时间:2023-08-02 09:28:06
引言:寻求写作上的突破?我们特意为您精选了4篇航空航天学科评估范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。
近年来,我国航空航天企业信息化建设取得显著成效,已经广泛应用在产品设计、制造、管理的各个环节,诸如CAD,CAPP,CAM,CAE,PDM,PLM和ERP等单项技术与系统的应用比较普及,产品研制周期明显缩短,设计制造质量显著提高。
1 航空航天行业的信息化建设内容与作用
航空航天行业方面信息化建设主要包括企业总体的信息管理、研制与制造的协同及产品研制能力的提升3部分。
1.1 企业总体的信息管理
企业资源计划(Enterprise Resource Planning,ERP)系统,是指建立在信息技术基础上,以系统化的管理思想为企业决策层及员工提供决策运行手段的管理平台。在航空航天企业中,由于需要涉及整体调动和资源整合很多,ERP作为对企业资源进行有效共享和利用的系统,可以使航空航天行业达到整体的资源规划统一。
1.2 研制与制造的协同
在航空航天行业,信息化主要为科研生产服务。该行业的重大工程是1个多学科综合、多专业集成、多个子系统集成和多单位跨地域协同的庞大系统工程;其复杂性、研制周期以及研制过程中各种因素的不确定性,需要采取信息化手段进行约束;其设计与制造中涉及大量的信息系统,并且需要在严格的流程管理控制下实现这些信息系统之间的交互和协作,以支持并行的协同设计和制造。设计研制过程中会涉及到成百上千个子系统、多种BOM表和多种变更管理。航空航天产品研制生产数据分散存放在各承担单位,大多数分系统和单机的研制生产数据没有实现集中存放和统一管理,上下游间难以保证数据的一致性和数据的有效重用。同时,近年来航天企业的研制与生产并重,设计与制造间的协同需求也很迫切。如此众多的系统、流程以及异构的数据协同实现集成需要1个统一的管理平台和集成环境。
航空航天行业又与其他行业不同,对质量管理、产品可靠性的要求非常严格,每个零部件要能追溯生产制造源头。
PDM主要针对的是产品数据管理。它以软件技术为基础,以产品为核心,实现对产品相关的数值处理过程、资源一体化的集成管理技术。PLM则指产品生命周期管理,作为全局信息的集成框架,可有效实现资源集成和协同研发生产及精益化管理。所谓集成框架,即在异构分布式计算机环境中能使企业内各类应用实现信息集成、功能集成和过程集成的软件系统。PDM和PLM可为航空航天产品的研制和制造创造协同工作环境。基于信息化协同工作环境,设计人员可以跨越空间的限制,利用计算机通信网络等技术实现资源共享,完成异地协同设计与协同制造。
重点需要实现下列两个方面的集成:(1)PDM,PLM与CAD/CAPP/CAM的集成;(2)PDM,PLM与ERP的集成。ERP与PDM,PLM的互通,可以最大限度地共享企业全部信息系统。将PDM和PLM技术引入航空航天企业的研制和生产过程中,对改进现有技术和管理流程有非常重大的意义,能在一定程度上解决航空航天企业在研制过程中信息与流程的集成与管理及协同。
1.3 实现航空航天产品的三维全数字化定义设计与制造集成,提升产品研制能力
CAD,CAPP,CAM及CAE主要针对航空航天产品的研发及制造过程的信息化,在产品设计和制造加工的集成上提升产品的研制能力。从技术角度看,航空航天产品的研制过程涵盖现代科技的诸多领域,如机械、材料、电子、力学、声学、热学和能源等;多学科多性能的要求致使各种CAE之间需要协同,而在CAE仿真后进行的优化也需要CAD与CAE之间实现协同。
