代末以来,我国经济保持了30多年的高速稳定增长,年均经济增长速度超过9%,而国际贸易对经济增长的贡献功不可没,1978年我国的贸易依存为9.7%,而2006-2008年的外贸依存度分别为64.81%,62.27%,56.90%。虽然近几年受金融危机的影响,进出口有所下降,但不可否认国际贸易仍然是我国经济增长的一大火车头。然而伴随着经济的快速增长与对外贸易的不断深化,资源被过度使用,导致了一系列环境问题。在2007年世界经济论坛年会上,气候变化已被认为是超过恐怖主义、阿以冲突、伊拉克问题成为压倒一切的首要问题(庄贵阳,2007)。我国2007年的二氧化碳排放量为67.2亿吨,超过美国的59亿吨,成为世界头号碳排放国家。我国政府已经规划到2020年实现人均GDP比2000年翻2翻的经济发展目标,并且在2009年的联合国气候变化峰会上提出争取到2020年国内生产总值的碳排放强度比2005年要有显著下降的目标,加之当前全球都在积极的推行“低碳经济”,各国都要承担对全球“碳减排”应尽责任。此外,当前不少国家开始征收“碳关税”,这显然不利于我国的出口贸易。因此,本文拟从定量的角度研究国际贸易与二氧化碳排放的联系及它们之间的长期变化趋势,为政府相关部门制定有效的“节能减排”政策提供科学的理论依据,以进一步促进“资源节约,环境友好”的两型社会建设。

1文献综述

关于贸易与二氧化碳排放之间的关系,国内外学者多集中在进出口贸易中碳含量测算的研究。随着全球对二氧化碳排放关注度的逐年提升,有关于二氧化碳与经济增长、二氧化碳与贸易开放之间关系的研究文献大量涌现,但并未得到一致的研究结论。

国外方面,Copeland , Taylor(1994, 1995) 建立南北贸易模型实证研究了环境质量与对外贸易之间的关系,他们研究得出,对外贸易改善了发达国家的环境质量,却恶化了发展中国家的环境质量。Kander, A. and M. Lindmark(2006)以瑞典为研究样本,研究了外贸与发达国家的污染排放是否存在因果关系,即发达国家是否将其污染源转移到了发展中国家。不过他们并未发现因果关系的存在,却发现效率提高,消费模式改变和能源系统改造才是影响瑞典污染排放的关键因素,对外贸易的影响作用较小。Halicioglu, F.(2009)以土耳其1960-2005年的时间序列数据为研究样本实证研究了二氧化碳排放、能源消费、收入与对外贸易之间的因果关系,研究表明,二氧化碳排放与对外贸易之间存在长期因果关系。Paul B. Stretesky , Michael J. Lynch(2009)利用169个国家1989~2003面板数据建立面板模型研究分析了人均二氧化碳排放与进出口贸易之间的关系,其研究结果表明,出口对于世界各国的人均二氧化碳排放具有正向促进作用,而在进口方面,则只有个别国家的进口对二氧化碳排放有影响。同时指出,进出口贸易对二氧化碳排放的作用可能还受产品需求的影响。Aaron Kearsley, Mary Riddel(2010)利用OECD27个国家1980~2004年以二氧化碳为主的碳氧化物数据以及氮氧化物数据研究了环境指标与人均GDP、对外开发程度和人口之间的关系,他们认为就其研究结果而言,没有证据表明环境质量与收入之间存在显著的环境库兹涅茨曲线关系,并且发现环境库兹涅茨曲线转折点的置信区间非常宽,几乎包括所有样本数据,进而认为环境库兹涅茨曲线假设值得怀疑。此外Grossman ,Krueger(1991),Lucas et al.(1992),Wyckoff , Roop(1994),Antweiler(1996),Suri ,Chapman(1998),Pesaran et al.(2001),Wyckoff(2003),Nohman, Antrobus(2005). Mongelli et al.(2006),Peters, Hertwich(2008)等学者也对环境与贸易之间的关系做了研究,但都没得到一致的结论。

同国外研究相比,我国研究对外贸易与二氧化碳排放之间关系的文献还较少。李秀香,张婷(2004)研究了我国出口扩大对二氧化碳排放的影响,他们认为,随着时间的推移,出口增长并没有促使人均二氧化碳排放的大量增加,相反,却在一定程度上减少了人均二氧化碳排放。李小平,卢现祥(2010)运用我国20个工业行业与G7和OECD等发达国家的贸易数据研究了国际贸易等因素如何影响中国工业行业的二氧化碳排放。研究结果表明,国际贸易能够减少工业行业的二氧化碳排放总量和单位产出的二氧化碳排放量。包群,陈媛媛等(2010)以国际资本流动作为研究背景,从理论上研究了外商直接投资对东道国环境质量的影响,并在环境质量满足正常商品假设下推导出外商投资与东道国当地环境质量存在倒“U”型曲线关系。吴献金,邓杰(2011)运用1995-2007年期间我国省际面板数据,从规模、结构和技术三个角度,就贸易自由化、经济增长对碳排放的影响进行了实证研究,研究表明,代表规模技术效应的人均收入和二氧化碳排放之间存在显著的正相关关系,存在碳排放的环境库兹涅茨曲线,且贸易自由化的总效应使得碳排放增加。李国志,王群伟(2011)基于变参数模型,分析了我国出口贸易结构对二氧化碳排放的动态影响,研究结果表明,出口贸易各项组成部分与二氧化碳排放之间存在长期均衡关系,并呈现动态变化。其中初级产品出口对碳排放的影响系数呈逐渐增加趋势,而工业制成品出口对碳排放的影响系数则呈逐渐降低趋势。刘华军,闫庆悦(2011)分别利用时间序列数据和省际面板数据,对中国二氧化碳环境库兹涅茨曲线进行经验估计,实证研究贸易开放和FDI对中国二氧化碳排放的影响效应,1952~2007年时间序列协整分析表明,贸易开放对二氧化碳排放具有负的效应,但统计不显著,1983~2007年时间序列协整检验表明,贸易开放对二氧化碳排放具有正的效应。

不难发现,无论是国外文献还是国内文献,都是使用简单回归模型或面板模型研究对外贸易与二氧化碳之间的关系。然而,变量之间关系的假设具有很强的主观性,建模者往往需要尝试多种形式的模型才能根据统计检验和经济意义等因素的综合考虑最终选定模型的形式。而非参数模型在曲线拟合方面具有显著的优势。因此本文拟将非参数模型应用于研究我国对外贸易与二氧化碳排放之间的关系。此外,鉴于大多数文献只注重于参数统计意义上的显著性分析,而甚少关心更具实际意义的经济解释,因此,本文除在建模方法上进行拓展外,还将对参数的经济意义进行全面而系统的解释。

2 研究方法

参数回归最大的优点是回归结果可以外延,但缺点是形式固定,拟合效果较差。而非参数回归则恰好相反,它的回归函数形式不确定,结果外延困难,但拟合效果较好。而碳排放的环境库兹涅茨曲线研究重在曲线拟合效果,并且拟合程度越高越便于研究曲线的形状。因此,采用非参数回归研究环境库兹涅茨曲线更加合理。

一般的可加模型(additive model)可以表示为如下形式:

可加模型的主要优点在于:它既能够避免维数诅咒(维数越高,模型估计的精度越差),又能够使模型中的系数易于解释。因此,stone于1986年对上述可加模型进行了拓展,得到可加性部分线性模型(Additive Partial Linear Models,APLM):

模型(1)中的 可以表示为 。其中 为已知的以线性形式引入模型的 维解释变量向量, 为非参数形式引入模型的 维解释变量向量。

将模型(2)写成如下形式:

其中 由元素 组成的 阶的平滑矩阵。

假设 有M个观测值: ,…, 。则根据M个子样本可以分别计算出估计值 ,(k=1,…,M)。然后将所有的 取平均得到最终的估计 。

估计 , 为对应变量 的一个数值, 表示除了变量 外的其余变量。首先采用局部线性回归在 方向上进行展开 。同时对于所有的 将(5)式最小化:

其中, 为一维的核密度函数, 表示窗宽, 为 的多元核密度函数, 为 维窗宽向量,这样通过(5)式中求得 即可估计出 ,重复上述步骤 次并采用求边缘密度的方法可得:

常数项则可用下式估计:

3指标选取、数据说明与实证模型

3.1指标选取

鉴于已有研究与数据可得性,本文选取如下指标进行分析研究:

1.因变量的选取

人均CO2(PCO2),其中2009年数据尚未公开,本文依据政府间气候变化专门委员会(IPCC)提出的二氧化碳排放计算方法方法进行计算,计算公式如下:

其中, 为总的CO2排放量, 为第 种能源的CO2排放量, 为第 种能源的消费总量, 为第 种能源的热值系数, 为第 种能源的碳含量, 为第 种能源的碳氧化率。我国的能源消费构成(煤炭、石油、天然气)可以从《中国能源统计年鉴》上找到,热值系数以及碳含量则可以从IPCC出版的国家温室气体库存指南上面得到,煤炭、石油、天然气的碳氧化率参照虞义华等(2011) 提出的数值。

2.自变量的选取

(1)贸易开放度(OPEN),即本文主要关心的变量。学术界关于对外贸易与环境质量 之间的关系的论断主要存在两种说法:一部分学者认为,对外贸易为发展中国家提供了学习新技术的机遇与动力,可以促进发展中国家相关企业的技术进步,降低单位产值的污染物排放,改善环境质量,进而可以提高全球环境质量与改善地区的可持续发展能力;另一部分学者则认为,对外贸易虽然能够刺激经济增长,但会导致更多的环境退化与工业污染。除此之外,环境管制可能增加企业的生产成本,导致污染大的企业或产业向欠发达国家或地区转移(这些地区往往环境标准较低),使之成为“污染物避难所”,为了保持竞争优势与经济高速发展,欠发达国家或地区将降低环境质量标准,从而最终导致全球总体环境质量恶化。因此,贸易开放度的符号预期可能为负也可能为正。本文利用进出口贸易总额占GDP的比重表示贸易开放度,由于环境质量与贸易开放度之间的关系存在分歧,因此,将贸易开放度纳入实证模型的非参数部分。

(2)人均GDP(PGDP)。依据环境库兹涅茨曲线理论,经济增长与环境污染存在倒“U”型曲线关系,即经济增长初期随着人均GDP不断增加,环境质量逐渐恶化,当人均GDP增长到一定程度时,环境开始改善,并伴随着人均GDP的增长而持续改善,即所谓的倒“U”型曲线。根据本文的理论假定,将人均GDP纳入到实证模型的非参数部分,以不确定的函数形式验证环境库兹涅茨曲线理论在我国的适用性。

(3)外商直接投资(FDI)。一般来说,外商直接投资的资金来源于国外跨国公司,他们拥有雄厚的资金、先进的技术和高级管理人才,跨国公司在投资我国相关企业的同时也会附带先进排污技术和先进污染物处理设备。因此,可以通过引入外资学习他们先进的排污技术,从而提高资源的利用效率和自身治污水平。本文假定,FDI与人均二氧化碳存在负相关关系。即FDI的引入有利于我国人均二氧化碳排放的减少。

(4)能源强度(I)。能源强度(I)即单位GDP生产所需能源消费量,其值等于第t年能源消费总量(E)与第t年的GDP(本文以1979年不变价为基期)之比:

(9)

