电路设计论文合集12篇

时间:2023-03-20 16:26:51

电路设计论文

电路设计论文篇1

2数据采集电路设计

AD7820是美国AD公司推出的一款微处器兼容的8位模数转化芯片,芯片采用+5V供电,无需外部时钟,内部有取样保持电路,利用半闪存技术,使转化时间达到1.36US。它和FPGA的接口简单,无需加外部电路,即可采用存储器映像编址,数据输出带锁存和三态缓冲电路。片内采用两个4位内烁ADC以获得8位输出结果,每个4位闪烁ADC以内含15个比较器,每一个闪烁ADC将未知输入模拟电压与参考电压阶梯进行比较,从而获得高4位数据,一个内部数模转化器(ADC)以获得高4位数据作为输入,输出第一个闪烁ADC数据对应模拟电压,然后用未知输入模拟电压减去该电压,经转化后得到低4位数据。2.3数据处理电路设计AD8400是单通道、256位、数字控制可变电阻(VR)器件,器件内置一个带游标触点的固定电阻,该游标触点在载入控制串行输入寄存器的数字码所确定的点位分接该固定电阻值。游标与固定电阻任一端点之间的电阻值。本质上就是用控制脉冲计数的方法来调整阻值,所以又叫数控可变电位电阻器,其实质是一种特殊形式的数模转换器,其输入经高精度A/D转化为控制数字电位器的控制信号,并由FPGA控制关系和特性给出调整信号和计数脉冲,使数字电位器改变滑动触点位置,从而改变电位器输出电压。每个VR均有各自的VR锁存器,用来保存其编程电阻值。由10个数据位构成的数据字同步传输至串行输入寄存器,该数据字经过解码,前2位可确定需要载入后8位数据的VR锁存器地址。

3控制系统软件编程

FPGA的软件编程设计,其实质也就是硬件设计,一般是采用模块化的设计方法,其实质就是系统的主要程序包括A/D数据采集控制模块、FIFO数据缓冲模块、数字电位器控制模块、以及时钟树产生模块。

3.1数据采集模块

AD7820工作分为读模式和写模式,模数转换器和数据访问由RD来控制,当CS和RD同时为低电平时启动一次转换,对于能强制进入等待状态,且能使RD保持低电平直至模数转换结束的微处理器,用一条读指令即可启动转换,等待和读转换结果,在读模式WR/RDY用作状态输出(RDY),它可用作CPU的状态查询。RDY是集电极开路输出,在CS下降沿后转为低电平,AD转换结束后变为高电平。在写读模式中,WR下降沿启动AD转化,当WR返回高电平时,结果的高4位被锁存在缓冲器中,同时开始低四位转化,INT为低电平时,表明模数转换结束。

3.2FIFO数据缓存模块的设计

先进先出的FIFO是一种比较常用的存储器单元[2],主要用来对数据进行缓存,FIFO通常有读允许端口、写允许端口、数据输入端口、数据输出端口、FIFO状态端口等信号端口。其中,FIFO状态端口输出当前FIFO的状态满、未满或空。8*8位FIFO的功能框图如下。其中,clock为系统时钟信号输入,reset为系统复位信号,read为读数据信号允许信号,write为写入FIFO允许信号,fifo_in[7:0]为数据输入,fifo_out[7:0]为数据输出,fifo_empty为指示FIFO当前是空的,这种情况下,只能对FIFO进行写入数据操作;fifo_full指示当前FIFO是满的,这种情况下,当然只能对FIFO进行读数据操作,是不能写入数据的;fifo_half指示当前FIFO队列中没空也没满,这种情况下,既可以对FIFO进行写入数据操作,也能进行读数据操作,FIFO工作示意图。

3.3数字电位器模块设计

AD8400在时钟脉冲[3]作用下将10位串行数据通过SDI脚输入,这10个数据字格式为A1、A0、D7、D6、D5、D4、D3、D2、D1、D0,它使用50M的时钟在1LS(10*4*20ns)内可将4个RDAC的数据装完,AD8400通过复位(RS)脚可复位到中位值,它含有一个标准三线串行输入控制接口。

4结果仿真

通过xilinx13.4软件[5]将各模块连接,进行编译、各模块都能正常工作。分配引脚后,将配置文件下载到xc3s250e-5tq144型FPGA开发板中,系统运转正常,验证了整个系统设计的正确性,仿真。

电路设计论文篇2

恒温电路设计的研究主要用于电力采集产品上,对电力采集产品来讲,安装在PT侧,需要耐受100℃的温度变化,却要求万分之五的精度。除需要从理论上进行最终的计算和分析外,还要考虑各种因素。如其中重要的一个因素高精度器件的温漂,器件稳定性、可靠性受温度变化的影响,是电子器件不可回避的问题。对于电力采集产品中高精度的AD采集模块,温漂的问题更为严重,要保证AD采集模块精度在允许的范围内,恒温电路的设计是很重要的。基于对电力采集产品应用环境的考虑,将高精度的AD采集模块放置在恒温盒中,同时配合加热电阻来稳定恒温盒温度的方法,来保证环境在-20℃~+75℃变化时,恒温盒内的温度变化在±1℃,使电力产品在万分之五的精度范围以内稳定工作。器件主要由分压电阻、热敏电阻、加热电阻、运放、三极管等组成,从设计上看电路设计简单、稳定性好。选择的运放是低价、高性能、低噪声的双运算放大器ne5532,热敏电阻选择低价,对温度反应灵敏的电阻。根据电路,为了保证恒温盒内的器件工作最佳状态,首先确定恒温盒内要保持的恒定温度,通过测试和计算,恒温盒的温度恒定在75℃为最佳,AD采集模块可以稳定的工作,电力产品可以达到万分之五的精度。当温度降低时,通过分压电阻电路、负反馈电路、恒流源控制电路,加热电阻电路使温度稳定在75℃。

1.2电路具体设计

具体分析如:当温度低于75℃时,由于热敏电阻(MF1是负温度系数的热敏电阻)的阻值变大,V0≠V1,V1>V0,根据深度负反馈电路虚短、虚断的特点,R18上有电流,在经过负反馈电路放大,后级运算放大U2B同向输入端和反向输入端形成压差,输出电压放大,三级管基极电压大于发射极电压,三级管导通,有电流流过加热电阻,加热电阻加热,再通过三极管、运算放大U2B、电阻等组成的恒流控制源电路控制流过加热电阻电流,使恒温盒温度保持在75℃左右。在设计过程中,要理论计算配合仿真软件。下面是SaberSketch软件仿真结果,根据热敏电阻负温度系数特性,在仿真过程中给热敏电阻设定不同的参数值,从而达到模拟温度升高和温度降低环境的目的。

2应用

电力采集产品安装在PT侧,需要耐受100℃的温度变化,还要求精度在±0.05%以内。AD转换模块是电力采集产品的重要模块,对温度的变化更加敏感,AD转换模块采用ADS8329IRSARG4芯片,其采样精度16位,零位漂移0.4×10-6/℃,增益漂移0.75×10-6/℃,这款芯片具有高精度和高采样率的优点,但对温度变化敏感。AD转换模块在电路设计和器件选择上,尽量保证采样电压的精度并最大程度减小温漂。但还是要考虑温度在-25℃~+75℃变化时,AD模块精度漂移。温漂造成的输出变化必须通过恒温或者温度补偿来去除。由于温度补偿电路需要在芯片设计之初加入,而且无法做到完全补偿,因此,要得到稳定的输出,则必须稳定系统的工作温度,所以AD转换模块放在恒温盒里,在通过恒温控制电路保证温度的恒定。