在航空航天产品的研制技术方面(CAD和CAE),通过数字样机的建立,可以实现部件或整机的虚拟装配运动机构仿真、装配干涉检查、空间分析管路设计、气动分析和强度分析等。总体而言,在航空航天产品研制中全面采用信息化技术,可实现三维数字化定义、三维数字化预装配和并行工程,建立产品的数字样机,取消全尺寸实物样机,使工程设计水平和产品研制效率得到极大提高,大幅度降低干涉、配合安装等问题带来的设计更改。
CAPP与CAM则指航空航天产品的制造协同。CAPP包括工装设计系统建立和工艺系统,在工装分类和典型化基础上,建立各自的工装设计资源库;开发基于工装族和有工艺知识支持的专用辅助工装设计系统,加强工装标准化、组件化和系列化工作,显著提高工装设计效率;实现产品模型在工装设计过程中的信息共享,提高工装设计与产品设计的协同程度;进行基于三维模型的计算机柔性化组合夹具工装研究,使工装快速组合装配,满足型号不同研制阶段和状态的快速工艺准备需求。工艺方面,针对产品制造过程中的铸造、数控加工、钣金成型、焊接等关键工艺过程,利用CAE进行计算机模拟的研究与应用,实现工艺方案的评估及优化;最终实现工艺流程的优化。CAM方面,运用CAD进行制造过程的前期设计,利用CAE进行计算机模拟,实现CAM方式与过程的优化。
总之,设计人员通过CAD完成设计,由专门仿真人员利用CAE完成设计多性能之间的协同仿真优化,通过CAD得到最终设计;而后通过CAD,CAE与CAPP,CAM的协同完成航空航天产品制造的过程。同时,运用两者之间的沟通,通过对航空航天产品的整体信息化建设,建立起CAD设计知识库、CAE仿真知识库、CAPP和CAM的制造工装知识库,使其成为航空航天企业在研发、制造方面的宝贵经验财富。
2 航空航天行业的信息化建设目标
通过上述几个部分的交互运用和协同,可以实现航空航天行业的管理、资源、设计、制造的全方位信息化工程,最终达到以下目标:
(1)实现信息的共享和传递速度,加强各地各部门之间的沟通与交流,提高工作效率;
(2)确保整体信息流的畅通,如产品各方面性能的仿真协同、设计协同等,有效开展工艺与设计的网上协同工作;
(3)提高总体设计能力,建立航空航天行业的设计知识库、仿真知识库和制造知识库等;
(4)提高制造过程信息化应用水平,建立工艺管理平台。实现制造过程计算机化,工艺流程管理及工艺信息与其他信息系统的集成,优化工艺和制造过程;
(5)建立产品设计、制造协同平台;
谱写向善担当的时代赞歌,传承爱的接力
1.构建大爱精神坐标、筑牢理想信念基石
学校党委坚持育人为本,把德育放在学校教育的首位,以理想信念教育为核心,注重教育引导、舆论宣传、文化熏陶、实践养成、制度保障相结合,大力弘扬核心价值观,构建大爱精神坐标,铸牢师生的精神支柱。通过举办“两弹一星”功勋科学家事迹宣讲会、组织学生成才表率先进事迹报告会、连续10年评选“感动北航”人物,引导学生追求高尚的精神境界,把个人的人生价值融入到奉献他人、奉献社会之中;通过课内外相结合推进通识教育,构建了经典研读、人文素养、社会科学、科技文明四大版块通识课程体系,所占学分已达本科生人才培养方案总学分的30%;邀请了200余位知名专家学者来校做人文素质教育讲座,艺术馆、音乐厅高雅艺术展览和演出精彩不断,使学生们在浓厚的人文氛围中汲取文化的滋养和成长的力量;通过深入开展“知国情、察民生”社会实践和“助他人、作奉献”志愿服务,暑期社会实践达到了全覆盖,志愿服务实现了常态化,每年组织400余支社会实践队,先后组织14批支教团赴新疆、宁夏支教,《人民日报》在头版“行进中国・精彩故事”栏目中专门报道了学校学生在新疆支教的感人事迹,志愿服务正逐渐内化为北航人的人生态度和生活方式。
2.抒写大爱文化名片、传播校园正能量