化石能源消费是二氧化碳排放的主要来源,因此,在GDP一定时,能源消费强度越大,二氧化碳排放越大。因此能源强度与二氧化碳排放具有正相关关系。

3.2数据说明

本文所涉及的数据指标有人均二氧化碳(PCO2,单位:吨/人)、人均GDP(PGDP,单位:元/人)、外商直接投资(FDI,单位:亿美元)、贸易总额(单位:亿元)、能源强度(I,单位:吨/万元)。数据跨度为1979~2009年。其中二氧化碳1979~2005年的数据来源于世界银行,2006~2008年数据来源于美国二氧化碳信息分析中心(CDAIC),2009年数据通过相应数据计算得到。外商直接投资1979~1983年数据来源于联合国统计数据库,其余年份的数据以及人均GDP和贸易总额数据来源于1980~2010年《中国统计年鉴》。能源强度根据《中国统计年鉴》历年能源消费总量 与GDP总量之比(1979年不变价)计算得到。

3.3实证模型构建

本文假设二氧化碳排放的主要影响因素有贸易开放度(OPEN)、人均国内生产总值(PGDP)、外商直接投资(FDI)、能源强度(I)。根据柯布—道格拉斯生产函数理论构造初始模型:

将(10)式两边取自然对数得:

根据非参数模型理论,将PGDP和OPEN纳入非参数部分,其余为线性部分,则(11)式变形可得:

4 实证结果分析

4.1数据的描述性分析

表1为研究样本的描述统计分析,我国人均二氧化碳排放量约为2.7吨,远低于中等发达国家的人均排放量(《2005年世界发展指标》,中国财政经济出版社,2005年版,中国财政经济出版社组织翻译)。

参数结果

表2的结果显示,FDI与PCO2的线性关系的统计性质非常显著(p值为0.0076),并且为负相关关系,即从统计角度来看,FDI的引入似乎有利于缓解我国人均二氧化碳排放。另一方面,如果考虑系数的实际意义(即经济意义),FDI系数不显著(系数绝对值大小为0.00162),其系数大小表明,在其他条件不变的情况下,如果FDI引入量提高100%,则人均二氧化碳排放量降低1.6%。显然,这种实际影响微不足道且不合实际(就目前来说,FDI提高100%显然不现实,况且作用效果太小,可以选择其他办法减少人均二氧化碳排放)。因此,从本文研究结论来看,FDI引入几乎不会影响我国人均二氧化碳排放。所以,如果FDI的引入有利于我国的经济发展,则可以不必过于担心其会影响我国的人均二氧化碳排放。

能源强度(I)与PCO2线性效果统计意义上显著正相关,能源强度(I)上升,则人均二氧化碳排放增加,反之,则减少。就其经济意义来看,能源强度的估计系数绝对值大小为0.7694,且为正,说明在其他条件不变的情况下,能源强度每提高十个百分点,人均二氧化碳排放提高7.7%,反之则降低7.7%。这表明能源强度对人均二氧化碳排放的作用效果具有很强的经济显著性,即能源强度是影响我国人均二氧化碳排放的显著因素。就我国目前的能源消费结构而言,能源消耗中化石燃料的比重超过90%,远远超过美国、日本等发达国家,是一个典型的化石燃料消耗大国,但能源强度下降迅速(1979年为14.42吨/亿元GDP,2009年为4.36吨/亿元GDP),能源强度的下降为缓解我国“碳减排”的重担做出了重大贡献。因此,进一步提高高碳能源利用效率及寻找其他高碳替代能源对降低我国人均二氧化碳排放仍然具有非常重要的实际意义。

非参数结果

图1为贸易开放度与PCO2的非参数曲线关系图,图中结果表明,我国的贸易状况对人均二氧化碳排放具有促进作用(虽然中间有小幅下降,但总体来说,贸易越开放越会促进人均二氧化碳排放)。改革开放以来,我国的对外贸易一直处于高速增长时期,这种高速增长大大拉动了相关产业的快速发展,特别是高污染、高耗能产业的发展,高污染、高耗能产业往往都是高碳产业,高贸易增长伴随我国高碳排放的趋势在短期内很难有所改变。从出口货物来看,我国出口货物主要分为两大类:工业制成品和初级产品。工业制成品的环境成本要大于初级产品。工业制成品的环境成本越大,环境承载的压力就越大,环境污染越严重。根据《中国统计年鉴》统计,2005~2008年,我国工业制成品占总出口的比重分别为:93.56%、94.54%、94.95%和94.55%。说明工业制成品出口比重一直居高不下,环境承载的压力有增无减。另外,本文的研究结论支持Copeland和Taylor(1994)提出的“污染天堂假说”(PHH),即发达国家通过将污染大的企业或产业转移到那些欠发达国家或地区,使之成为“污染物避难所”,最终导致全球环境质量恶化。

图2描述了PGDP与PCO2的非参数曲线结果,该图表明从我国现今的发展状况来看,经济增长与人均二氧化碳排放之间并不存在所谓的环境库兹涅茨曲线关系(这里具体指CKC),而是存在显著的线性关系,并且是正向线性关系,且曲线的两倍标准差并没有较大的向外侧发散,正向线性关系非常显著,经济增长将会对我国环境造成不利影响(至少在碳排放方面是如此)。从本文实证结果来看,经济增长与人均二氧化碳排放的线性关系将不利于我国的综合发展。

5 结论与启示

本文在克服传统参数回归模型的不足情况下,建立了基于我国二氧化碳排放数据的非参数模型,实证研究了我国贸易开放度与人均二氧化碳排放之间的关系并对相应变量影响的经济意义做了很好的解释。得到如下主要研究结论:

1.FDI与人均二氧化碳之间的关系在统计意义与经济意义上均不显著, FDI的引入不会影响我国的人均二氧化碳排放。

2.能源强度(I)与人均二氧化碳的排放具有正相关关系,统计意义与经济意义也非常显著,说明能源强度增大将促进人均二氧化碳排放。我国当前的能源强度相比改革开发初期有了很大的下降,说明在其他条件不变的情况下,能源强度的下降显著的降低了人均二氧化碳的排放(其他条件不变的条件下,人均二氧化碳的变化等于能源强度的变化与其估计系数的乘积,由于我国能源强度一直下降,能源强度的变化为负,所以人均二氧化碳的变化也为负)。由于能源强度对人均二氧化碳排放影响很大,所以,能源利用效率及新能源开发将会是降低能源强度的有效方法,进而可以降低我国人均二氧化碳排放 。

3.贸易状况对人均二氧化碳排放具有促进作用且作用比较显著 。

4.PGDP与人均二氧化碳之间的关系不满足倒“U”型的环境库兹涅茨曲线假设。而是具有显著的正相关关系。这表明我国当前的经济增长与“碳减排”政策存在矛盾,经济增长会显著影响人均二氧化碳排放,即便存在所谓的“环境库茨涅茨曲线”,但从本文的研究结论来看,曲线其转折点离我们还很遥远。因此,当前的“碳减排”政策可能成为制约我国经济增长的一个重要因素。此外,二氧化碳排放具有全球外部性的性质,任何一个国家的碳排放都会影响全球环境。并且“碳减排”具有全球公共物品性,如果存在“搭便车”的现象,那么任何一个国家都不可能单方面对本国施加严格的碳排放限制 。因此,为保持经济与“碳减排”之间的协调关系,需要世界各国的共同努力。

参考文献

[1]IPCC, 2007, “Climate Change 2007: The Physical Science Basis of Climate Change”, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,http://ipcc.ch/.

[2]Paul B. Stretesky , Michael J.Lynch,2009,“A cross-national study of the association between per capita carbon dioxide emissions and exports to the United States ”,Social Science Research,38:239~250.

[3]Aaron Kearsley, Mary Ridde, 2010,“A further inquiry into the Pollution Haven Hypothesis and the Environmental Kuznets Curve”, Ecological Economics,69:905~919.

[4]Kander, A. and M. Lindmark ,2006. "Foreign trade and declining pollution in Sweden: a decomposition analysis of long-term structural and technological effects." Energy Policy 34(13): 1590-1599.

[5]Halicioglu, F.,2009. "An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey." Energy Policy 37(3): 1156-1164.

[6]Sánchez-Chóliz, J. and R. Duarte ,2004. "CO2 emissions embodied in international trade: evidence for Spain." Energy Policy 32(18): 1999-2005.

[7]Machado, G., R. Schaeffer, et al. 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach." Ecological Economics 39(3): 409-424.

[8]Stretesky, P. B. and M. J. Lynch 2009. "A cross-national study of the association between per capita carbon dioxide emissions and exports to the United States." Social Science Research 38(1): 239-250.

[9]李小平,卢现祥.国际贸易、污染产业转移和中国工业CO2的排放[J],经济研究, 2010,(1):15~26.

[10]包群,陈媛媛,宋立刚.外商投资与东道国环境污染:存在倒U型曲线关系吗?[J],世界经济,2010,(1):3~15.

[11]吴献金,邓杰.贸易自由化、经济增长对碳排放的影响. [J].中国人口.资源与环境,2011,(01): 43-48.

[12]刘华军,闫庆悦.贸易开放、FDI与中国CO_2排放.[J]数量经济技术经济研究2011.(03): 21-35.

二氧化碳年中总结篇6

一、引言

国务院新闻办公室发表《中国应对气候变化的政策与行动(2011)》白皮书,全面介绍了中国“十二五”期间应对气候变化的总体部署及有关立场。河北省“十二五”节能减排的总体目标是到2015年全省万元GDP能耗比2010年下降18%(比2005年下降34.49%),单位GDP二氧化碳碳排放量比2010年下降19%,实现节能6620万吨,减排二氧化碳排放量1.65亿吨,能耗总量得到有效控制。因此研究河北省二氧化碳排放量与三次产业结构的具体关系具有一定的指导意义。

近年来,国内对产业结构调整和碳排放的关联研究已经有了不少成果。如李健等关于中国碳排放强度与产业结构的关联分析,其运用灰色关联分析方法研究了我国碳排放强度与第一产业、第二产业和第三产业之间的关联性,得出第二产业是影响地区碳排放强度的主要因素。王梁雨生等关于河北沿海产业集群的低碳发展路径研究,提出应充分发挥政府行政作用,积极引入河北省具有一定产业优势的机械装备制造业即新能源等低碳产业。运用库兹涅茨曲线研究经济发展的环境效应也有不少理论分析和实证分析,如梁志扬通过分析广西工业“三废”排放量数据,构建了广西经济发展与环境质量之间的环境库兹涅茨曲线。刘华军等关于中国二氧化碳排放的环境库兹涅茨曲线――基于时间序列与面板数据的经验估计,指出单位GDP排放量与人均收入之间支持倒U型的环境库兹涅茨曲线,人均排放量与人均收入之间存在倒N型关系。

总体来说,二氧化碳排放与三次产业产值的关系呈现EKC形状。本文通过引入EKC理论建立三次产业产值与二氧化碳排放量的EKC模型,寻找相应的EKC特征,分别分析三次产业对二氧化碳排放量的贡献程度,在此基础上提出相应的对策建议。

二、河北省碳排放量与三次产业产值的相关性分析

1、二氧化碳碳排放量的计算

按照IPCC第四次评估报告,全球CO2浓度的增加主要是由于化石燃料(如煤、石油和天然气)的使用。因此,根据河北省能源消费实际情况和数据可获性,本文所指的碳排放量主要是指燃烧一次能源中的化石能源(原煤、原油和天然气)所排放的CO2数量。通过综合比较,考虑算法公认程度和变量数据来源,碳排放量采用以下公式进行估算:

C=■E×Si×Fi

其中,C为碳排放总量,E为消费标准煤的总量,Si为第i类化石能源的消费比例,Fi为第i类化石能源的碳排放系数。

化石能源消费数据来自于《河北经济年鉴(2012)》;各类能源的碳排放系数采用的是美国能源部、日本能源研究所、中国工程院、全球气候变化基金会(GEF)和亚洲开发银行的数据的平均数:煤炭(coal)折0.7224kg-c/kgce(每千克标煤的CO2排放量),石油(oil)折0.554kg-c/kgce,天然气(gas)折0.4202kg-c/kgce。

2、河北省三次产业能源消费情况

在河北省总的能源消费中,第一产业的能源消费比重最小,能源消费主要源于农田灌溉、大棚种植、农副食品简单加工等用电和农作物收、耕等用成品油等等。第二产业的能源消费占总消费量的一半以上,2011年河北省能源消费总量为29498.29万吨标准煤,工业消费量为23275.37万吨标准煤,占78.9%。第三产业的能源消费主要是交通运输、仓储和邮电通讯业和商业、饮食、物资供销和仓储业。

3、二氧化碳排放量与三次产业产值相关性分析

本文选取1981―2011年三次产业的产值,数据来源于《河北经济年鉴(2012)》,以1978年为基年消除价格变动因素,回归得到1981―2011年的二氧化碳排放量与三次产业产值的三次方程拟合关系,建立三次产业EKC模型。首先通过前面所述的方法计算得出1981―2011年二氧化碳排放量,然后与1981―2011年平减完的三次产业产值进行相关分析,结果见表1。Y表示二氧化碳排放量,X1表示第一产业产值,X2表示第二产业产值,X3表示第三产业产值。

从表1可以看出:二氧化碳排放量与第一产业产值的相关关系为0.985,与第二产业产值的相关关系为0.986,与第三产业产值的相关关系为0.981,而且相关系数的显著水平(0.000

三、河北省三次产业环境经济模型分析

1、三次产业碳排放的库兹涅茨曲线

环境库兹涅茨曲线(EKC)的基本思想是在经济发展的初始阶段,由于生产水平低、资源无序开发等使环境污染严重,但随着经济的发展和不断创新,以科技进步为标志的产业发展对经济的贡献越来越显著,人们控制环境污染的意识和投入的提高,环境逐渐变好。

本文根据环境库兹涅茨曲线理论与所使用数据情况,以二氧化碳(CO2)排放量为因变量,分别以三次产业产值为自变量,构建非线性环境经济模型:

Y=C0+C1Xi+C2X■■+C3X■■

参数C2、C3和解释变量X■■、X■■的出现,说明随着三次产业产值的增加,二氧化碳排放量有减少的可能性,也说明二氧化碳排放量与三次产业产值之间并非简单的线性关系。

运用SPSS软件进行curve estimation分析可得:

河北省碳排放量与第一产业产值的二次函数模型拟合结果和三次函数模型拟合结果比一次函数模型拟合结果更理想,拟合度(R2)为0.991,sig值0.000,回归结果极显著。二氧化碳(CO2)排放量与第一产业产值的函数关系为:

Y=-8.014X1+0.296X■■-5.762E-5X■■+2.256E3

河北省碳排放量与第二产业产值的一次函数模型拟合度为0.980,二次函数模型拟合度为0.989,三次函数模型拟合结果更理想,拟合度(R2)为0.992,sig值0.000,回归结果极显著。二氧化碳(CO2)排放量与第二产业产值的函数关系为:

Y=4.915X2+0.001X■■-2.863E-7X■■+2.696E3

河北省碳排放量与第三产业产值的一次函数模型拟合度为0.981,二次函数模型拟合度为0.986,三次函数模型拟合度(R2)为0.992,sig值0.000,回归结果极显著。二氧化碳(CO2)排放量与第三产业产值的函数关系为:

Y=7.138X3+0.006X■■-2.683E-6X■■+2.759E3

二氧化碳排放量与三次产业产值拟合的库兹涅茨曲线如图1、图2、图3所示。

2、模拟结果分析

由图1、图2和图3可以看出河北省1981―2011年二氧化碳排放量与三次产业产值之间的非线性三次多项式拟合结果比较理想(R2大于等于0.990),三条曲线线性相关性均达到显著水平,对环境库兹涅茨曲线有较充分的解释。

从图1可以看出,二氧化碳排放量与第二产业产值的拟合曲线呈现为U型曲线的右侧部分。1981―1998年,二氧化碳排放量随着第一产业产值的增加呈现缓慢增加的态势,1999―2011年,二氧化碳排放量随着第一产业产值增加而迅速增加。从图2可以看出,二氧化碳排放量与第二产业产值的拟合曲线已经到了U+倒U的倒U型曲线部分,由拐点时第二产业产值对应的年份可以看出在2002年二氧化碳排放量随第二产业产值的增加而增加的增速开始递减,即在2002年之前f '(y)递增,2002年之后f '(y)开始递减。而极大值点对应的第二产业产值是3844亿元,2011年产值是3774亿元,目前还未达到。从图3可以看出,二氧化碳排放量与第三产业产值之间的拟合曲线呈现U+倒U的倒U型曲线部分,由拐点时第三产业产值对应的年份可以看出在2003年二氧化碳排放量随第三产业产值的增加而增加的增速开始递减,即在2003年之前f '(y)递增,2003年之后f '(y)开始递减。极大值点对应的产值是1937亿元,2011年的产值是1978亿元,因此,2011年已经达到极大值,开始进入倒U曲线的后半部分。河北省三次产业产值EKC曲线拐点及极值点数据见表2。

二氧化碳排放量与第一产业产值的拟合关系呈现U型曲线,即根据现在的数据,二氧化碳排放量随第一产业产值的增加不存在极大值,不存在随产值增加而减少的趋势。第一产业内部,产业结构还未形成集约型、科技水平高的现代农业体系,仍以粗放型、科技水平低的原始农业为主。

从图中我们还可以看到河北省近年来经济发展方式转变取得了积极效益。由2012年《河北经济年鉴》的数据看出,河北省的产业结构是“二三一”模式,仍处于工业化中后期,但由二氧化碳排放量与第二产业产值之间的拟合关系看出,第二产业即将进入倒U型曲线的后半部分。“十五”以来,河北省大力发展循环经济,积极推行资源节约和综合利用,经济运行质量和效益不断提高,第二产业在降低能源消耗和二氧化碳排放方面初见成效。依据美国经济学家罗斯托提出三次产业变动理论,第二产业内部产业结构先从重工业到轻工业,然后再到高加工重工业,直到当前的高科技、环保型可持续发展的工业。鉴于河北经济的地区优势,现在及以后很长一段时间都会以重工业为主,短时间不能改变河北经济对重工业的路径依赖,所以现在应该大力发展精加工重工业,降低第二产业产值的能耗量及二氧化碳排放量。

由二氧化碳排放量与第三产业产值之间的三次非线性关系看出,二氧化碳排放量随第三产业产值的增加开始呈现下降趋势,说明河北省在优化传统服务业、交通仓储及邮电通信业、批发零售及餐饮业方面取得了初步成效。2003年河北省石家庄市开始推进出租车“油改气”工作,并在2003年大力发展信息、金融、保险、社区服务和会计、律师、咨询等现代服务业。就从这一年开始,二氧化碳排放量随第三产业产值增加而增加的增速开始出现递减。

四、河北省产业结构调整的政策建议

1、加强人才引进,以高新技术为先导,大力推进第二产业的清洁生产

长期以来,河北省就是一个重工业大省,第二产业在生产总值拉动方面起着一半以上的作用,相应的能源消费量所占比重也较大。由2012《河北经济年鉴》数据计算显示,河北省煤炭采选和洗选业,石油加工、炼焦及核燃料加工业,化学原料及化学制品制造业,非金属矿物制造业,黑色金属冶炼及压延加工业以及电力、热力的生产和供应业六大高耗能行业的产值所占比重较大,占当年工业总产值的52.76%。所以降低第二产业能耗,应该注重六大耗能行业产业集中和优化,以及管理和技术改进,淘汰落后产能,降低其能源消耗量,减少二氧化碳排放量,尽早达到第二产业倒U型曲线的极大值。同时引进高层次人才,形成以高新技术为指导的产业集群。立足“十二五”时期环首都经济圈、沿海经济带和冀中南经济区建设新增长极,打破一直以来的基础生产状态,吸收在科研、生产一线从事技术开发、推广和应用的人才,形成产业集群的核心技术。通过技术创新延伸产业链,合理选择主导产业和循环配套产业,提高资源利用效率,加速第二产业结构的升级转型。

2、调整第三产业内部结构,突出新兴服务业低碳排放的优势

由前面的分析结果显示,二氧化碳排放量与第三产业产值拟合的非线性关系已经到达倒U型曲线的后半部分,也就是二氧化碳排放量随第三产业产值的增加呈现递减趋势。在河北省第三产业中,传统服务业仍占据主体地位,现代新兴服务业如信息服务业、现代物流业、旅游服务业、社区服务业、中介服务业以及文化教育医疗等服务业所占比重较低,规模较小。应该加大现代服务业的市场化和对外开放程度,培养现代服务业从业人员,调整第三产业内部投资结构,进一步降低第三产业产值能耗,加快河北省现代服务业的发展。

3、积极发展现代农业,提高第一产业的生产效益

河北省是北方的农业大省,但对第一产业的投入不足,生产率低下。前面的分析结果显示,二氧化碳排放量与第一产业产值拟合的非线性关系还处在U型曲线的前半部分,即随着第一产业产值的增加,二氧化碳排放量呈现递增的趋势。也就是说,第一产的发展还没带来二氧化碳排放减少的效果,这主要是因为一方面现有的承包经营方式不能够降低农田灌溉用电和农作物收、耕等用成品油的使用量;另一方面现有的技术水平低,先进的灌溉技术、农副产品加工技术和收耕技术不能很好的普及。因此,降低第一产业能耗必须全面考虑,放宽与农业有关的上下游产业政策,提高农业相关技术,完善农业发展制度。加快第一产业由粗放型、科技水平低的传统农业向集约型、科技水平高的现代农业转变,尽快实现第一产业发展带来二氧化碳排放减少的效果。

4、发挥政府的宏观调控和管理作用,有重点地出台低碳减排规制政策

环境作为一种共享资源,有着共享资源的基本特征:资源的共享性、供给的不可分性、利用的外部性问题及拥挤性和管理的必要性。在经济发展中存在产生污染源的部门A,也存在生产成本随污染增加而增加的部门B,如果不加以管制,污染源部门虽然带来了负的外部效应,但自身生产成本不受影响,其仍会以自身利润最大化为目标。因此,政府应出台一定的激励政策让部门A与部门B合并,将外部效应转变成内部效应,使合并后的部门衡量总体利润最大化,在一定程度上减少能源消耗和相应气体的排放。

五、结语

要真正实现可持续发展,必须重视经济发展的环境效益,当前我国正处于经济转型时期,最现实有效的出发点就是节能减排,立足三次产业各自对二氧化碳排放量的影响,提出相应的对策。“十二五”期间河北省应抓住环首都经济圈等新的发展机会,在低碳背景下调整产业结构,加速资源节约型、环境友好型省域经济发展。

(注:基金项目:2012年度河北省社会科学基金项目《能源矿产资源参与低碳基金建设的宏观调控战略机制研究》(编号:HB12YJ052)。)

【参考文献】

[1] 李健、周慧:中国碳排放强度与产业结构的关联分析[J].中国人口・资源与环境,2012(22).