3测试

恒温设计电路主要保证D采样模块所处的环境温度变化在±1℃,电力采集产品是三相电压,通过三路选通信号对模拟开关74LVC1G3157的控制使得三项交流(A、B、C)模拟信号能够经过滤波后进入到AD转换芯片中,实现模拟到数字的转换,在通过电力还原产品还原成模拟信号。如果环境温度在-25℃~+75℃变化时,电力采集产品和还原产品通过压降仪测试读出的三相电压的差值的幅值在0%~0.06%,相位在0('''')~3('''')之间变化,说明恒温硬件电路设计合理。

电路设计论文篇3

际施工中在对路径进行选择时会受到多种因素的影响,如果单纯的考虑路径系数的大小,工程的造价不仅无法保证处于最低水平,可能还会导致成本增加,无法保证线路路径的经济性。所以在对线路路径进行选择时,需要综合多方面的因素进行综合考虑,通过多个方案进行比较,从而选择科学合理的路径方案,确保路径方案的最经济性。每个路径方案的优劣需要从多个方面进行考虑,不仅需要考虑路径的长度,而且还要对沿线的交通条件、地形、地势、地质及水文情况进行全面考虑,对于气象、矿产资源及需要跨越的河流、森林及各种障碍物进行分析,选用最优化的曲折系数和线路转角,通过对不同路径选择方案进行对比,从而分析出每个路径方案的优劣,选择最优的方案,这不仅确保了造价的最小化,而且运行的安全性和经济性都能得以保障,施工更加方便。

1.2防雷设计

目前在线路设计中,由于线路电压等级的不断降低,导致避雷线在线路中所占造价比重不断加大。在对线路防雷设计时,需要根据送电线路的电压等级不同、该地区已有线路运行情况及雷电活动情况来对需要采用的避雷线根数进行确定,同时还要对避雷线的档距、中央导线、保护角和避雷线的最小距离进行准确的确定,确保防雷的效果。当前在送电线路中往往利用接地型避雷线来进行防雷,这种防雷措施充分的保护了送电线路的安全性,而且所采用的避雷线的保护角也较小,这样就取得了良好的遮蔽效果。

1.3气象条件的选择

在进行线路设计时,需要充分的考虑到当地的气象条件,这不仅需要具体参考当地的气象资料,而且还要对已有线路的运行情况进行综合考虑,考虑到当地自然变化的规律,同时还要对一些自然现象出现的可能性进行考虑,通过诸多因素的综合分析后,看其是否具有经济上的可操作性,对线路客观可能存在的危险程度、线路施工、运行和检修等工作的安全性、经济效益及计算的便捷性进行分析,确保设计出来的线路能够在危险情况下正常运行,避免其在发生危险时出现倒杆事故。一旦风速过大或是过电压产生时,就避免导线对地发生闪络事故,确保线路与地面具有绝对安全的距离,施工中要加强安全防范措施,确保人身和设备的安全。

1.4大跨越设计

大跨越设计通常是指线路在跨越通航湖泊、大河流、海峡等的设计时,其杆塔高度在80m以上或是档距在800m以上,并且在发生事故时,会严重影响到航运或者是进行修复会特别的困难,所以在进行导线选型或是杆塔设计需予以特殊考虑。对线路跨越较大的山谷,是作为大档距来设计,一般情况下只对导线及特殊的气象条件进行处理。(1)跨越地点及气象条件。说明各跨越地点的杆塔位处的地形、主河道变迁、地势、通航、水文、地质、跨越档距的大小等情况,选出几个跨越方案。并选择电线覆冰、最大风速气温等。(2)导线和避雷线选择。按照避雷线和导线的电气和杆塔高度、机械性能、跨越挡距的大小、导线和避雷线的荷载条件以及间距,选择导线、避雷线。(3)绝缘子串及金具。除了应当按照对一般线路考虑的条件外,还应按杆塔高和线路荷载增加绝缘子片数,选择或新设计金具和绝缘子串。

1.5推行限额设计

1.5.1线路设计与工程造价具有极为重要的联系,所以在设计过程中,需要不断强化设计人员的造价控制意识,使设计人员在设计中时刻注意关注工程的造价。科学的进行方案的选择,将施工设计预算严格控制在规定的概算范围内,而且还要对设计变更进行有效的管理,树立动态的管理理念,从而在设计的全过程中都将造价控制进行具体的落实。造价人员也可以全程参与管理,通过为设计人员提供具体的经济指标,从而确保论证和测算的准确性,确保投资方案的经济性,更加准确和合理地进行投资,确保工程与限额设计达到相符,实现投资的优化设计。

1.5.2建立健全设计单位的经济责任制,设计部门要与实行“节奖超罚”建设单位签订设计承包合同,分别明确双方的权利及义务,在设计过程中出现的工程浪费以及由于工期延误而超出投资限额的损失,要按照合同对设计人员责任进行相应的追究,进行赔偿。设计阶段控制造价还充分体现了事前控制的思想。设计阶段是项目即将实施而未实施的阶段,为了避免施工阶段不必要的修改,应把设计做细、做深入。

电路设计论文篇4

(2)对应设置传输线,传输线的设计应该设置成为具有高度对应项,使电厂按照详细规划和变电站的设计相一致的特定方案,限制区域要使用相同的塔架设回直立设施。

(3)要选择合适的导线长度。两个分站之间的线路长度是尽可能短,以避免电力功率的损耗。并且选择材料上要注意材料本身的电阻值、密度、延展性等问题,避免由于导线材料选择不当造成导线自重过大造成危险,也应该避免相应电阻值过大的导线材料造成导线发热出现火灾。

(4)根据高差和间距设置,以避免电线塔间距输电线路选线过大,由于地面沉降,如过度的风偏的现象最终造成导线垂低等不良后果。

2输电线路工程设计与施工的管理和控制要点

根据所处环境的不同,输电线路的施工非常容易受到各种外界因素的影响和破坏,因而,发生事故的概率很大。另外,导线在外的特点要求导线与地面、建筑物等设施之间要有一定的安全距离,因此造成输电线路占地空间和线路廊道的增大,从而对土地的利用情况产生影响。下面,本文从几个方面介绍输电线路工程设计与施工过程中的管理和控制要点:

2.1输电线路导线的选择

传输线导体的主要作用是传导电流,传送功率,这是该部分的主要部分。电源线被设置在所述塔,不仅需要承受导线本身的重量,而且还由雪,雨,阳光和温度的影响,并因此,电线线路的选择设置应该选用机械强度高电气性能更好。许多类型的传输线导体,该ACSR最广泛的应用,主要是由于该ACSR通常是由多股铝导线绞合的形成引起的,是最好的导体的电流传输,钢丝的内部绳股,使强度提高该行也起到了非常重要的作用。在电力输送网格系统中,电压电平越高,传输容量,也能对外部环境的影响更加敏感。为了提高电力传输的质量和降低高频通讯以及所选择的电晕丝的干扰是非常重要的。在正常情况下,使用为确保引线组成的两个或更多个高压输电线路,并根据传输容量、电流强度、供电密度、发热的情况下、损失的最大金额去共同决定导线的横截面的选择电力和其他条件。有关符合导线质量扭曲的机械张力,以满足密封性要求和均匀性的金属丝的表面内的规定的购买请求应光滑,腐蚀斑点的条件和包含物不可以存在。