长期以来,学校充分发挥大爱文化的育人功能,广泛凝聚校内外广大师生、校友力量,建立健全爱心捐赠的渠道和机制,通过捐资设立奖学金、助学金、创业基金等形式,帮助支持家庭经济困难学生、品学兼优学生或突发疾病需要救助的学生,形成了人人参与的校园大爱文化氛围。2015年3月,学校交通科学与工程学院周伟韬同学因急性肝衰竭并肝性脑病三期等病症入院治疗,短短两周,学校师生校友共捐款筹款100余万元,使他顺利完成了肝脏移植手术,脱离了生命危险。近几年,从新闻媒体报道《这个集体不能落下你》中患急性重度胰腺炎的刘婕同学,到《用爱汇聚延续梦想的力量》中患白血病的庞尚辉同学,再到已成功完成器官移植手术走上工作岗位的李金贵同学都得到学校师生校友的鼎力相助。学校还建立了家庭经济困难学生数据库,实现多渠道精准资助,使“济困、励志、强能”同步提升。例如:著名结构疲劳专家高镇同院士的个人捐款已逾110万元,老中青教师代表共同设立了“宏志清寒”奖学金,学校首届毕业生钱士湘夫妇捐资300万元……广大校友不忘初心,反馈母校不断改善办学条件:王祖同、杨文瑛夫妇先后捐资2,500万元支持晨兴音乐厅和大学生艺术团建设,以提升师生文化艺术修养。师生校友的关爱使家庭经济困难学生更加潜心学习、自立自强,从新生入学时的“绿色通道”走上一条人生发展的“绿色跑道”。
涵养肩负使命的空天情怀,强化爱的合作
1.唱响空天文化主旋律、培育拔尖创新人才
建校63年来,一代代北航人的理想与抱负,始终与国家利益和航空航天事业紧密相系,学校的大爱精神也正是在航空航天事业的发展壮大中得到传承和弘扬。例如:航空发动机领域的领军人物陈光教授、陈懋章院士、刘大响院士共同出资150万元,发起“航空强国中国心”基金,奖励全国高校发动机专业的优秀学生。张广军院士捐出“长江学者成就奖”奖金50万元用于奖励品学兼优的家庭经济困难学生。近年来,学校深入开展“爱祖国、爱航空、爱航天、爱北航”主题教育,定期举办空天文化节、航模大赛、航空航天企业进校园和高端访谈等主题活动,组织学生观看神舟、嫦娥等航天器发射实况转播,参观航空航天主机厂所,邀请航空航天领域著名专家以及航天员来校与学生们互动交流,大力培育学生的航空航天情怀。在两个校区新建了航空航天博物馆和主题文化长廊,建设了仰望星空、载人航天精神、钱学森像等20余座航空航天主题雕塑,使空天文化、北航精神艺术化、具象化。精心组织创作了以航空报国英模罗阳校友为原型的大型音乐剧《罗阳》,在校内外巡演20余场,社会反响强烈。“演罗阳、学罗阳、扬罗阳”已成为师生坚守空天梦想、弘扬大爱精神的文化品牌,也成为全校新生入学教育的必修课。
2.爱国荣校凝聚力量、自主创新追寻梦想
学校始终坚持服务国家战略需求,突出自主创新,强化协同创新,积极搭建国家级创新平台,组建大团队,承担重大科研项目,并将强化科技创新平台的建设,提升到建设国家创新体系一个重要措施的高度来认识;把“爱国荣校、无私奉献、创造卓越”的价值追求落实在学术前沿探索与团队集体攻关的有机统一中。近十年,学校先后获得9项国家级科技奖励一等奖、3项国家自然科学二等奖,创造了一所大学连续获国家最高等级科技奖励的“奇迹”,被社会誉为科技创新的“北航模式”。例如:王华明教授及其团队,在世界上率先突破钛合金大型主承力结构件激光快速成形技术,实现了“3D打印,让中国飞机中国造”;刘红教授及其团队,在生物再生生命保障技术取得重大突破,研制成功了世界上第三个生物再生生命保障地基系统,完成了我国首次长期多人密闭试验;房建成教授率领的“先进惯性仪表与导航技术”团队,先后获得“国家技术发明一等奖”1项、二等奖2项。在教育部学科评估中,该团队所在的仪器科学与光电技术一级学科排名全国第一。可以说,凝聚团队力量、强化爱的合作,已经成为北航以“大爱文化”组建科研大团队、催生自主创新重大成果不竭的源泉与动力。
塑造致真和谐的文化力量,提升爱的温度
1.加强师生沟通交流、打造真情互动平台