[2] 车:发展经济学[M].清华大学出版社,2006.

[3] 梁志扬:广西环境库兹涅茨曲线研究[J].科学之友,2010(9).

二氧化碳年中总结篇7

作者简介:杨晓军,男,博士,中南财经政法大学经济学院讲师(湖北 武汉 430073);陈浩,男,中南财经政法大学经济学院教授,博士生导师(湖北 武汉 430073)

中图分类号:F299.23 文献标识码:A 文章编号:1671-0169(2013)01-0032-06 收稿日期:2012-10-26

一、引 言

城镇化是农村人口转变为城镇人口、传统农业社会向工业社会转变的自然历史过程。新中国成立后,城镇化发展呈现稳步上升的趋势,据统计,1949年城镇化率为10.64%,2010年城镇化率为49.95%,年均增长率为2.56%,估计今后中国城镇化还将保持较快发展的趋势,以年均提高1个百分点左右的速度推进[1](P28-39)。城镇化发展与能源消费之间存在紧密的逻辑关系。城镇化快速增长阶段的能源消费特征是增长速度快和能源需求刚性。城镇化与工业化发展一般同步进行,工业化发展体现为高耗能产业的发展,因此城镇化发展会增加能源消费速度;与此同时,城镇化进程中会伴随大规模的基础设施建设,加剧对能源消费的刚性需求。从我国现有能源消费结构来看,主要是以煤炭为主,石油、天然气为辅,新能源与可再生能源的比例较低。2010年全国能源消费总量为32.49亿吨标准煤,其中,煤炭消费量占比为68%,石油消费量占比为19%,天然气占比为4.4%,其他新能源与可再生能源占比仅为8.6%。在能源尤其是化石能源消费过程中会伴随着大量二氧化碳(CO2)排放。因此,城镇化发展是驱动二氧化碳排放的重要因素。

考虑到经济增长与二氧化碳排放之间的关系,在研究城镇化对二氧化碳排放影响的同时也要考虑到经济增长对二氧化碳排放的影响,而环境库兹涅茨曲线是一个有效的工具。另外,STIRPAT模型也描述了经济增长和环境污染之间的关系。为此,在结合STIRPAT模型和简单环境库兹涅茨曲线基础上,参考现有研究成果,建立城镇化与二氧化碳排放的实证模型,利用1997―2009年的省级面板数据,研究中国城镇化对二氧化碳排放的影响效应。

二、文献综述

城镇化对能源消费和碳排放的冲击是非常明显的,特别是城镇化进程中的高耗能增长特征,是影响能源需求与二氧化碳排放的重要因素。Parikha等[2](P87-103)利用发展中国家面板数据实证分析城镇化对能源消费和二氧化碳排放具有显著影响。York等[3](P351-365)运用1996年146个国家数据研究发现城镇化与二氧化碳排放呈现非线性关系。Cole等[4](P5-21)利用1975―1998年全球86个国家数据分析人口因素对空气污染的影响,发现高城市化率会增加二氧化碳排放。Fan等[5](P377-395)利用1975―2000年面板数据分析发现高收入国家城镇化对二氧化碳排放贡献最大,依次是低收入和中等收入国家。York[6](P855-872)通过选取1960―2000年14个欧盟成员国数据分析发现城镇化对能源消费变动的贡献较大,进而产生更多的碳排放。Liddle等[7](P317-343)利用修改后的STIRPAT模型分析发现:发达国家城镇化与二氧化碳排放总体上呈现正相关。Poumanyvong等[8](P434-444)运用1975―2005年99个国家的面板数据和STIRPAT模型实证分析发现城市化对能源利用和二氧化碳排放的影响随着经济发展阶段呈现不同特征:在低收入国家城市化会减少能源利用,而在中高收入国家会增加能源利用;城市化对二氧化碳排放影响在所有收入水平国家上均显著,尤其是中等收入国家。Martínez-Zarzos等[9](P1344-1353)运用1975―2003年发展中国家数据分析城市化对二氧化碳排放效应,结果显示:城市化和二氧化碳排放呈现倒U型关系。

随着中国城镇化进程加快和二氧化碳排放的高速增长,也出现以中国为研究对象来研究城镇化对二氧化碳排放影响的相关文献。Wei等[10](P46-50)研究表明:中国城镇化率每增加1%将引起总能源需求增加1%和二氧化碳排放增加1.2%。孙慧宗等[11](P32-38)采用1978―2006年的相关统计数据对中国城市化与含碳能源消费发生的二氧化碳排放量进行协整分析,研究发现城市化与二氧化碳排放量之间存在着长期稳定的均衡关系。林伯强等[12](P66-78)引入城市化因素对Kaya恒等式做出适当修正以研究碳排放的影响因素,结果说明城市化的确对碳排放有重要影响,加入城市化变量可以更为准确地捕获这一特殊发展阶段对能源需求和碳排放的影响,以及城市化进程本身对碳排放的影响。许泱等[13](P1304-1309)根据1995―2008年我国30个省市的面板数据,采用STIRPAT模型分析城市化对碳排放的影响。结果显示:我国城市化的推进导致碳排放量的增加,碳排放增加速度高于城市化本身的增加速度,城市化进程会继续放大碳排放量的增加;地区的城市化水平基数越低,城市化进程对碳排放的影响也就越大;地区的城市化推进速度越快,城市化进程对碳排放的影响也就越大。肖周燕[14](P139-145)认为虽然1949―2007年城市化与二氧化碳排放并不存在长期均衡关系,但改革开放前后城市化和二氧化碳排放量都呈现出长期稳定的比例关系。

现有研究中关于二氧化碳排放指标多种多样,包括总量指标(CO2排放总量)、人均排放指标(人均CO2排放量)、排放强度指标(单位GDP的CO2排放量),这些指标均存在一定的不足之处,因此本文同时采用这三种指标来研究城镇化对中国二氧化碳排放的影响效应,确保获得更加稳健的研究结论。

[5] Fan,Y., L.C.Liu, G.Wu, et al.Analyzing impact factors of CO2 emissions using the STIRPAT model[J].Environmental Impact Assessment Review,2006, 26(4).

[6] York,R.Demographic trends and energy consumption in European Union Nations:1960―2025[J].Social Science Research,2007, 36(3).

[7] Liddle,B.,S.Lung.Age-structure, urbanization, and climate change in developed countries:Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts[J].Population and Environment,2010, 31(5).

[8] Poumanyvong,P.,S. Kaneko.Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis[J].Ecological Economics,2010, 70(2).

[9] Martínez-Zarzoso,I.,A.Maruotti.The impact of urbanization on CO2 emissions:Evidence from developing countries[J].Ecological Economics,2011, 70(7).

[10]Wei,B.,H.Yagita,A.Inaba,et al.Urbanization impact on energy demand and CO2 emission in China[J].Journal of Chongqing University(English Edition), 2003,(2).

[11]孙慧宗,李久明.中国城市化与二氧化碳排放量的协整分析[J].人口学刊,2010,(5).

[12]林伯强,刘希颖.中国城市化阶段的碳排放:影响因素和减排策略[J].经济研究,2010,(8).

[13]许泱,周少甫.我国城市化与碳排放的实证研究[J].长江流域资源与环境,2011,(11).

[14]肖周燕.中国城市化发展阶段与CO2排放的关系研究[J].中国人口・资源与环境,2011,(12).

[15]Grossman,G.M ,A.B.Krueger.Environmental impacts of the North American Free Trade Agreement[Z].NBER working paper No.3914, 1991.

[16]孟昭利.企业能源审计方法(第2版)[M].北京:清华大学出版社,2002.

二氧化碳年中总结篇8

中图分类号:X24 文献标识码:A 文章编号:1007-3973(2012)001-130-02

1 引言

全球气候变暖对地球生态和人类生活构成了严重威胁, 是全人类面临的共同挑战,这既是环境问题,也是发展问题,因此成为各国政府和人民共同关注的焦点。碳减排是国际社会尤其是发达国家及碳排放大国共同承担的责任,但要完成一国理应承担的减排责任,需要一国内部各区域协调联动,从而顺利实现减排目标,为自身以及人类可持续发展做出相应贡献。

本文以云南省为研究对象,对其1998~2008年的能源碳排放量、万元GDP碳排放量和人均碳排放量进行了估算,同时对估算结果进行了分析评价,以期得出富有参考价值的结论及减排措施。碳排放是温室气体排放的一个简称。温室气体中最主要的气体是二氧化碳,因此用碳一词作为代表。本文的碳排放特指的是二氧化碳的排放。

2 估算方法

2.1 能源碳排放量

由人类社会经济活动所产生的二氧化碳等温室气体的排放是致使全球气温变暖的最主要原因,而二氧化碳主要是来源于能源的消耗。我国是能源消费大国,特别是煤、石油和天然气等化石能源的消费比例较高,三者之和占我国能源消费总量的92.8%,因此二氧化碳的排放主要来自于化石能源的消耗。本文所说的能源碳排放量,特指煤炭、石油和天然气这三种化石能源的碳排放量。

注:数据来源于《中国能源统计年鉴2007》《中国可持续发展能源暨碳排放情景分析》。

确定的碳排放量计算方法来源于2050中国能源和碳排放研究课题组编写的《2050中国能源和碳排放报告》,计算公式为:

Ai =Si Pi Ci 4/12 (2-1)

式(2-1)中,Ai表示某种能源的年碳排放量,计算结果为碳的年排放量,需要乘以44/12换算成二氧化碳的年排放量,单位为万吨;Si表示某种能源折算标准煤参考系数,具体见表2-1;Pi表示某种能源的年消费量;Ci表示某种能源的碳排放系数,具体见表1;i表示能源种类,即原煤、原油和天然气这三种能源,取值为1、2、3。(在计算时根据数据的可获取性,煤炭和石油的数据,分别用原煤和原油的数据来代替)见表1。

2.2 万元GDP碳排放量

万元GDP碳排放量的估算公式为:

AGDP =(A1+A2+A3)/GDP (2-2)

AGDP表示万元GDP年碳排放量,单位吨/万元;A1表示原煤的年碳排放量,单位为万吨;A2表示原油的年碳排放量,单位为万吨;A3表示天然气的年碳排放量,单位为万吨;GDP的单位为亿元。

2.3 人均碳排放量

人均碳排放量的估算公式为:

AP=(A1+A2+A3)/P (2-3)

AP表示人均年碳排放量,单位为吨/人;P表示常住人口数,单位为万人。

3 估算结果

云南省能源碳排量、万元GDP碳排放量和人均碳排放量,根据公式(2-1)可得估算结果见表2、图1、图2、图3和图4。

4 分析评价

4.1 原煤碳排放量最大,且三种能源碳排放量都呈现波动上升的趋势

根据表2和图1、图2和图3来看,11年中,云南省原煤、原油和天然气的碳排放量呈现上升的趋势,三大能源中原煤的碳排放量巨大。原煤累计碳排放量占能源累计碳排放总量的90.0%,原油累计碳排放量占能源累计碳排放总量的9.0%,天然气累计碳排放量只占能源累计碳排放总量的1.0%。巨大的原煤碳排放量对实现减排目标造成了很大的障碍。