2.2输电线路路径的设计

1)图上选线

图上选线主要是指通过收集到的输电线路周围区域的航测图、地形图等信息,根据以往的经验,标识出其中的起点、终点和其他必经的地点等位置,然后参考水文地质、民航、交通气象等相关资料,使线路路径的选择尽可能的避开较大的设施和其他影响区域,另外,考虑到不同地区的交通条件,要根据路径最短的原则,规划多个可实施方案,然后将这些方案进行经济和技术上的对比,进而选择一个最优的线路路径方案。

2)现场选线

这一步骤的任务是将图纸路线落实到实际现场中,并进行实地踏勘。该阶段要求工作人员具有较强的毅力和耐性,因为一个线路可能需要进行多次的走访和勘察才能最终确定。输电线路的选择要尽可能的避开地质不良区域、果木林园、森林等地带,同时还要检查已经存在的线路的覆冰情况,避免线路经过严重覆冰的区域。最后,要对交通运输的便利性进行充分考虑,以方便线路工程的施工和维护。

2.3输电线路杆塔的设计施工

传输线塔是用来支持导线的设备,使之能不管在什么样的天气条件下,都能够满足的安全要求并确保电磁场的电绝缘性。传输线塔支撑结构,因此,塔架构造周期,运输时间和成本,以及建设成本等占有相当大的部分。因此,要加强选择和塔的施工队伍设计的重点。着重注意设计的塔结构,成本,尺寸,等等。根据情况的内容。线路初步设计时,应严格按照该设计过程中的成本估算的有关规定,利用塔模型尽可能之前已经实施的,如果你需要使用新塔将不得不反复研究,计算和科学实验,从而避免不必要的损失。

2.4输电线路的其他内容

首先,在输电线路工程设计过程中,我们应遵循实事求是的原则。例如,输电线的选择方面,线应及时更新有关的技术;在施工设备上线的选择,尽量使用节能,高科技材料的;在设计方面行路,他们必须利用已经成熟的手段。要加强重点输电线路路径优化程度,不断学习新的技能,并使用这些技能输电线路的设计和施工服务。其次,根据输电线路的建设,要运用经济和先进的开挖基坑与人工挖孔桩基础技术,可有效降低混凝土的用量,节约工程投资,减少开挖方量,减少水和土壤,破坏周围的塔的基底部的植被。此外,使用根据实际情况作适当的施工方法施工人员的要求,提高输电线路基础工程的质量。最后,整个设计和建造输电线路工程,加强对相关环节的管理。设计与施工输电线路工程的重要组成部分,施工人员加强管理,包括工作人员和工程材料的管理,防止废弃物胡乱丢弃现象的发生,而且还可以防止员工松弛状况出现。

电路设计论文篇5

1.2电路设计在图1中,输入信号通过2个3dBLange桥后,分别送入两个放大器;一般情况下,两路信号功率相差15dB以上,可保证A1工作在线性状态。设放大器的线性增益为G0,放大器1和2的输出分别为。为了准确地拟合主放大器的非线性特性,放大后的误差信号应与主功放的非线性分量相等,即非线性工作的放大器应与主放大器工作在相同的功率回退状态。功分器和耦合器1均采用相同的3dBLange桥实现(δ1=δ2=0.707),整个预失真电路的增益应为0,可以满足上述要求。结合(7)、(9)、(10)三式,可以确定耦合器的耦合度和各个衰减器的大小。通过调节延时线的长度和微调衰减器的大小,得到对主放大器线性度较好的改善效果。采用ADS进行仿真,G0=25.5dB,衰减器1的衰减量为22dB,衰减器2的衰减量为5.4dB,定向耦合器的耦合度为-16.7dB。耦合器2也选择Lange桥,不仅简化了电路的设计,同时也节约了版图面积。

2测试结果

本设计采用0.15μmGaAs工艺实现,芯片面积为1.9mm×3.0mm,芯片结构如图3所示。该预失真单片的中心频率为21GHz,采用5V电压供电,直流功耗0.8W。采用矢量网络分析仪测试该预失真电路的增益和相位特性,设置中心频率为21GHz,输入功率扫描范围为-20~14dBm。测试结果如图4所示。该预失真电路可以提供3dB的增益扩张,以及20°以上的相位压缩。验证了该芯片可以产生预失真信号后,将其与功率放大器级联,测试其对功率放大器线性度的改善情况。测试结果表明,加入预失真电路后,功率放大器的P-1从22.2dBm提升至22.8dBm,相位误差从P-1处20°以上减小至3°以内,如图5所示。虽然增益波动最大为-0.4dB,但是该预失真电路修正了绝大部分的相位误差,同时一定程度上提高1 dB压缩点。为了验证该预失真电路的线性化效果,进一步测试采用中心频率为21GHz、间隔为10MHz的双音信号作为输入信号,比较相同的输出功率下,加入预失真芯片前后三阶交调指标改善情况,如图6所示。测试结果表明,该预失真芯片对功率放大器三阶交调最高可有27dBc的改善,在功率回退3dB时,可有5dBc的改善。在对功率放大器三阶交调为-30dBc的抑制条件下,驱动放大器输出功率从13dBm提高至17.5dBm。但是,五阶分量在回退过程中会有一定程度的恶化,如图7所示。由于流片过程中采用的电容比设计电容小20%,预失真电路中功放的特性出现了一定的偏差,导致了幅度修正不平坦、三阶分量在回退至小功率时改善效果不明显,也是五阶分量恶化的主要原因。对五阶分量改善不好的另一原因是要对高阶分量有很好的抑制,需要精确地产生预失真信号,而产生该信号非常困难,通常的做法是预失真系统中包含某种反馈以实现自适应,而这会使电路的复杂程度增大。为了验证该预失真电路的通用性,将该芯片与一高功率放大器(HPA)级联,进行了双音信号测试,结果如图8所示。在功率回退的整个过程中,IM3均有不同程度的改善,在输出29dBm时可改善15dBc以上,同时五阶分量并不会恶化。在-30dBc的抑制条件下,HPA输出功率可从28dBm提高至33dBm。

电路设计论文篇6

1.1MEMS像元和积分电路(CTIA)本论文中采用的氧化钒(VOx薄膜)制成的微机械系统(MEMS),其电特性如下。由表1可知,MEMS的电特性主要是温度的变化引起电阻值的变化,从而导致电流值发生变化,最后引起信号电压的变化。当外界温度发生改变时,MEMS像元中的有效像元的电阻值发生变化,导致其支路电流发生微弱的变化,其微弱的电流值(nA级别)由M4开关管流出。这一微弱的电流值通过积分电路转换为一个电压值。如图1所示,该积分电路为一种传统的CTIA型读出电路结构。在偏压VSK、VGSK、VGFID、VDET(VSS)和数字信号row_sel、integrate_en、rst_en的作用下(其中row_sel为行选通信号,integrate_en为积分使能信号,rst_en为复位信号),有效像元Rab上产生的支路电流与盲像元Rbb上产生的支路电流之差得到的电流信号输入到积分器上进行积分。微弱的电流信号就转化成电压信号。其中M1可调节有效像元支路电流值,M2为行选择开关,M3可调节盲像元支路电流值,M4是积分使能开关,Rt-rim用于调节盲像元支路上的电阻,rst_en为数字信号控制的复位开关。