学校全面实施了本科生导师制,强化导师言传身教在学生人格养成中的关键作用,以导师的“导心、导学和导向”树立起学生的人生标杆。突出名师的榜样作用,组织学生与名师进行内容丰富、形式多样的交流。每月一次书记、校长与学生代表面对面沟通、每周一次陈懋章等院士领衔召开名师恳谈会、每时每刻李尚志等名师主持ihome网络互动工作坊,师生全时全方位思维碰撞、真情互动,构建了以情优教、以情优学的教学相长格局。积极探索书院制学生教育管理模式,成立了“知行”“汇融”“启明”“航天”四个书院,积极打造大爱传承、学学相长的文化育人社区,连续举办两岸四地现代高校书院制教育论坛,共同研究探讨书院育人规律,促进具有广博知识和优雅气质的“全人”培养,独具北航特色的书院制教育模式已成为传递大爱文化基因的新载体。全面实施朋辈辅导“梦拓”(Mentor)计划,1名高年级学生与5名~6名新生组成“梦拓”小组。目前,全校已成立了740余个“梦拓”小组,实现了新生全覆盖,开设了以欣赏高雅艺术、参观博物馆和专业特色展览、寻访名人故居等为主要内容的“梦拓”文化体验课,将“学梦拓、带梦拓、传梦拓”的新型学缘模式转化为传承北航大爱精神和培育人文情怀的互助平台。
2、浙江大学。浙江大学一直以来工科就很厉害,有小清华之称。浙大开创了专业与著名企业合作的人才培养模式,锻炼学生的实战能力,效果很好。
浙大的软件工程专业也是A+学科,也是双一流建设学科,实力很强。
中图分类号 G642.0
文献标识码 A
文章编号 1005-4634(2012)05-0048-05
0 引言
《自动控制原理》是航空航天类本科专业一门重要的专业基础课。以笔者所在的北京理工大学为例,航空宇航科学与技术一级学科下属的飞行器设计与工程、航天运输与控制、飞行器动力工程、武器系统与发射工程、探测制导与控制技术等专业的本科生,均在大三第一学期必修《自动控制原理》经典控制理论部分,包括54个理论课时和10个实验课时,其任务是通过对自动控制理论知识的学习,培养学生对控制系统的分析设计能力、工程实践能力和创新能力。同时,《自动控制原理》还是学习测试技术、飞行器制导与控制技术、飞行器总体设计、航天器测控原理等诸多专业课程的先修课,在航空航天类专业的本科生培养计划中占据着非常重要的地位。
《自动控制原理》的授课模式一般有两种:一是将经典控制理论部分和现代控制理论部分分开讲述,先讲授经典控制后讲授现代控制,目前国内大部分高等院校均是采用的这种授课模式;二是将经典控制和现代控制融合讲授,这种授课模式有助于培养学生从系统角度、全局高度来思考问题的能力,更利于掌握控制理论的实质。由于授课模式的沿袭性及单学期课时数的限制,北京理工大学航空航天类专业的《自动控制原理》采用了前一种授课模式。授课教师采用A、B角的方式,教师队伍中有授课近20年的教师,还有刚刚博士毕业踏上工作岗位的年轻教师,更难能可贵的是,所有授课教师均有出国留学或访问的经历,兼通中西教学模式之长,融蓬勃朝气与丰富经验于一体。
本文主要是以《教育部关于全面提高高等教育质量的若干意见》(教高[2012]4号)中“坚持内涵式发展”、“促进高校办出特色”、“创新人才培养模式”、“提升国际交流与合作水平”等内容为指导,结合北京理工大学的学校定位和办学特色,以笔者在《自动控制原理》经典控制理论部分本科教学过程中的思考和认识为基础,对北京理工大学航空航天类专业在《自动控制原理》本科教学改革中的若干有效措施进行总结和探讨。
1 授课内容及学习过程中存在的问题
1.1《自动控制原理》的授课内容
笔者主要讲授《自动控制原理》中的经典控制理论部分,授课内容分为八章,分别是:自动控制系统导论、自动控制系统的数学模型、自动控制系统的时域分析、根轨迹法、频率法分析、控制系统校正、非线性系统和线性离散系统。其中,前六章和第八章是重点讲授内容,第七章是一般讲授内容。就总的讲授内容来说,有理论性强、新概念多、系统性强、与工程尤其是航空航天工程联系紧密的特点,如已列装或在研的大部分导弹飞行器,其自动驾驶仪的设计仍主要是在经典控制理论的框架下完成的。学习过程是先了解控制系统的组成尤其是强调“反馈”的概念,再根据实际的控制系统建立数学模型,然后通过时域法、根轨迹法、频率法等分析系统性能的优劣对比,最后对系统整体性能进行校正和设计,可以说,整个过程是一个完整的体系,更是一个循序渐进的过程。