原油在消费过程产生的二氧化碳远小于原煤产生的二氧化碳量,虽然原油产生的二氧化碳量不多,但在一定程度上对能源的年碳排放总量产生影响。

天然气的碳排放量从1998~2008年都有波动,但波动中变化的量并不太大。天然气较以上的原煤和原油来看,消费中产生的二氧化碳量最少。

4.2 万元GDP碳排放量有波动,但总的趋势在下降

根据表2和图4来看,11年中,万元GDP碳排放量出现波动变化的状态,但总的趋势是在下降,出现波动的原因可能是与某些年份的产业结构调整,大量耗能工业的调整有关。在工业化的不同阶段,对能源的消费需求是不同的,导致了碳排放量的不同。但随着经济的发展,技术的进步,能源利用效率的提高,万元GDP碳排放量会逐渐呈现下降的态势。

4.3 人均碳排放量呈现逐年上升的态势,且受人口消费习惯的影响较大

根据表2和图4可以看出,从1998年~2008年,云南省人均碳排放量逐年上升。人口因素对碳排放量的影响,主要从人口数量因素和人口消费习惯因素两个方面对其产生影响。11年中,云南省的常住人口变化不大,但人均碳排放量却逐年上升,可以看出人口消费习惯对二氧化碳排放产生了较大的影响,因为生产产品并消费其最终目的是为了满足人类的消费需求。由于在消费过程中缺乏合理引导,导致人们在消费过程中形成了很多不良的消费习惯,这些消费习惯和行为产生了一定的碳排放量。

5 云南省减少碳排放量的措施

5.1 将重心放在提高能源利用效率和改进能源利用结构上

云南目前正处于经济发展的关键时期,综合实力逐步增强的同时对能源的需求也与日俱增,与此相伴随的是二氧化碳等温室气体排放量的持续增加,但这恰恰是经济发展的必然现象,并不违背历史规律。然而,为了减轻环境压力和维护人类的生存安全,提高能源利用效率和改进能源消费结构是其不可推卸的责任和义务。

5.2 提高经济增长的质量和促进产业结构升级可以有效抑制二氧化碳排放量的增长

粗放式经济增长的特点是高投入、高消耗、高污染和低产出,严重影响了区域经济发展的质量和内涵,与此相对应的低投入、低消耗、低污染和高产出的集约型的高质量的绿色发展模式便成为必然选择和追求目标,而这其中的关键又是产业结构的升级和效益的提高。

5.3 转变消费观念

人口基数的大小与二氧化碳排放量之间并不存在必然的因果联系,反而消费习惯、消费结构对二氧化碳排放的影响更为直接,因此正确引导人们的消费习惯、倡导文明消费以及培养消费责任心就成为重点所在,只有坚持消费的低碳化和可循环,才能实现“高碳”经济向“低碳”经济的转变。

5.4 政府政策的正确约束和引导

政府的政策在一个区域的发展中,起着重要的作用。所以政策的约束和引导作用无疑将促进低碳经济的发展,为二氧化碳减排提供政策保障作用。所以,各级政府应把碳减排政策放在突出地位,切实保障社会经济发展的成果,以实现经济又好又快发展。

参考文献:

[1] 陈文颖,高鹏飞,何建坤.用中国MARKAL-MACRO模型研究碳减排对中国能源系统的影响[J].清华大学学报(自然科学版),2004,44(3):342-346.

二氧化碳年中总结篇9

关键词: 二氧化碳排放;河南省;能源

Key words: carbon dioxide emissions;Henan Province;energy

中D分类号:X24 文献标识码:A 文章编号:1006-4311(2017)07-0044-05

1 研究背景

近一百年来,全球气候发生着巨大的变化,全球变暖已成为共识。而CO2排放快速增长会带来气候变化异常与全球变暖,因而会给全球造成破坏性的影响,例如积雪覆盖面积的减少、全球平均海平面上升、北极地冰川大部分退却、北极部分地区的永冻土层退化、解冻、变暖、动植物分布向高海拔、高纬度转移等。气候变化和温室气体减排问题近年来持续升温,为应对全球气候变化与资源环境相关问题,低碳经济议题已成为世界各国的政治和经济问题。

2015年9月25日,国家主席再次发表关于气候变化的联合声明,声明承诺中国到2030年单位国内生产总值二氧化碳排放将比2005年下降60%-65%,森林蓄积量比2005年增加45亿立方米左右,并明确了计划于2017年启动全国碳排放交易体系[1]。党中央、国务院高度重视应对气候变化工作,把应对气候变化工作作为生态文明建设的重要组成部分,作为经济社会发展的重大战略和加快转变经济发展方式、调整经济结构和推进新的产业革命的重大机遇,纳入到经济社会发展中长期规划,建立了评价考核机制,确立了绿色循环低碳发展道路。《国家“十三五”规划纲要》明确要积极应对气候变化,有效控制温室气体排放[2]。

河南省是人口大省、粮食和农业生产大省、新兴工业大省。多年以来,河南省能源消耗强度高于全国平均水平尤其是东部发达地区,经济发展是以能源的大量消耗和物质资本投入为代价的[3],能源消费碳排放是二氧化碳排放的主要来源。国家碳排放峰值及减排指标的承诺不仅对国家更对河南省经济社会发展过程中节能减排措施的实施与碳减排量控制提出了新的要求。近年来,河南省着力推进产业结构和能源结构优化升级,加快发展低碳产业,全面加强生态文明建设、资源节约和环境保护,全省节能低碳工作取得明显成效。但在经济下行压力加大的新常态下,我省正处于蓄势崛起、跨越发展的关键时期和爬坡过坎、转型攻坚的紧要关口[4],必须克服产业结构偏重、资源约束趋紧、环境承载能力下降等发展中面临的诸多问题。由此,进行河南省碳排放现状研究,分析河南省能源消费量、二氧化碳排放量及其变动趋势,从而确定碳排放强度控制的主要领域,对于河南省加快推进绿色低碳发展,确保完成“十三五”规划纲要确定的低碳发展目标任务,推动二氧化碳排放2030年左右达到峰值并争取尽早达峰,做好参与全国碳排放权交易准备具有重要意义。

2 河南省碳排放现状

2.1 依据已有数据分析

《河南省统计年鉴》还未录入CO2总排放量、CO2总排放量年长率、单位GDP二氧化碳排放(简称碳强度)等碳排放相关指标,本文根据河南省温室气体清单报告及河南省碳强度下降指标核算表进行河南省碳排放现状分析。

河南省温室气体清单报告中,温室气体清单包含能源活动、工业生产过程、农业、土地利用变化和林业以及废弃物处理五个领域,其中能源活动、工业生产过程、农业以及废弃物处理均为碳排放,土地利用变化和林业为净碳汇。温室气体包括二氧化碳、甲烷、氧化亚氮、氢氟化合物、全氟化碳、六氟化硫,本文只分析二氧化碳。河南省碳强度下降指标核算表中,二氧化碳排放包含化石能源和电力调入调出产生的二氧化碳。

2.1.1 河南省二氧化碳排放概况:

2005年河南省二氧化碳排放总量为38918.23万吨,其中能源活动35730.35万吨,占比91.81%;工业生产过程3182.95万吨,占比8.18%;废弃物处理4.93万吨,占比0.01%;土地利用变化和林业-999.82万吨,总净排放量为37918.41万吨[5]。

2010年河南省二氧化碳排放总量为53485.06万吨,其中能源活动48977.57万吨,占比91.57%;工业生产过程4502.27万吨,占比8.42%;废弃物处理5.22万吨,占比0.01%;土地利用变化和林业-1729.58万吨,总净排放量为51755.48万吨[6]。具体详见具体详见表1和图1、图2。

河南省2013、2014、2015年二氧化碳排放量分别为53792.83、55548.86、56536.65万吨CO2,其中化石能源碳排放分别为53781、54575.09、54787.2万吨,约占总量的97%。三年碳强度分别为1.73、1.64、1.55吨CO2/万元,详见表2。

2.1.2 河南省二氧化碳排放分析:

①总体排放变化分析。

从排放总量看,2010年河南省的二氧化碳排放总量比2005年增长了37.43%,年均增长5.48%;2014年比2013年增长了3.26%,2015年比2014年增长了1.78%,年均增长量持续下降。以单位GDP计算,2005年时的碳强度为3.68吨二氧化碳当量/万元,2010年为2.32吨二氧化碳当量/万元,与2005年相比下降了36.96%,略大于同期河南省的单位GDP能耗下降率(20%),2014年比2013年碳强度降低5.17%,2015年比2014年碳强度降低6.02%,见图3。

②化石燃料燃烧排放变化分析。

由图1和图2可以看出,河南省二氧化碳排放中能源活动占比达到91%以上,因此,分析能源活动二氧化碳排放清单,如表3。

就化石燃料燃烧来看,2010年时化石燃料燃烧排放较2005年增长了37.14%,年均增长了6.51%。以单位GDP计算,2010年化石燃料燃烧的单位GDP排放为2.12吨二氧化碳当量/万元,较2005年(3.37吨二氧化碳当量/万元)下降了37.09%。以人均计算,2010年时化石燃料燃烧的人均排放为4.69吨二氧化碳当量/人,较2005年(3.65吨二氧化碳当量/人)增长了28.49%。

分部门来看,和2005年相比,2010年能源工业增长为50.12%,工业和建筑业增长33.92%,交通运输增长了40.49%,服务业增长了110.13%,农业排放增幅较小为5.59%,而居民生活排放则下降22.87%。总体而言,除居民生活外的各部门的排放增长与2005-2010年期间河南省的社会经济发展和能源消费增长趋势是基本吻合的。而居民生活排放的下降则是由于2005-2010年居民生活排放能源消费结构优化导致的:根据《河南省统计年鉴2011》中的人均生活能源消费数据,2010年时河南省的人均煤炭生活消费量由2005年时的112.90千克下降到了78.96千克,而人均用电量则出现了大幅增长由2005年的128.91千瓦时增长到了272.78千瓦时,增幅达111.60%。

2.2 依据年鉴相关数据计算分析

根据已有的河南省碳排放量数据,只能对2005年、2010年、2013年、2014年、2015年碳排放量做大致判断,还不能够分析河南省历史碳排放量发展趋势。因此,本文根据《国家发展改革委办公厅关于开展2014年度单位国内生产总值二氧化碳排放降低目标责任考核评估的通知》发改办气候[2015]958号、《国家发展改革委办公厅关于开展“十二五”单位国内生产总值二氧化碳排放降低目标责任考核评估的通知》l改办气候[2016]1238号,国家文件中碳排放量计算方法及河南统计年鉴中可以用到的原始数据对河南省碳排放历年数据进行计算后再分析。

2.2.1 计算方法

二氧化碳排放量=燃煤排放量+燃油排放量+燃气排放量从第j个省级电网调入电力所蕴含的二氧化碳排放量-本地区电力调出所蕴含的二氧化碳排放量[7]。

其中:

燃煤排放量=当年煤炭消费量×燃煤综合排放因子

燃油排放量=当年油品消费量×燃油综合排放因子

燃气消费量=当年天然气消费量×燃气综合排放因子

从第j个省级电网调入电力所蕴含的二氧化碳排放量=当年本地区从第j个省级电网调入电量×第j个省级电网供电平均CO2排放因子

本地区电力调出所蕴含的二氧化碳排放量=本地区调出电量×本地区省级电网供电平均CO2排放因子

说明:单位化石燃料燃烧产生的二氧化碳排放理论上随着燃料质量、燃烧技术以及控制技术等因素的变化每年应该有所差异,考虑到年度获取的滞后性以及可比性,核算各省二氧化碳排放的排放因子数据采用2005年国家温室气体清单的初步数据,见表4。