1.2等效像元电路等效像元电路的作用就是在晶元测试时替代MEMS像元产生一微弱的电流值,给积分电路一个测试信号。如图1所示,用于替代盲像元功能的等效像元为“等效盲像元”,其结构包括由外部Pad直接控制的MOS管Mbeqv(MOSBlindEquivalent)和行选择开关M2,pad提供的偏置电压为VBEQV,row_sel_test1(数字信号提供)控制开关M2的选通;用于替代有效像元功能的等效像元为“等效有效像元”,其结构包括由外部Pad直接控制的MOS管Maeqv(MOSActiveEquivalent)和行选择开关M2,pad提供的偏置电压为VAEQV,row_sel_test2(数字信号提供)控制开关M2的选通。在等效像元工作过程中,row_sel_test1和row_sel_test2同时开启,其时序和ROW_SEL一样,VSK给等效盲像元提供偏置电压。工作在饱和区的MOS管Mbeqv和MOS管Maeqv其D与S之间的电阻值与W/L,VGS、VTH的关系如。

2仿真结果分析

在盲像元电阻不变,VSK、VGSK、VGFID等偏压值确定的情况下,积分电流随有效像元电阻的变化如图3所示。图3中的横坐标为有效像元的电阻值,纵坐标为积分电流值。由图3可知积分电流的值随有效像元阻值的减小而增大,其阻值(150~160kΩ)与积分电流(0~200nA)呈线性变化,变化率约为51.86nA/kΩ。由MEMS电特性和表1可知,R=160kΩ,当温度从-20℃变化到80℃,其对应的电阻值降低了544Ω和2530Ω,对应的积分电流(信号电流)为47nA和217nA。说明温差越大,电阻值变化也越大,对应的积分电流的值也越大。而图3的仿真结果也说明了Rab与Rbb之间的值相差越大,对应的积分电流的值也越大。所以可以通过调节图3中的Rab的电阻,来对应MEMS电阻的变化。在等效像元电路结构中,当偏置电压VSK、VG-FID的值确定,积分电流随VAEQV、VBEQV的变化如图4、5所示。图4、5中的横坐标为等效像元栅压VAEQV、VBEQV的值,纵坐标为积分电流的值。由图4、5可知积分电流的值随等效像元栅压VAEQV、VBEQV的增大而增大,VAEQV平均每调节9mV变化10nA的电流,变化率约为10nA/9mV,其偏压值与积分电流(0~200nA)也是呈线性变化。所示可以通过调节图4和图5中的VAEQV、VBEQV的值,模拟外界温度的变化。仿真结果表明等效像元的电特性正好与MEMS像元的电特性一致,所以可用等效像元电路替代MEMS物理结构。

3测试结果分析

基于GlobalFoundry0.35μm工艺,对阵列大小为300×400的红外面阵探测器读出电路进行流片,图6为ROIC阵列整体芯片照片,芯片面积为14mm×16mm。芯片中间的重复单元电路部分是单元电路,单元尺寸为25μm×25μm,重复单元的是数字电路部分,即时序控制部分,最是焊盘。图7为图6局部放大的照片即等效像元(等效盲像元和等效有效像元)的芯片照片,图8为测试芯片的PCB板。因为积分电流为nA级别的电流,很难用仪器测量出来,但可以通过电容反馈互导放大器将电流转换为电压信号测量出来。对VBEQV=2.4V,VSK=5.3V,VGFID=3.933V,Vbus=2.65V等偏置电压进行设定后,通过调节等效有效像元栅压VAE-QV的值,产生0~200nA之间的积分电流,其对应的积分电压值为2.65~3.38V,积分电压与VAEQV值的测试结果如表2所示。图9为积分电流Id=50nA对应的积分电压值2.82V,满足公式(2)。此测试结果表明:在ROIC表面尚未构成MEMS物理结构前,可以通过等效像元电路初步探测ROIC的电性能,筛除不良品。在CP之后和MEMS结构完成之后,等效像元不再启用,等效像元行选择信号始终关闭。

电路设计论文篇7

2振动能量收集电源设计

收集到的电能转换为直流后,还需要经过稳压电路才能供负载使用。传统的方法中,整流电路和稳压电路采用整流二极管、存储电容、保护二极管和三端稳压器等分立器件组合而成,电路调试难度大,转换效率低下。凌力尔特公司最近生产出一款专用于振动能量收集的电源芯片LTC3588-2,内部集成了整流桥、稳压及控制电路,由它构成的电源电路非常简单,如图3所示。其中,PZ1和PZ2引脚连接振动能量收集器,D0和D1引脚用于选择输出电压值(3.45V、4.1V、4.5V、5.0V可选),此电路选择为5.0V输出,Pgood引脚作为稳压电源“准备好”的提示信号。

电路使用的元器件中,比较关键的是输入端存储电容Cs的选择。在振动能量收集电路中,存储电容最重要的特点是低泄漏电流,而等效串联电阻值并不重要,考虑泄漏电流、充电能力和电气参数稳定性等指标对电路的影响,TRJ系列钽电容是振动能量收集的最佳选择,所以Cs选择容量为22μF、耐压25V的TRJ钽电容。

3测试与结论

使用振动台作为振动源模拟环境振动,选用振动频率40Hz、振动幅度1.0g的MIDE公司的V25W振动能量收集器以悬梁臂的结构固定在振动台上,并在其末端粘贴约16g的重物,用于将收集器自身频率调节到40Hz,以匹配振动源频率。

电路设计论文篇8

2电荷放大器电路的设计

图3为本文设计实际电荷放大器仿真电路图。图中,电荷放大器内部只能做到非完全补偿,势必会产生自激振荡,在运算放大器中接入由电容C1组成的补偿电路,可以消除自激振荡。新型电荷放大器电路可以看作是一个电容负反馈增益积分放大器,所以电荷放大器反馈电容C9的选择必须与积分网络的反馈电容基本要相同[6]新型电荷放大器输出灵敏度是通过调节电荷放大器的反馈电容C9来实现的。要求反馈电容C9的值不能取太小,否则分布电容会产生很大的影响;但是反馈电容C9的值也不能取太大,否则漏电太大。电荷放大器是采用了电容负反馈,所以电荷放大器对直流工作点相当于开环,导致零点漂移较大;为了减少零漂,使电荷放大器工作稳定,一般在反馈电容两端并联一个积分漂移泄漏电阻R5(1012以上)做反馈,提供直流反馈,以保持电荷放大器电路正常工作[7]。