1.2《自动控制原理》学习过程中的几点问题
无论哪门课程,讲授目的均是希望学习者能够掌握相关知识的基本原理、分析方法并最终做到灵活运用。考试成绩是评价学习者是否达到上述标准的一个参考,但考试成绩并不能表明一个学生是否真正达到了上述标准。为了准确评估《自动控制原理》的讲授效果,真正了解该门课程学习中可能存在的问题,不但要时刻注意本专业学生在修习过程中的反馈意见,而且要广泛调研和阅读其它学校和专业的教师在该门课程上的经验总结。在此基础上,结合笔者的亲身体验和思考,认为航空航天类专业的学生在学习《自动控制原理》过程中可能面对的主要问题包括:(1)部分学生由于数学基础不够扎实,对课程中涉及到的数学知识产生畏难情绪,进而无法很好地掌握控制系统的分析方法;(2)不能将所学的控制理论知识与自己专业的实际案例充分地联系起来,这主要是在学习过程中接触专业案例少造成的;(3)阅读英文文献的能力不足,而且这种不足突出表现在缺乏对专业词汇的正确理解上,这说明《自动控制原理》需要适度地推进双语教学改革;(4)无法将基本理论和计算机辅助设计软件MATLAB结合起来进行更有效地控制系统设计,即割裂了基本理论和计算机辅助软件相辅相成、互相印证、互相促进的关系;(5)从系统角度理解控制系统核心思想的能力不足,即无法做到融会贯通,更谈不上灵活运用,这需要授课过程中注意前后串联,帮助学生建立起系统概念。针对上述问题,结合北京理工大学办学定位和航空航天类专业《自动控制原理》的授课特色,授课教师均提出了有针对性的改革措施。多年来的教学实践证明,这些措施很好地解决了北京理工大学航空航天类专业本科生在《自动控制原理》课程中的学习问题,增强了学生对该门课程的学习兴趣和“自主学习”能力。
2 教学改革的若干举措
2.1从数学基础抓起
“工欲善其事,必先利其器。”《自动控制原理》课程涉及大量的数学知识,如拉氏变换及其逆变换、微分方程、差分方程、复变函数理论、Z变换等。毫不夸张地说,扎实的数学功底是学好该课程的基础。如果学生缺乏必要的数学知识,教师又不能适时补上这个不足的话,很容易造成学生在学习过程中的畏难情绪,不可避免地会影响教学效果。
北京理工大学授课教师的做法是在《自动控制原理》开课伊始,就给学生列出所有需要用到的基础数学知识。一方面引导学生重新复习这些已经学过的数学知识;另一方面,授课教师还会抽出专门的课时来对这些数学知识进行复习和重点讲授。为了不断加深学生对这些数学知识的理解,在用到相应的数学工具时,授课教师都会结合具体的实例进行更详细地讲述。为了尽可能减少学生在学习中的畏难情绪,北京理工大学授课教师在考试中坚持“注重概念,弱化计算”的理念,只要学生思路正确,仅仅是计算错误的情况下,尽量少扣或不扣分。
2.2双语教学,与国际接轨
开展双语教学有助于我国高等教育与国际接轨,是当前教育改革的热点和重点,同时也得到了教育部等相关部门的大力支持。在双语教学的改革中,有一点需要明确的是,专业课双语教学的目的并不是为了增加学生的词汇量,也不是为了提高学生外语的写作水平,更不是为了教学生外语语法,而是为了增强学生阅读专业外文文献的能力和对专业知识的理解能力。近年来,英语已经逐渐发展成为全世界通用的语言,最新的科研成果更主要是以英文形式发表。所以,我国高等教育中大部分的双语教学均是采用中文和英文的双语授课模式。