调入或调出电量数据可以从各省能源平衡表或电力平衡表获得,并以千瓦时为单位。对于调入电量,需明确本地区外购电力所属省级电网并采用相应的省级电网平均二氧化碳排放因子。对于调出电量,采用本省的省级电网平均二氧化碳排放因子。在核算年度电力调入调出蕴含的排放量时,采用2012年相应省级电网平均二氧化碳排放因子数据,见表5。本文核算电力二氧化碳排放量时,直接采用河南省统计年鉴中能源消耗总量及构成表中的水电数据进行计算。

2.2.2 数据

根据《河南省统计年鉴2015》数据,河南省能源消耗总量及构成见表6,基于以上计算方法和计算因子计算河南省历史碳排放量数据,结果见表7。

2.2.3 结果分析

由表7可以看出,2014年,河南省总碳排放量达到55574.29万吨CO2,其中,煤炭消费产生CO2达46953.65万吨,当年碳排放强度为1.591。对比河南省温室气体清单报告和河南省2014、2015年碳强度下降指标核算表中2005年、2010年、2013年、2014年碳排放总量,由于计算方法、数据来源不同,两种结果存在差异,但数据差异不大,在差异允许范围内,见表8。

根据历年结果总体分析,在四种能源消耗产生的碳排放量中,煤炭消费产生的碳排放量占总碳排放量的占比达到年均89%,且占比在2009年后呈现持续下降的趋势,2000-2009年均保持90%-91%的占比基本不变,2009年以后持续下降,到2014年下降到84%。说明在河南省能源消费结构中煤炭占绝对比重,2009年以后的占比下降是我省节能减排,提升非化石能源比重的结果。2009年之前,煤炭消费碳排放量、总碳排放量与河南省GDP保持几乎平行的趋势增长,说明经济增长与能源消费的依赖关系。2009年以后河南省GDP保持持续上扬趋势,但煤炭消费碳排放量、总碳排放量逐渐平稳,甚至下降,反应到碳强度指标上,表现为平稳下降趋势,由2000年的3.995吨/万元下降到2014年的1.591吨/万元,说明河南省持续优化产业结构,突出重点领域节能减排等工作成效明显。

3 结论与建议

3.1 结论

从数据分析来看:能源消费方面:河南省能源消费结构仍然以煤为主,需要在相当长时间内进一步地改善;能源利用效率虽逐步提高,但是对比其他先进省份,河南省的单位GDP能耗仍然较高,存在较大的节能潜力;工业能耗占社会能耗七成以上,交通运输能耗增长速度加快;郑州作为省会城市,能源消耗较大;2009年以来非化石能源消费比重持续提升。碳排放方面:2000年以来虽然社会总碳排放量持续上升,但单位GDP碳排放量保持持续下降。

对数据反映结果深入分析,结论如下:

节能降碳工作深入实施,成效明显。主要耗能行业单位工业增加值大幅下降,能效水平显著提高。三次产业结构不断优化,2015年低能耗、低排放的服务业占比比2010年提高了8.9个百分点。能源结构持续改善,非化石能源消费逐步增加。万家企业节能低碳行动效果明显,建筑、交通等行业节能有序开展。但在取得成效的同时,下步节能降碳工作也面临诸多问题。

能源刚性需求快速增长,节能降碳有压力。随着全省经济社会仍将保持平稳发展、城市化进程继续加快、建筑规模持续扩大、交通总量保持持续增长势头,全社会能源刚性需求将大幅增加,不断增长的能源消费需求与能源消费总量控制间的矛盾日渐突出,实现以有限的能源消耗和较低的碳排放保障经济社会的持续较快发展压力大,继续实现有限能源消耗和低碳排放保障经济社会持续较快发展的难度逐步加大。

节能潜力得到较大程度释放,节能降碳空间受到压缩。全省围绕调结构、促转型,大力开展节能降碳工作,节能潜力得到较大程度释放。高耗能领域“以退促降”的空间进一步缩小,以传统手段推进节能减碳工作的边际成本逐渐增加,实现“以退促降”向“内涵促降”的转变还需要一个持续推进的过程,进一步节能降碳工作压力较大。

能源结构调整进入瓶颈期,节能降碳难度较大。受资源禀赋制约,河南省煤炭消费在一次能源消费总量中的占比达到76%左右,较全国平均水平高出10个百分点,由煤炭消费产生的污染物已成为我省大气污染物和温室气体排放的主要来源之一。考虑到水能资源基本开发殆尽、新能源较长时期内只能作为补充能源,我省以煤炭为主的能源生产和消费结构仍将维持较长时间,由此带来的能源消费结构调整难题短期内难以破解。

3.2 建议

根据上文分析和结论,为河南省早日实现碳排放量达到峰值,和更好参与全国碳排放权交易市场建设做好准备,河南省需加快转变发展方式、调整经济结构、推进产业升级,走节能低碳发展道路。本文提出以下建议:

大力构建节能环保型产业体系。推动传统制造业改造升级,开展工业生产过程清洁化、能源利用高效低碳化、水资源利用高效化、基础制造工艺绿色化等四大改造计划,从产品全生命周期控制资源能源消耗。发展低碳型服务业,提升发展现代物流、现代金融,推动生产业向专业化和价值链高端延伸,拓展提升生活业,推动生活业向精细化和高品质转变。严控“两高一剩”(高耗能、高污染、产能过剩)行业新增产能,大力发展节能环保产业。

积极构建绿色低碳能源体系。坚持“内节外引”的能源战略,优化能源结构,积极发展可再生能源,有效控制高碳能源,开展煤炭消费减量替代和清洁高效利用工作,构建清洁低碳、安全高效、智慧多元的绿色低碳能源体系。提升电力供应能效,推行节能低碳电力调度,强化电力需求侧管理,建设“能效电厂”。深入实施“气化河南”工程。实行能源消费总量、强度“双控”和碳排放度控制,开展用能权有偿使用和交易试点及低碳试点建设。

实施重点领域节能低碳行动。工业领域开发绿色产品,创建绿色工厂,建设绿色园区,以水泥、钢铁、石灰、电石、己二酸、硝酸、电解铝等为重点,控制工业生产过程温室气体排放。重点单位要建设能源管理体系,落实节能低碳措施。建筑领域强化城乡建设规划管理,对新建建筑提高能效要求,对既有建筑实施节能改造,扩大绿色建筑规模,大力发展绿色建材,推进建筑产业现代化发展。交通领域完善综合交通体系,优化交通运输能源消费结构,优先发展公共交通,向“互联网+智能交通”方向发展。农业农村领域加强农业机械、农村生活节能,发展低碳农业。

实施全民节能低碳行动。弘扬节能低碳文化,通过实施节能减排全民行动、节俭养德全民节约行动,开展社团组织节能低碳专项宣传行动等多方位开展节能低碳教育,普及生活方式低碳化的知识和方法。倡导低碳消费理念,提高消费者低碳环保意识,倡导绿色低碳消费模式,开展反过度包装、反食品浪费、反过度消费等全社会反对浪费行动。推行绿色生活方式,提倡家庭节约用电,倡导低碳出行,减少一次性用品使用,完善居民社区再生资源回收体系。

参考文献:

[1]中美元首气候变化联合声明[Z].

[2]中华人民共和国国民经济和社会发展第十三个五年规划纲要[S].

[3]王彦彭.河南省能源消费碳排放的演变与预测[J].企业经济,2013(6):26-32.

[4]河南省国民经济和社会发展第十三个五年规划纲要[S].

二氧化碳年中总结篇10

Abstract:

he advantage of Low carbon cities, compared with the traditional urbanis toreduce carbon emissions.So the evaluation standard of carbon emissions shoud be part of thecity planning.This articleis from the necessity of carbon emissions assessment to calculate the city carbon emissions and discusses the targets land use patternto the city's lower carbon emissionsbased on calculation of carbon emissions ,at the beginning of theurban planning accurately.

Key words:low carbon;Land Use;City planning;Low Carbon City

中图分类号:TU984文献标识码:A 文章编号:

1. 排放量评估应是城市规划的基础

低碳城市的终极目标就是减少碳排放。评估城市土地利用模式对温室气体排放的具体影响,对城市的碳排放量进行有效合理的计算,研究城市在产业、建筑、交通、土地利用、等方面的碳排放水平,制定相应的减排策略,是发展低碳经济、是制定低碳城市发展目标的基础。

1.1 碳排放量评估应作为低碳城市规划设计的第一步

精确计算城市碳排放的水平应作为城市规划的起点加入到城市规划设计过程当中。只有正确的把握城市碳排放的情况,才能明确城市的低碳化发展方向,才能制定相应有效的减排措施。这种碳排放量的评估实质上是对城市规划方案的碳排放情境的预测分析。正式这种预测分析的提前完成是今后制定一系列减排政策的依据。

1.2 碳排放量评估有利于城市低碳减排目标的制定

近年来随着低碳城市理论的发展,碳排放量情境评估分析已经逐渐被世界各国所接受和应用。IEA的《全球能源展望》、能源与环境政策研究中心的《中国能源报告(2008):碳排放研究》、国家发改委能源研究所的《中国2050年低碳发展情境研究》,分别基于投入产出、IPAC模型等方法,对我国中长期的碳排放水平进行情境分析。《全球能源展望》基准情境下二氧化碳排放量从2005年的50亿吨增

长到2030年的110亿吨;《中国能源报告》的结论则认为2005年和2030年的碳排放量为25.19亿吨和31.47亿吨(折算成二氧化碳排放量分别为92亿吨和115亿吨),与IEA参考情境下的碳排放量相近;《中国2050年低碳发展情境研究》得出中国碳排放总量于2040年达到最高值。

2 土地利用的碳排放量计算及相互关系

2.1 城市土地利用二氧化碳排放量计算

在建设低碳化城市的过程中最基本的碳排放量指的是在城市和生产消费过程中向大气排放的二氧化碳的量,该量的基本公式为:

城市二氧化碳排放量=二氧化碳排放总量-二氧化碳吸收总量

其中,二氧化碳排放总量=能源消费带来的二氧化碳排放量+工业产品生产的二氧化碳排放量+垃圾排放二氧化碳总量+农业二氧化碳排放总量+其他。

二氧化碳吸收总量主要是指“林地吸收二氧化碳总量”

2.2 城市土地利用与碳排放量的相互关系

土地利用是指农田、森林、草地、湿地、建设用地之间的相互变化。通常来说,城市土地利用的碳排放量,一般计算林地、草地的碳吸收量及农业的碳排放量与碳吸收量,其他如建设用地的碳排放量在能源排放总计算。对于城市来说农业用地有限,因此不是计算的重点。

森林每生长一立方米木材大约可以吸收1.83吨二氧化碳、释放1.62吨氧气,而破坏和认为减少森林面积就会大大降低森林碳汇功能,从而导致碳排放量的增加,而森林被转变为农业用地后的十年,土壤的有机碳平均下降30.3%。