3仿真与分析

本文采用Multisim12仿真软件对电荷放大器电路进行仿真测试。仿真电路主要有两个目的:第一,要注意电荷放大器在不同信号强度下延时变化情况。第二,同时要求检测信号通过电荷放大器放大的效果。因为时间测量的精度决定了超声波气体流量计传播时间的测量精度,所以要求在不同的电流强度下,看信号相位差变化大小。相位差测量方法一般有阈值法、峰峰值测量法和过零检测法。阈值法是先假定一个值,当信号都经过这个值时作为测量的依据,但是在不同信号强度下的电流,电压值在不停的变化,我们根本无法用阈值法来测量小信号相位差。峰峰值测量法是测量两个波形的最大正值或是最大负值。然而对于小信号用峰峰值进行测量时,噪声会对峰峰值检测会产生很大的影响,这个测量方法虽然简单,但是准确度不是很高。过零检测法是一种经典的调制域分析方法,通过测量两个同频率信号过零的时间差,从而确定电荷放大器的时间延时,如图4所示。此方法简单可靠,实用性强,能够实现高精度测量。本文采取以第二波过零为基准来测量时间延时的大小。用Multisim12仿真电荷放大器在不同的信号强度下测得时间延时的大小,如表2所示。根据表1的数据,用MATLAB编写信号强度与时间延时曲线图如图5所示。如图5所示,电荷放大器的延时时间会随着信号强度呈指数规律衰减,因此电荷放大器引起延时变化很大,故对实验测量的结果造成严重的影响。为了克服这一缺陷,需要设计一种增益补偿电路来提高测量超声波气体流量计传播时间的精度。我们设计的时间增益补偿电路如图6所示。主要是利用通滑动变阻器和电荷放大器来实现增益补偿。压电传感器发射超声波信号具有连续性,根据每次接收到超声波信号的强弱来调整滑动变阻器的阻值,使电荷放大器的延时保持在一个固定值。这样可以保证每次检测信号通过电荷放大器的延时都是一样,提高测量的精度。所以只要选择合理的芯片和反馈电阻的大小,使前面的曲线下降和后面的曲线上升,就可以实现增益补偿的目的,这样就可以很好的补偿电荷放大器造成的时间延时[8]。在图6中,在不同信号强度下电流的大小,通过调节可变电容与可变电阻使得电荷放大器延时保证一致。如表3所示。根据表2的数据,通过MATLAB编写补偿后时间延时曲线图如图7所示。由图7可知,信号通过增益补偿后不论通过电荷放大器信号强弱,时间延时都是相等。这样使得测量时间更加精确。信号在200kHz,1μA条件下,通过电荷放大器和滤波器电路以后的波形如图8所示。由图8我们可以看到信号经过电荷放大器放大的波形的效果很好,原始信号的电压值大约在300多μV,而放大后的信号大概在20mV左右。

4实际应用效果

由于仿真为实际应用提供了可靠的理论基础,电荷放大器在实际应用效果很好,图9就是信号放大后通过示波器得到的实际波形,由图9可知杂波干扰基本是在200mV以内,信噪比很高。

电路设计论文篇9

2信息化条件

2.1互联网

随着信息技术的飞速发展,互联网在现代生活中越来越普及。互联网具有信息资源海量、不受时间和空间限制的特点,因此它为自主学习提供了便捷条件。利用互联网强大的搜索引擎功能,搜索学习内容、疑难问题、模拟考题等。计算机网络平台提供了一个友好的交互界面,图文并茂,静动结合,生动有趣。由于院校的特殊性,我院学员除了可以在特定地点及方便时间上互联网外,还可以查阅军网内部丰富资源。互联网改变了传统的学习方式,提高了学习兴趣,提高了学员发现问题、解决问题的能力,使学习成为一种主动、积极的过程,自主学习意识进一步加强,学员真正成为学习的主人。

2.2电子图书馆

电子图书馆以互联网为平台,主要由实地图书馆和虚拟图书馆两部分构成。实地图书馆是与传统图书馆具有一样的馆藏图书功能,资源归本单位共享;虚拟图书馆是指本馆没有收藏但是从网络系统、数据库中可以获得信息的图书馆,例如维普、万方、CNKI等电子期刊,超星、国图、阿帕比、中国军事等数字图书以及硕博论文、外文数据库等等。学习者在相应数据库进行文献搜索、下载需要的论文、书籍完成知识的自主学习与深化,多角度、多维度的学习理论,广范围、广视角的了解应用。我院电子图书馆馆藏丰富,既有实地图书馆又有虚拟数据库,为学员学习提供了资源保障。

2.3软件工具

软件工具是指能够辅助学习的工具软件,例如绘图工具AutoCAD,ProE,3DMAX等,仿真工具simulink,EWB,Multisim,ansys等,不同领域选择不同的软件工具。以数字电子技术中常用的Multisim和EWB为例(如图1和2所示),它具有丰富的元器件库和仪表库,当学完电路理论之后,学员大部分直观认识不深入,对电路是否能够实现所讲述的功能持怀疑态度,仿真软件恰好解决了这个问题。利用仿真软件构建虚拟的电路,通过仪表及指示装置,直观形象地看到电路现象,加深对理论的理解。同时,在实际搭建电路时,为了避免资源浪费及烦琐的调试,可利用仿真软件先验证设计电路的正确性,之后再去实际搭建。目前学员具有电脑使用条件,只需安装软件即可使用,软件工具的出现为自学提供了又一个有力的条件。

2.4自主学习平台

自主学习平台可以是远程教育学习平台,也可以是根据不同科目搭建的学习平台。其作用是学员在教员的辅导和帮助下,自主使用网络学习平台,有针对性地选择各种学习资源,调整学习时间,控制学习过程,以达到学习目标。自主学习平台具有辅、开放性、自主性、重复性、交互性的特点[3]。为方便学员数字电子技术课程学习,教研室设计了数字电子技术网络课程(如图3所示)。主要包含教案、视频、教案、习题、作业、答疑、测验以及参考资料等内容。

3以组合电路设计为例,借助信息化条件培养学员自主学习能力

3.1组织流程

组合电路设计内容丰富,方法多样。课本中讲述多以分立元件设计为例讲述,为拓展学员思路,本课程安排时笔者并未加以限定,只布置了任务,学员自行完成。教员布置任务,学员以小组形式开展学习。各小组实行组长负责制,针对任务组织学员讨论、确定方案,针对不同的方案安排组员提前查阅互联网、电子图书馆、网络课程等资料;课上分工协作,不同学员按照不同方案设计实现;学员自学仿真软件Multisim或者EWB,并借助软件仿真验证设计的正确性;设计报告由专人撰写,汇总各种方案及方法并进行描述;由于时间限制,并非所有奇思妙想都能一一设计实现,因此附加了拓展环节,集思广益,学员只需描述出新思路新创意即可;最后为检验学习效果,加入答辩环节,从小组中任意抽取一名组员,回答其他学员和教员提出的问题。

3.1.1设计任务

1个主评委和3个副评委共4人鉴定某项目,当主评委不赞同,但3个副评委全部赞同项目时,裁定项目通过鉴定;当主评委赞同并且3个副评委中多数赞同项目时,也裁定项目通过鉴定。试设计满足要求的逻辑电路。你还能想到哪些器件设计方法?