由于《自动控制原理》涉及到的诸多基本理论和分析方法大都是从国外引进和翻译过来的,加上国外学术界习惯用人名来命名定理的做法,给国内学生记忆和理解这些理论和方法增加了额外的困难。如用于判定线性系统稳定与否的劳斯判据就是以英国数学家Edward John Routh的名字命名的,类似这样的例子还有很多,这对于习惯望文生义的国内学生来说,想仅仅从字面意思来理解劳斯判据本身几乎是不可能的。有鉴于此,基于航空航天类专业《自动控制原理》双语教学改革的目的主要是为了增加学生对专业词汇认知这一基本的出发点,决定了航空航天类专业《自动控制原理》双语教学的授课方针应以中文为主、英语为辅。具体做法是,每当第一次出现新的名词、原理和方法时,授课教师先用中文进行详细讲解,然后告诉大家这些名词、原理和方法在英文中的表示方法和来源,并在以后遇到这些名词、原理和方法时,更多地采用英文表述。如传递函数(Transfer Function)、劳斯判据(Routh Criterion)、阶跃响应(Step Response)、脉冲响应(Impulse Response)、根轨迹(RootLocus)等,都可以采用这种处理方式。此外,还需要注意引导学生适量阅读英文参考书和专业文献,由于Katsuhiko Ogata所著《Modern Control Engineer-ing》一书在世界范围内的广泛被接受性,北京理工大学同样推荐学生将这本书作为英文参考书。
2.3融科研于教学
随着我国高等教育改革的不断实施和深入,昔日的“填鸭式”教学已逐步被更能激发学生“自主学习”能力的“启发式”、“案例式”教学所取代。在《自动控制原理》的教学中,如果只是讲授一般的数学公式和物理定理,而与实际工程割裂开来的话,很可能出现的后果就是学生学习后不知道用在什么地方,更不知道如何用,更糟糕的情况是学生在考试后就把所学的东西全忘掉了。为了避免这一状况的发生,有必要将专业案例、授课教师的科研项目融入日常的教学工作中去,让科研带动教学、教学促进科研。
如在第一章讲授自动控制系统定义和基本组成的时候,通用的教材是举一些工业上常见的例子,像室温调节系统和水位调节系统来引入自动控制的专业术语和反馈的概念。这种讲授方法是很好的,有利于学生建立对控制系统组成的直观概念,并认识到自动控制的核心思想所在。对于航空航天类专业的学生来说,在讲述通用案例的同时,还可以结合航空航天领域的应用案例,如引入图1所示的导弹攻击飞机的案例。在这个案例中,导弹根据自己探测到的目标机动特性,依据一定的制导律生成最佳攻击曲线,当弹上的测试设备探测到实际飞行路线和预定飞行路线出现偏差的时候,弹载计算机会依据一定的法则生成控制指令,气动舵机来执行这一控制指令,从而达到控制导弹回到预定飞行路线的目的。按照这一描述可以画出它的系统方块图,如图2所示,和基本的负反馈闭环控制系统(如图3所示)对应起来,预定飞行路线对应给定输入、弹载计算机对应控制器、气动舵机对应执行机构、导弹就是被控对象、实际飞行路线即是实际输出、弹载测试设备即对应测量输出的传感器。这样讲授下来,由于比较贴近专业方向,同学们就很容易理解控制系统的结构,并对输入、输出、被控对象、执行机构、控制器的作用及反馈的概念有了更为直观和深刻的认识。
在讲述控制系统稳态性能和动态性能的时候,大量引入航空航天的专业案例,尤其是一些因为控制系统设计失误或控制系统未能正常工作产生重大损失的失败案例,对引发学生的学习兴趣颇有帮助。从教学的效果看,这些案例的引入,不仅加深了学生对《自动控制原理》重要性的认识,激发了他们学习的热情,同时,还培养了他们对所学专业的兴趣。在此基础上,可以注意吸收一些对自动控制理论或应用感兴趣的学生提前进入实验室,并挑选与任课教师负责项目相关或者处于航空航天控制前沿的研究方向,如临近空间飞行器的制导与控制技术,让他们自由发挥,思考和创新,切实培养他们的动手能力。