3 减少碳排放的土地利用规划策略

3.1 土地混合利用

土地混合利用实质上是指该地块在功能上的多样化布局和使用,不同功能的混合可以有效是缩短交通距离,降低城市的运行压力。土地混合使用应在控规编制阶段所确定的土地使用性质。应具有控规的法定效力。作为规划结果的土地混合使用,应在同一个地块有超过两类以上使用性质的建筑。因此在引导混合用地配置上提出一下几点。

3.2 通过土地利用变化直接减少碳排放

可通过一下几种土地的直接利用来降低碳排放

(1)减少地面硬质铺地。地面土壤中的生态系统和通气透水可有效的吸收城市中的二氧化碳。大面积的硬质铺地隔绝了土壤与空气的接触从而降低了这种土壤的自然功能。

(2)推广绿色建筑。绿色建筑可在使用周期内最大程度上节约能源的消耗是未来建筑的发展趋势。

(3)基础建设低碳化。城乡基础建设过程中,应改变小汽车为主导的交通模式,以运输量大,能源消耗低,方便快捷的交通系统为主导,如轨道交通和公共交通,以非机动车为辅助的交通模式来有效的降低碳排放。

3.3 增加碳汇直接减少碳排放

国内外研究早已证实成长中的树能从大气中吸收并固定二氧化碳,而砍伐树木后退化的土壤会向大气排放二氧化碳及其他温室气体。利用不同数据、卫星遥感数据、观测资料对1981-2000年间中国大陆植被分析结论包括:在此期间中国年均砍伐树木的总碳汇为0.096~0.106PgC/a(1P=10 15 ),其中森林年均碳汇最高为(0.075 PgC/a),其次为灌木丛(0.014~0.024 PgC/a),最低为草地(0.007 PgC/a)。而全球森林植被的碳储存量为每公顷71.5吨;因此增加森林面积,增加碳汇是最直接有效的减少碳排放的策略。

4 结语

低碳城市是未来城市的发展趋势而碳排放评估对城市的发展将起到长期结构性作用,我国正处于大规模城市建设和新一轮的空间结构调整期,应尽快确立碳评价标准体系和评估系统,并由此形成可持续发展的城市规划体系。

参考文献

[1]张坤明, 等. 低碳经济论[M]. 中国环境科学出版社, 2008: 27.

[2]丁宇. 西方现代城市规划中理性规划的发展脉络[J]. 规划师, 2005, 21( 1) : 104- 107.

[3]曹康, 王晖. 从工具理性到交往理性 现代城市规划思想内核与理论的变迁[J]. 城市规划, 2009, 33( 9) : 44 - 51.

二氧化碳年中总结篇11

中图分类号:F205 文献标识码:A 文章编号:1003-5192(2012)02-0057-05

Spatial Difference and Causes Research on Continuous Total FactorCO2 Emission Performance in China――Based on Sequential Malmquist-Luenberger Index Analysis

YOU Jian-xin1, CHEN Zhen1, ZHANG Ling-hong1, MA Jun-jie2

(1.School of Economics and Management, Tongji University, Shanghai 200092, China; 2.School of Law, Tongji University, Shanghai 200092, China)

Abstract:Based on the literature, SML(Sequential Malmquist-Luenberger)Index is adopted to estimate the continuous CO2 emission performance of provinces in China from 1998 to 2009. And, the regional difference of this performance and the influential factors are analyzed. As the research results, we found that: The increase of CO2 emission performance of provinces in China are all contributed by technical change; Regarding the influential factors to the CO2 emission performance, R&D professionals, regional economic development, industrial structure all offers a significant positive effect, while energy intensity, energy structure both presents a significant negative effect, and the intensity of R&D plays an insignificant influence as indirect moderating effect.

Key words:SML index; CO2 emission performance; technical change; technical efficiency

1 引言

全球气候变化是当今社会最严峻的问题之一。随着世界经济社会的不断发展,温室气体(以CO2为主)排放持续上升,环境气候问题凸现,从科学角度出发,必须大幅度减少全球二氧化碳排放。经济增长与碳减排之间的矛盾日趋尖锐。但是,中国目前仍是一个发展中的国家,在确保经济稳步发展的同时如何实现2020年碳排放强度相比2005年减少40%~45%的减排目标是摆在面前的又一难题,根本出路只有大力发展低碳经济,有效提高能源使用效率和二氧化碳排放绩效。因此,科学精确地评估我国二氧化碳排放绩效现状,深入分析我国二氧化碳排放的历史、空间差异,是挖掘其主要影响因素的首要条件,是进一步开展各类减排活动和制定各种政策的基础。

迄今为止,国内外对碳排放绩效的研究尚仍处于起步阶段,从要素投入角度可以将现有研究划分为单要素碳排放绩效研究和全要素碳排放绩效研究。Ramanathan认为应该从整体的角度,将所有相关的变量,如经济活动、能源消耗和CO2排放放在一起构建绩效评价指数更为合适[1],即“全要素”的思想。环境DEA技术即Malmquist-Luenberger指数被广泛应用于评价的全要素环境绩效和二氧化碳绩效。Chung et al.首次将 Malmquist-Luenberger 技术应用到宏观层面[2],随后, Kortelainen运用ML技术估算了欧盟20个国家的动态环境绩效(CO2)[3];Zhou et al.首次将CO2排放绩效作为一个独立于环境绩效的概念进行研究,通过运用ML指数估算了1997~2004年期间18个国家动态的CO2排放绩效[4];陈诗一通过构建动态(节能减排) 行为分析模型对我国工业节能减排损失和收益进行了预测[5];王群伟等应用Zhou et al.的环境DEA方法对中国二氧化碳排放绩效进行评估并分析了区域差异和其影响因素[6];王兵等运用SBM方向性距离函数和ML指数测度了考虑资源环境因素下中国1998~2007年30个省份的环境效率、环境全要素生产率及其成分[7];刘明磊等运用非参数距离函数方法对能源消费结构约束下的我国省级地区碳排放绩效水平和二氧化碳边际减排成本进行了研究[8]。

综上文献,在测度全要素环境绩效和二氧化碳排放绩效时都是运用了基于方向性距离函数的Malmquist指数或ML指数,在计算距离函数时均以当期观测值来构造生产边界,每一年的投入和产出是被割裂开的,是一种割裂的非连续的绩效测算方法。一般来说,在宏观经济视角下技术总是进步的,至少维持在原有水平不会倒退,传统的ML指数计算方法通常会得出长期的技术退步[9]。为了防止出现技术退步这一缺陷,本文通过借鉴Donghyun and Almas[10]序列DEA的思想,基于省际面板数据,运用SML指数方法对我国1999~2009年各省市二氧化碳排放绩效指数进行估算,同时降解为技术进步指数和技术效率指数进行深入分析,根据结果讨论其空间差异并通过运用面板数据模型探索其差异形成的主要成因。

2 变量、数据及方法

2.1 变量选取与数据处理

假设投入指标为资本(K)、劳动力(L)和能源(E),产出指标为期望产出地区生产总值(y)和非期望产出二氧化碳(b),则生产过程可描述为

P(K,L,E)={(y,b)∶(K,L,E;y,b)∈T}(1)

样本及数据选取考虑实证的需要和数据的可得性,观测区间为1999~2009年面板数据,由于和海南数据缺失过多将其剔出,而计算资本存量时重庆与四川一起方便统计,故样本为中国28个省市自治区。资本存量计算是在单豪杰[11]基础上根据其资本存量计算方法测算补充了2008~2009年数据。劳动力是各地区年初、年末就业人数的算术平均值。能源投入是分别将各地区消耗的煤炭、石油、天然气根据各自能源标准煤折算系数统一换算为标准煤加总。各省市GDP是根据各省区市GDP平减指数将名义GDP转化为以1952=100 的价格。CO2分别将煤炭、石油、天然气换算成标准煤,借鉴徐国泉[12]碳排放折算系数再分别将其转换为后加总。相关数据来源于《中国统计年鉴》和《中国能源统计年鉴》。投入产出数据描述性统计见表1。

在具体测算过程中,已有研究均是通过运用方向距离函数对期望产出和非期望产出进行主观处理,如Zhou et al.[4]和王群伟[6]采用了基于二氧化碳为导向的方向距离函数,而刘明磊等是通过将方向向量定义为g(gy,gb)=(0,-b),表示假设在保持经济产量不变的前提下,通过减少碳排放总量的增长率使评价达到有效,然而,我国目前的状况是经济在增长的同时碳排放量在增加,但是,主观上我们希望的是不断提高期望产出GDP增长率,同时尽可能减少非期望产出CO2排放量的增长率,因此,本文采用直接产出距离函数,即将DDF定义为D(x,y,b)=max{(1+β)y,(1-β)b∈P(x)},表示寻求经济产值增长率最大化的同时使得二氧化碳排放量增长率尽可能减少。旧经济模式是高增长、高消耗、高排放的模式,低碳经济是追求保证经济增长过程中尽可能地减少碳排放量的低碳、高增长的发展模式。而基于直接方向距离函数的SML指数正是主观上反映了经济增长的质量,期望实现真正的高效、环保的低碳经济发展模式。Zhou et al.认为这种方法可以用来估算某一个特定时期的各区域二氧化碳排放绩效[4],即为全要素生产率框架下的二氧化碳排放绩效。

3 中国省际全要素碳排放绩效测算及结果分析

SML计算方法与传统的ML测算方法相同,可以测算出我国各省市碳排放绩效指数(SMLCPI)并分解为技术进步指数(STE)和效率变化指数(SEF),由于篇幅所限,详细技术可参见Chung et al.[2]和Donghyun and Almas[10]的文章。

3.1 我国CO2排放绩效总体趋势分析

从全国平均来看,SML指数估算CO2排放绩效指数、技术进步指数、效率变化指数总体平均值为1.00732、1.008874、0.998511,表明1999~2009年中国二氧化碳排放绩效增长率为0.732%,技术进步率为0.8874%,效率变化率为-0.149%;总体碳绩效平均值大于1,说明近10年来,我国碳排放绩效总体上是不断提高的;效率变化指数平均值小于1,说明随时间推移各省市之间追赶效应在弱化,经济差距在拉大;技术进步指数平均值大于1,显示技术进步是我国各地区碳排放绩效增长的主要动力。计算结果总体变化趋势如图1所示。

从图1可见,绩效降低的年份只有2004、2005年,与王群伟等[6]估算结果2003~2005碳排放绩效都有所下降不同,此处2003年技术进步规避了效率降低带来的负面效应,碳排放绩效总体有所提高,2004、2005年二氧化碳排放绩效总体下降的主要原因是技术效率的降低。究其原因可能是因为“十一五规划”中后期显示出过度重工业化特征,特别是2003 年后,我国的重化工业化趋势再度显现,中国的能耗和排放再次大幅增长[13]。

3.2 我国各省市碳排放绩效空间差异分析

根据估算结果,为了方便分析,将我国各省市大致分成三类。

第一类,碳排放绩效大于1,且主要是由于技术进步和效率提高的共同作用,如北京、天津、山西、黑龙江、上海、安徽、湖北、湖南、广西、包含重庆在内的四川、贵州;第二类,碳排放绩效大于1,但主要原因是技术进步的作用抵消掉了效率降低的影响而使得碳排放绩效提升,如河北、内蒙古、吉林、江苏、浙江、山东、广东、陕西和甘肃;第三类,碳排放绩效小于1,如辽宁、河南、云南,但是三者成因各不相同,辽宁主要是技术进步指数降低导致,河南绩效降低是效率降低的影响大于技术进步的作用,而云南则是由于技术退步和效率降低共同导致。