3.1.2小组分配

本教学班次共计43人,4~5人为一小组。组长负责分工,一般2人设计方案,1人学习仿真软件,1人撰写设计报告,最终集思广益,拓展创新方法。

3.1.3丰富的设计方案,多样化的仿真实现

借助分立元件实现电路设计组合电路是课本中主要讲述的方法,其他方法课本中并没有专门提及。另外,仿真软件使用方法,如何仿真电路都需要学员自行摸索。但从效果分析,学员都能够通过自学或者小组互助学习方式解决上述问题。现列举几种学员的设计方案及仿真电路。

3.1.4答辩环节

为保障学习效果,笔者设计了答辩形式的督促机制。要求在设计完成后,小组内每位成员都要掌握本组设计的电路方案,随机抽取某位学员上台讲解,一旦答辩不顺利,将会影响本组学员的整体成绩。在这种指导思想下,每位学员都参与其中,组内互助,使得方案形成时,每位学员也都掌握了知识。本次课程笔者提问了第一组的一位学员,答辩过程中每当出现思路断档,整组学员的精神都跟着紧张起来,但经过思考他顺利完成此环节,并且将创新性的设计思路也一同与大家分享。从答辩过程可以看出,第一组学员的团结与协作,看到了传统课堂上无法发现的闪光点。

3.1.5设计报告

第一项设计任务,第二项设计方案,第三项拓展及心得体会。前两项旨在对整个知识的梳理,第三项作用有两点,一是学员方面,总结收获及不足,创新新思路,例如第九组写到“电路设计注意布局,图纸与虚拟实验有着本质差距”,第一组写到“一个好的团队不光有一个好的带头人,还要有一群踏实肯干认真听话、积极进言的成员”。二是教员方面,便于发现学员学习中存在的问题,调查学员对教学实施的满意度,为后续教学提供宝贵经验。例如第五组写到”开关的选择开始由单刀开关接入不工作,后经小组讨论和教员指导换为单刀双掷开关完成电路仿真”。第二组写到“课程使我们认识到数电并非纯粹的理论学习,而是课堂发挥、试验动手等综合能力的培养”“增强了我们的发散性思维,是一种能力的提升”。

4效果分析

按照传统讲授组合逻辑电路设计方法,一般学员比较容易想到教员或者课本上讲述的方法,思路禁锢到此无法跳出。时序电路设计与组合电路设计课程形成了鲜明的对比,时序电路设计任务是课后习题,教员只讲授了一种设计方法,因此学员在设计过程中多数应用了这种方法,很难扩展思路,开拓创新。而此次组合电路设计是学员没有见过的任务,教员对其没有过多的限制,因此设计方案多种多样,学员自学的潜力此刻淋漓尽致地表现出来。在网络、仿真软件等信息化条件下,学员顺利完成了本讲内容的学习。学员不仅掌握了组合逻辑电路设计的多种方法和仿真软件的使用方法,还提升了自身的综合能力。从期末考试成绩上分析,平均分79.44,其中良好及以上24人。通过设计报告的心得体会及期末成绩分析采取自主学习模式学员多数比较赞同,收获颇丰。上述事实证明只要给予适合的条件,学员有能力并且能够出色完成自主学习,同时锻炼了学员的提出问题、分析问题、解决问题、语言表达等多种能力,强化了团队协作意识,激发了创新思维。

电路设计论文篇10

1.1线路设计法走向

为了优化设计35kV输电线路走向,在开展设计工作的过程中应注意以下问题。A:尽量避免将线路走向设计为之字形或大转角的路径形式,尽可能缩短线路距离,并尽量使线路走向与公路路线走向相吻合,以便能够利用交通优势。在设计时要避免输电线路跨越河流或通信线路,如通信线路与输电线路距离较小,则应控制好交叉角度:如通信线路为I级,则交叉角度应≥45°,如通信线路为II级,则应≥30°。如在35kV输电线路中设计有防雷保护措施,则通信线路与输电线路之间的距离应≥3m,在没有设计防雷保护措施的情况下,两种线路之间的距离应≥5m。B:在设计线路走向时还应注意避免穿越以下区域,即迷信或风水地带(庙宇、龙脉等)、高危险及高污染区域、自然灾害多发区、建筑物、风景区、开发区及林区等,同时还应避开铁路电线。C:在设计线路走向时应做好相应的测量工作,标记线路测量点时应采用木桩,同时利用红油漆将转角桩、桩号高程标示出来。桩位与公路的距离应>15m,与通信线的距离应>20m,与建筑物的距离应>10m,同时避免在风景区、开发区及林区等高赔偿区域设置桩位。

1.2杆型选择与杆塔设计

在杆型选择与杆塔设计方面,可以采用以下优化措施:A:在选择输电线路中的杆型时,应根据施工图纸要求、交桩及定桩等情况,尽量选择成熟杆型,如需要使用新式杆型,则应进行科学试验及论证。在35kV输电线路中使用的直线杆通常为15m,在特殊的情况下可采用18m的直线杆,输电线路中的铁塔高度通常设计为9m、15m或18m。B:目前输电线路中常见的杆型包括双杆及单杆,在选择杆型时主要依据导线情况;设计线杆高度时可借鉴35kV输电线路运行经验。对于加拉线直线杆的设计,应在了解地质条件后合理选择浅埋式或深埋式,以保证线杆的稳定性。确定直线杆尺寸与杆型后,便可以依据直线杆设计方案设计终端杆及转角杆,如输电线路中存在立杆困难的地段或特殊跨越地段,则在该地段设计铁塔,完成以上设计工作后,便可以计算档距。C:在设计杆塔时应控制好数量,以降低土地的占有率及建设支出,在控制杆塔数量的同时要采取有效的措施提高杆塔所具有的柔度、强度,以保证35kV输电线路运行的安全性及可靠性。

1.3排杆及基础设计

选择好输电线路中的杆型后,应在综合考虑经济因素及技术因素的基础上优化排杆设计。第一,优先排定转角杆型,并同时使转角耐张段的长度<2000m,如耐张段的长度>2000m,则将部分直线型耐张杆排定到转角耐张段当中。如直线杆段线路中存在吊档现象,则可将耐张杆布设到吊档地段中。第二,如发现在测量阶段设定的直线桩位不能有效满足设计及施工需要,则可以在不改变原线路走向的前提下适当迁移部分直线杆,注意尽量保留转角桩。第三,尽量避免将转角杆安排在大档距位置,如需要在耕地中排直线杆,则避免使用拉线。如条件允许,则尽量减少线路中的耐张杆、三连杆或双杆,多排直线杆或单杆,以节省开支。对于一档跨过地段,可适当放大塔杆的档距,无须将线杆布设在跨中位置。如35kV输电线路需要跨越同等级输电线路或低电压输电线路,则应将线杆布设为水平排列形式。在设计35kV输电线路的基础时应综合考虑多种条件,如基础受力情况、水文情况及地质地形情况等,对于线杆,可以选择倾覆类、下压类及上拔类基础;对于铁塔,则可以选择混凝土灌注桩或装配预制基础。

2设计35kV输电线路时应注意的问题

为了提高35kV输电线路的运行质量,在开展设计工作的过程中还应注意处理好以下问题。第一,确保架空线路中的终端引线与变电站中35kV进出线实现相互配合,以便为架设进出线的施工工作提供有利条件;确保架空线路的防雷保护措施、保护范围能够与所在区域电气防雷保护措施、范围实现有效衔接。线路设计人员应亲自参与放线测量工作,以便能够了解工程实际情况,并在进行线路设计法的过程中做到实践与理论有效结合,从而保证杆型设计及杆位选择的合理性。第二,如需要设计T接输电线路,则应将T接点线杆布设方法明确标示出来,同时注明杆型。应在设计方案中清楚说明线路的具体路径,并保证设计方案的严谨性、简明性及准确性。此外,在设计线路前应做好相应的勘察工作,设计工作完成后才能开始施工。

电路设计论文篇11

二、SVG各硬件电路组成

(一)整流电路。整流电路采用三相不可控整流桥,输出的三相直流电通过电容稳压、滤波获得稳定的直流电压。根据以往的经验,直流侧电容取用4个2200μF/450V的电解电容,两并两串接进电路。电路组成如图2所示。为了避免大电流烧坏整流装置,电容需要通过一个充电电阻对不可控整流桥的输出端进行充电,直到充满在直接接到不可控整流桥的输出端。另外,为避免故障发生,在不使用整流电路时要对滤波电容进行放电。根据计算的电压、电流,选用二极管整流模块6RI30G-160G-120即(30A,1200V)。

(二)IPM及其驱动电路。通过计算智能功率模块(IPM)参数,选用型号为PM25CLA120的IPM(25A,1200V),内部有IGBT,内含驱动电路。通过资料得知IPM驱动电路的控制电源电压范围为13.5V~16.5V,本文选用4路隔离的l5V直流电源。利用DSP发出PWM信号经光耦器件隔离后作为驱动信号对IPM进行控制。

(三)电流调理电路。该电路可将18A的电网电流相量转换成0~3Vpp的电压信号并实现过零点检测功能。该电路与电压调理电路的组成基本一致,不同之处在于互感器TVA1421-01用作电流互感器,采样电阻取59Ω。若一次侧电流为18A,二次侧输出(-0.5~+0.5)V的正弦波;经放大电路,输出电压(-1.5~+1.5)V的正弦波;最后经过加法电路输出(0V~3.00V)的电压信号。同时大于50Hz的正弦信号被滤除。过零比较电路在正弦波的过零时刻输出下降沿跳变。

(四)锁相环电路。本文采用了由TI公司生产的CD7H4C4046型锁相环芯片对电网频率进行跟踪,避免了利用固定频率采样时产生的误差。本系统中,锁相环的输出信号有两大作用:一是作为ADC模块的转换触发信号;二是作为事件管理器A(EVA)的时钟输入信号。通过锁相环电路使其产生跟随电网频率变化的SP-WM波,从而精确控制后级逆变器。

电路设计论文篇12

CAN通讯协议描述了在设备之间信息如何传递。它对层的定义与开放系统互连模型(OSI)一致。每一层与另一设备上相同的那一层通讯。实际的通讯是发生在每一设备上相邻的两层,而设备只通过模型物理层的物理介质互连。CAN的结构定义了模型的最下面的两层:数据链路层和物理层。应用层通过不同的新型协议层(专门用于特殊的工业领域加上由个别CAN用户定义的任何合适的方案)和物理层连接。物理层和数据链路层对于设计者来说是透明的,并包含在所有执行CAN协议的部件中。

实际中,许多设备是RS-232接口,为了实现CAN总线数据和RS-232接口设备数据的传输,设计完成了CAN总线与RS-232转换接口电路设计。

1.CAN总线协议分析

1.1CAN总线主要特点

CAN总线是一种多主式的串行通信总线,具有极高的实时性和可靠行,最高通信速率可以达到1Mbit/s,是一种十分优秀的现场工业总线。CAN总线具有如下特点:

结构简单,只有2根线与外部相连,且内部集成错误探测和管理模块。

通信方式灵活。可以多主方式工作,网络上的其他节点发送信息,而不分主从。

可以点对点、点对多点或者全局广播方式发送和接收数据。

网络上的节点信息可分成不同的优先级,以满足不同的实时要求。

CAN总线通信格式采用短帧格式,每帧字节最多为8个,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。同时,8字节也不会占用总线时间过长,从而保证了通信的实时性。

采用非破坏性总线仲裁技术。当两个节点同时向总线上发送数据时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续传送数据。这大大的节省了总线仲裁冲突的时间,杂网络负载很重的情况下也不会出现网络瘫痪。

直接通信距离最大可达10Km(速率5Kbit/s以下),最高通信速率可达1Mbit/s(此时距离最长为40Km),节点数可达110个,通信介质可以是双绞线、同轴电缆或光导纤维。

CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检测、优先级判别等多项工作。

CAN总线采用CRC进行数据检测并可提供相应的错误处理功能,保证了数据通信的可靠性。

1.2CAN总线协议

CAN总线协议主要描述设备之间的信息传递方式,从结构上可分成3个层次,分别对应OSI网络模型的最低两层数据链路层和物理层。CAN总线协议层次结构由高到低如表1-1所示。

表1-1CAN总线协议层次结构

协议层

对应OSI模型

说明

LLC

数据链路层

逻辑链路控制子层,用于为链路中的数据传输提供上层控制手段

MAC

媒体访问控制子层,用于控制帧结构、仲裁、错误界定等数据传输的具体实现

物理层

物理层

物理层的作用是在不同节点之间根据所有的电气属性进行位的实际传输

LLC层和MAC层也可以看作是CAN总线数据链路层的两个子层。其中LLC层接收MAC层传递的报文,主要完成报文滤波、过载通知以及恢复管理等工作。而MAC层则为数据报文的传输进行具体的控制,包括帧结构控制、总线仲裁、错误检测、出错界定、报文收发控制等工作。

物理层定义了信号是如何实际传输的,因此涉及到位时间、位编码、同步的解释,CAN总线协议并未对物理层部分进行具体的规定。

1.3CAN总线报文传输结构

报文传输由以下4个不同的帧类型所表示

1.数据帧:数据帧携带数据从发送器至接收器。

数据帧由7个不同的位场组成:帧起始、仲裁场、控制场、数据场、CRC场、应答场、帧结尾。数据场的长度可以为0。数据帧(或远程帧)通过帧间空间与前述的各帧分开。

2.远程帧:总线单元发出远程帧,请求发送具有同一识别符的数据帧。

远程帧由6个不同的位场组成:帧起始、仲裁场、控制场、CRC场、应答场、帧末尾。通过发送远程帧,作为某数据接收器的站通过其资源节点对不同的数据传送进行初始化设置。

3.错误帧:任何单元检测到总线错误就发出错误帧。

错误帧由两个不同的场组成。第一个场用作为不同站提供的错误标志(ERRORFLAG)的叠加。第二个场是错误界定符。

为了能正确地终止错误帧,"错误被动"的节点要求总线至少有长度为3个位时间的总线空闲(如果"错误被动"的接收器有本地错误的话)。因此,总线的载荷不应为100%。有两种形式的错误标志,主动错误标志(Activeerrorflag)和被动错误标志(Passiveerrorflag)。