从各省市变化情况来看,多数省份效率较低,可能存在只重视技术进步这一硬性因素而忽视了影响效率变化的管理机制等软性因素所造成的,因此,接下来将以SML指数运算结果对各省份碳排放差异进行分析。

4 中国省际全要素碳排放绩效空间差异成因分析

通过运用SML指数方法估算了我国各省市二氧化碳排放绩效(SMLCPI),从时间和空间两个纬度对其进行了深入分析,但是,我们更想知道导致其差异的主要原因有哪些。如上所述,省际间的技术进步对碳排放绩效贡献影响很大,众所周知,R&D投入是衡量技术进步水平的关键指标,而本国的R&D投入是一种受商业或国家利益驱使的广义上的人力资本投资[14],在本文特指R&D人员RD和R&D强度RG。除此之外,综合考虑前人的研究,考虑二氧化碳排放的主要影响因素,选取经济发展、能源强度、产业结构和能源结构四个指标,因此,分别从技术进步水平、经济发展水平、能源强度和结构因素四个方面六个指标对我国省际二氧化碳排放绩效差异的成因进行考察诠释。在此基础上选取我国各省市1999~2009数据构建了我国二氧化碳排放绩效影响因素研究的面板模型(3),表3给出了计量模型相关变量的数据来源与处理方法。

此处,对回归模型(3)采用固定效应模型运用一般最小二乘法进行估计,结果显示,调整后R2为0.74816, 拟合度较高。R&D强度对二氧化碳排放绩效影响不显著,表明近阶段研发投入没有显著向能源环境研究领域侧重;R&D人员对二氧化碳排放绩效有很大促进作用,系数为0.190109,且在5%显著水平下显著,表明在很大程度上R&D人员对降低碳排放绩效作用很大,主要原因可能在于R&D人员可以促进技术进步,通过知识溢出提高当地技术水平,从而促进碳排放绩效的提高;经济发展水平对二氧化碳排放绩效亦有正效应,系数为0.020228,且在1%显著水平下显著,即表明经济发展水平越高,相应的碳排放绩效越高;能源强度和能源结构对碳排放绩效呈现负效应,系数分别为-0.024007和-0.052750,且分别在1%和10%显著水平下显著,即表明能源强度越高、煤炭消耗占能源消耗比重越高,相应的二氧化碳排放绩效越低;产业结构对二氧化碳排放绩效影响也是正向效应,系数为0.295127,在1%显著水平下显著,表明产业结构调整对碳排放绩效提高也有显著影响。此外,笔者将R&D强度与其它解释变量做了面板回归检验,R&D强度分别对经济发展水平、能源强度和能源结构影响显著,表明现阶段我国R&D投入是通过不断提高经济发展水平、降低能源强度、优化能源结构来间接促进二氧化碳绩效的提高,呈现间接调节作用。

5 结论及政策建议

通过运用基于直接距离函数的SML指数对1999~2009年我国各省市碳排放绩效进行估算,并将其降解为技术进步指数和效率变化指数,从时间和空间两个纬度对运算结果进行深入分析,进而通过运用面板数据构建了我国碳排放绩效影响因素计量模型挖掘其差异形成的主要原因。

研究结果表明:第一,从总体发展趋势上看,我国1999~2009年二氧化碳排放绩效指数SML平均值大于1,效率变化指数SEF平均值小于1,技术进步指数STE平均值大于1,表明过去10年我国碳排放绩效呈改善趋势,技术进步是我国各省市碳排放绩效增长的主要动力;第二,根据各省市碳排放绩效、技术进步指数和效率变化指数的空间差异将我国各省市大致分成三类进行研究,可以看出我国各省市需要继续强化技术进步外更应该重视软实力研究;第三,我国二氧化碳排放绩效主要影响因素中,R&D人员、经济发展水平、产业结构显示显著正的效应,每增加一个单位将导致二氧化碳的排放绩效分别提高0.190109、0.020228、0.295127个单位;而能源强度、能源结构对碳排放绩效影响呈现逐负效应,每增加一个单位将导致二氧化碳的排放绩效分别降低0.024007和0.052750个单位;此外,R&D强度对二氧化碳影响不显著,但是R&D强度分别对经济发展水平、能源强度和能源结构影响显著,存在间接调节作用。

上述结论对于政策的制定有一定的启示:针对第二类地区,存在效率降低的问题,需要不断提高自身“软”性因素,在未来的发展中应该更加重视鼓励技术效率的提高,不断提高人员素质和管理水平,重视“软”实力的提升;针对第三类地区,仍然要下大力气在技术进步上,技术进步是提高碳排放绩效的关键,此外,也要注重“软”实力的提升。另外,各省市都应该持续加大研发资源投入,在R&D投入方面,将R&D人才的引进作为发展的前提,做好相关配套,要做到引得进、留得住;应该持续不断提高R&D强度,同时在未来的工作中对能源环境领域的R&D投入要有所侧重,不断创新改善能源环境技术,从正面促进二氧化碳排放绩效的提高;应该保证经济稳步增长,迅速转变经济增长方式,注重技术投资,尤其是能源环境技术。不断优化产业结构,提高第三产业的比重,鼓励发展服务业。但是,我们在扩大第三产业比重的同时需要注意提高服务人员的素质,普及低碳理念、增强低碳意识。加快能源结构调整,尽可能降低一次能源的使用率。

参 考 文 献:

[1]Ramanathan R. Combining indicators of energy consumption and CO2 emissions: a cross-country comparison[J]. International Journal of Global Energy Issues, 2002, 17(3): 214-227.

[2]Chung Y H, Fre R, Grosskopf S. Productivity and undesirable outputs: a directional distance function approach[J]. Journal of Environmental Management, 1997, 51(3): 229-240.

[3]Kortelainen M. Dynamic environmental performance analysis: a malmquist index approach[J]. Ecological Economics, 2008, 64(4): 701-715.

[4]Zhou P, Ang B W, Han J Y. Total factor carbon emission performance: a malmquist index analysis[J]. Energy Economics,

2010, 32(1): 194-201.

[5]陈诗一.节能减排与中国工业的双赢发展:2009-2049[J].经济研究,2010,(3):129-143.

[6]王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010,(1):45-54.

[7]王兵,吴延瑞,颜鹏飞.中国区域环境效率与环境全要素生产率增长[J].经济研究,2010,(5):95-109.

[8]刘明磊,朱磊,范英.我国省级碳排放绩效评价及边际减排成本估计:基于非参数距离函数方法[J].中国软科学,2011,(3):106-114.

[9]Shestalova V. Sequential malmquist indices of productivity growth: an application to OECD industrial activities[J]. Journal of Productivity Analysis, 2003,19(2): 211-226.

[10]Donghyun O, Almas H. A sequential malmquist-luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology[J]. Energy Economics, 2010, 32(9): 1345-1355.

[11]单豪杰.中国资本存量K的再估算:1952-2006年[J].数量经济技术经济研究,2008,(10):17-31.

二氧化碳年中总结篇12

中图分类号:U664.5+92 文献标识码:A 文章编号:1009-914X(2014)40-0100-01

总有机碳是指水体中溶解性和悬浮性有机物含碳的总量,常以“TOC”表示。TOC是一个快速检定的综合指标,它以碳的数量表示水中含有机物的总量。总有机碳的指标在一定意义上说明的是对水污染的监控。各种有机污染物,微生物及细菌内毒素经过催化氧化后变成二氧化碳,进而改变水的电导,电导的数据又转换成总有机碳的量。如果总有机碳控制在一个较低的水平上,意味着水中有机物、微生物及细菌内毒素的污染处于较好的受控状态。

总有机碳测定方法的原理是将水中有机物质分子完全氧化成二氧化碳(CO2),检测所产生的二氧化碳的量,然后计算出水中有机碳的浓度。制药用水中存在无机碳和有机碳两种形式的碳,因此测定总有机碳的方法通常有两种:一种是从所测得的总碳(无机碳和有机碳)中减去所测得的无机碳;另一种则是在氧化过程前事先除去无机碳。

由于有机物的污染和二氧化碳的吸收都会影响测定结果的真实性。所以,测定的各个环节都应注意避免污染。取样时采用密闭容器,容器顶空应尽量小。取样后,应马上测试。所使用的玻璃器皿必须严格清除有机残留物,并必须用总有机碳检查用水做最后漂洗。本文通过对2011年6月到2012年6月公司自制纯化水的TOC的分析,得出TOC受季节变化比较大,因此不同季节对水系统的处理应该有不同的周期。

1 实验材料

1.1 仪器

HTY-DI1000型总有机碳(TOC)分析仪(杭州泰林生物技术设备有限公司)

1.2 样品

本公司制水间自制纯化水,共计350批次。

2 实验方法

2.1 工作原理

HTY-DI1000型TOC分析仪的工作原理是:样品中的有机物在紫外线(UV)的作用下被氧化成二氧化碳,二氧化碳的测定采用了电导率检测技术。通过测定未经氧化反应器的样品的总无机碳(TIC或IC)浓度,和经氧化后得到的样品的总碳(TC)浓度来计算总有机碳浓度。总有机碳浓度即总碳浓度与总无机碳浓度之间的差值:TOC = TC-TIC。

HTY-DI1000型TOC分析仪可以检测TOC浓度从0.001mg/L到1.000mg/L的水样。

2.2 操作方法

2.2.1 管路冲洗

管路冲洗及校准过程需要在离线模式下进行。仪器用在在线检测时,也要在离线校准完毕后再作在线使用。

接通电源开关时仪器显示如图界面,此时仪器处于管路冲洗状态,进行管路内残留试剂的冲洗,以便除去试剂流动相中产生的气泡。仪器在使用前必须进行管路冲洗,一般情况下冲洗30到60分钟。

2.2.2 TOC检测

2.2.2.1 将进样管从超纯水中移出,插入待检水样中。在【参数设置】菜单下用【选择】键将光标移动到【选择运行模式】位置,按【确认】键进入选择界面。选择“离线模式”并按【确认】键。

2.2.2.2 离线模式下,返回主菜单,进入【运行分析】菜单后,设置检测批号和检测次数,然后进入分析状态。其中前面有四次冲洗过程,数据不记录。冲洗后开始检测并进入检测次数,检测完毕后显示最后一次检测结果,其中几次的检测结果都自动保存在查询记录中。返回主菜单后可以进行记录查询(必须先连接打印机,设置打印),记录三次的检测结果,求得它们的算数平均值。就是样品的TOC值。

2.2.2.3 将进样管插入超纯水中继续冲洗30到60分钟,如果距离下次使用超过一周可以将进样管排空并用封口膜封口,再关闭电源;如果每天检测样品,冲洗完后可以直接关闭电源。

3 数据处理及结果分析

本次总结了2012年6月21日至2013年6月20日共计一年350批的数据(每天检测一次,中间机器维修停机无检测),表1数据为每月平均值。

从图1中可以看出,在为期一年的纯化水TOC检测中,每个月份的温度不同,TOC的均值差异明显,也就是说TOC会因为季节、气候的变化而有明显的变化。这是因为随着季节的变化,温度也在发生着不同程度的变化,在夏秋季节环境温度较高,微生物生长繁殖比较快,使得水污染更严重,从而使TOC值会升高,相反,在冬春季时水温较低,抑制水中微生物的生长繁殖,从而测得水中TOC值会很低。

4 结论