4.过载帧:过载帧用以在先行的和后续的数据帧(或远程帧)之间提供一附加的延时。

过载帧包括两个位场:过载标志和过载界定符。

有两种过载条件都会导致过载标志的传送:

(1)接收器的内部条件(此接收器对于下一数据帧或远程帧需要有一延时)。

(2)间歇场期间检测到一"显性"位。

由过载条件1而引发的过载帧只允许起始于所期望的间歇场的第一个位时间开始。而由过载条件2引发的过载帧应起始于所检测到"显性"位之后的位。

1.4CAN总线错误处理

1.4.1错误检测

有以下5种不同的错误类型(这5种错误不会相互排斥)

1.位错误(BitError)

单元在发送位的同时也对总线进行监视。如果所发送的位值与所监视的位值不相合,则在此位时间里检测到一个位错误。但是在仲裁场(ARBITRATIONFIELD)的填充位流期间或应答间隙(ACKSLOT)发送一"隐性"位的情况是例外的。此时,当监视到一"显性"位时,不会发出位错误。当发送器发送一个被动错误标志但检测到"显性"位时,也不视为位错误。

2.填充错误(StruffError)

如果在使用位填充法进行编码的信息中,出现了第6个连续相同的位电平时,将检测到一个填充错误。

3.CRC错误(CRCError)

CRC序列包括发送器的CRC计算结果。接收器计算CRC的方法与发送器相同。如果计算结果与接收到CRC序列的结果不相符,则检测到一个CRC错误。

4.形式错误(FormError)

当一个固定形式的位场含有1个或多个非法位,则检测到一个形式错误。(备注:接收器的帧末尾最后一位期间的显性位不被当作帧错误)

5.应答错误(AcknowledgmentError)

只要在应答间隙(ACKSLOT)期间所监视的位不为"显性",则发送器会检测到一个应答错误。

1.4.2错误标定

检测到错误条件的站通过发送错误标志指示错误。对于"错误主动"的节点,错误信息为"主动错误标志",对于"错误被动"的节点,错误信息为"被动错误标志"。站检测到无论是位错误、填充错误、形式错误,还是应答错误,这个站会在下一位时发出错误标志信息。只要检测到的错误的条件是CRC错误,错误标志的发送开始于ACK界定符之后的位(其他的错误条件除外)。

2.CAN控制器SJA1000分析

2.1CAN节点结构与SJA1000操作模式

SJA1000独立的CAN控制器有2个不同的操作模式:

BasicCAN模式(和PCA82C200兼容);

PeliCAN模式

BasicCAN模式是上电后默认的操作模式。因此用PCA82C200开发的已有硬件和软件可以直接在SJA1000上使用,而不用作任何修改。

PeliCAN模式是新的操作模式,它能够处理所有CAN2.0B规范的帧类型。而且它还提供一些增强功能,例如,SJA1000支持一些错误分析功能,支持系统诊断、系统维护和系统优化,而且这个模式里也加入了对一般CPU的支持和系统自身测试的功能。使SJA1000能应用于更宽的领域。

本设计采用PeliCAN模式,因此只给出PeliCAN模式增强功能。如表2-1所示。

表2-1PeliCAN模式的增强功能

CAN2.0B(active)

CAN2.0Bactive支持带有29位标识符的网络扩展应用

发送缓冲器

有11位或29位标识符的报文的单报文发送缓冲器

增强的验收滤波器

两个验收滤波器模式支持11位和29位标识符的滤波

可读的错误计数器

支持错误分析在原型阶段和在正常操作期间可用于:诊断、系统维护、系统优化

可编程的出错警告界限

错误代码捕捉寄存器

出错中断

仲裁丢失捕捉中断

支持系统优化包括报文延迟时间的分析

单次发送

使软件命令最小化和允许快速重载发送缓冲器

仅听模式

SJA1000能够作为一个认可的CAN监控器操作,可以分析CAN总线通信或进行自动位速率检测

自测试模式

支持全部CAN节点的功能自测试或在一个系统内的自接收

通常,每个CAN模块能够被分成不同的功能块,如图2-1所示。

CAN控制器执行在CAN规范里规定的完整CAN协议。它通常用于报文缓冲和验收滤波。

通用CAN收发器实现从CAN控制器到CAN总线物理层的电气连接。

而所有这些CAN功能都由一个模块控制器控制,它负责执行应用层的功能。

元器件清单

表3-3CAN总线与RS-2232接口电路设计元气件清单

序号

元件名称

数量(个)

单价(元)

总价(元)

1

AT89C51

1

7.50

7.50

2

SJA1000

1

25.00

25.00

3

HM6116

1

1.00

1.00

4

MAX232

1

5.00

5.00

5

74HC373

1

1.00

1.00

6

PCA82C250

1

6.50

6.50

7

X25045

1

1.00

1.00

8

TLP113

2

3.00

6.00

合计

53.00

结论

本设计完成了CAN总线与RS-232转换接口设计。由于CAN总线与RS-232接口数据通信速率以及通信帧格式都不同,本设计最大优点是解决了这两点不同,实现了数据在CAN总线与RS-232接口之间的传输。且设计中由于使用了CAN总线进行数据传输这就使得通信方式多主性。网络上任意节点可以任意时刻主动地向网络上其他节点发送信息而不分主从。可以点对点,点对多点或全局广播方式发送和接收数据。

由于CAN总线标准没有定义应用层,数据链路层提供与信息内容相应的寻址能力,消息的内容完全由应用解释。且CAN总线的每个数据帧最多只能承载8个字节的数据,因而只适应提供短的变量服务。许多功能还需要扩展。

综上所述,通过此次设计,我们感受到CAN总线带来的各种便利。而且,由于CAN总线具有结构简单、实时性极高、可靠性强且本身具有强大的纠错能力。使得它在当今自动控制领域中的应用极为广泛。由于CAN协议参考OSI开放系统互联模型,可由用户定义应用层协议,通过相关的CAN转接设备,将CAN与计算机相连,利用CAN232B转换器组建一个CAN控制网络,能够很方便的实现RS-232多点组网、远程通讯,并且,不需要更改原有RS-232通讯软件,用户可直接嵌入原有的应用领域,使系统设计达到更先进的水平。

摘要............................................................................................................Ι

ABSTRACT..................................................................................................................................ΙΙ

引言1

1.CAN总线协议分析2

1.1CAN总线主要特点2

1.2CAN总线协议2

1.3CAN总线报文传输结构3

1.4CAN总线错误处理3

1.4.1错误检测3

1.4.2错误标定4

2.CAN控制器SJA1000分析5

2.1CAN节点结构与SJA1000操作模式5

2.2SJA1000内部结构及其功能分析6

3.CAN总线与RS-232转换接口电路设计11

3.1CAN总线与RS-232转换接口电路总体设计11

3.2主控制模块电路设计12

3.2.1AT89C51与6116电路设计13

3.2.2看门狗电路设计14

3.3AT89C51与RS-232转换接口电路设计16

3.3.1RS-232-C标准分析16

3.3.2RS-232与AT89C51接口电路设计18

3.4SJA1000与AT89C51接口电路设计19

3.4.1SJA1000与AT89C51接口电路设计19

3.4.2物理层接口电路设计21

3.5元器件清单22

友情链接