此外,授课教师要非常注重“基于书本、超越书本”。比如香农(Shannon)采样定理认为:对于一个连续信号来说,当采样角频率是该连续信号所含最高次谐波频率两倍以上的话,即能做到一个周期内采样两次以上的话,那么经采样后所得到的脉冲序列,就包含了原连续信号的全部信息,可通过理想滤波器把原信号毫无失真地恢复出来。这一表述在数学理论上是没有任何问题的,但在实际工程项目中往往是行不通的,比如一个正弦曲线的测试,一个周期里只采样两三个点的情况下,几乎没有可能复现原信号。类似于这样的问题,授课教师需要在授课过程中向学生特别强调。
2.4计算机辅助教学
由于《自动控制原理》在授课过程中涉及到的数学公式、图形(结构图、框图、根轨迹图、伯德图等)比较多,非常不方便在课堂上进行直接板书,一旦板书不清楚会直接影响学生的学习效果。而这些公式和图形是非常适合以幻灯片(PPT)的形式来进行表述的,学生也更乐意看到这种方式。北京理工大学授课教师同样采用了以PPT为主的授课模式,配以适当的动画,给学生一个更为直观的展示。如在讲授动态性能指标的时候,延迟时间、上升时间、峰值时间、超调量、调节时间等名词的定义并不是那么容易理解,但通过动画的形式就可以很清楚、明了地向同学们展示这些概念的不同,学生反映良好。再比如在讲授不同阻尼比情况下二阶系统单位阶跃响应特性的时候,只靠文字表述“随着阻尼比的增大,系统的响应越快,但超调量越大”的话,大部分学生是比较茫然的。如果换成通过PPT展示给同学们如图4所示的响应曲线时,就会一目了然,同时,还有助于同学们掌握零阻尼、欠阻尼、临界阻尼、过阻尼等情况下单位阶跃响应特性的不同。
MATLAB是学习《自动控制原理》的学生必须掌握的一个计算机辅助分析工具。实际上,一个令人引以为傲的事实是,北京理工大学航空航天类专业本科生的MATLAB基础知识都是在《自动控制原理》的课堂上学到的。由于年轻学生对新鲜事物天生的好奇感,当他们看到教材上一幅幅精美的图片是通过MATLAB展示在自己面前的时候,不但会加深他们对所学知识的理解,更会激发他们学习这门课的热情。比如讲二阶欠阻尼系统阶跃响应的时候,可以首先引导学生思考一个问题:“既然阻尼比越小,系统响应越快,超调量越大,那怎么来选择合适的阻尼比呢?”然后再用教学计算机上装载的MATLAB画出图5,这是阻尼比位于[0.10.9]之间,以上升时间为横坐标、超调量为纵坐标的Pareto图,同时在图中标示阻尼比分别为0.4、0.707和0.8所对应的点。以这个直观的示意图做基础,同学们就很容易理解为什么工程上一般要求阻尼比在[0.4 0.8]范围内了,再告诉同学们阻尼比为0.707时控制系统效果最佳,他们也就明白了因果来源。如果更进一步画出阻尼比分别为0.6、0.707和0.8时候的单位阶跃响应曲线来,如图6所示,同学们就会有一个更加明确和直观的印象。此外,授课教师还可以通过课下作业的形式,引导学生利用课堂所学知识编程实现更复杂的响应曲线,使学生可以亲身感受到响应曲线随不同参数变化的规律,不但可以加深学生所学的理论知识,还有助于学生掌握辅助软件的用法。
用MATLAB辅助教学可能会带来的一个副作用就是,同学们可能觉得只要掌握MATLAB就可以了,而忽略了自动控制本身的基本原理和定性的分析方法。这是授课教师在教学过程中需要重点留意并刻意避免的问题之一,北京理工大学授课教师在每次用MATLAB辅助教学时,都会强调基本原理的重要性,同时会刻意用所学的定性分析方法来评估MATLAB结果的正确与否,并一再强调,MATLAB只是一个辅助大家进行控制系统分析的工具,不能取代大家所学的基本原理和分析方法本身,考试中也不会考这方面的内容。
2.5注重前后串联,建立系统概念
《自动控制原理》本身的讲授内容多、跨度时间长,而且学生同时还在修习其它课程,所以用在《自动控制原理》这一门课上的时间是极其有限的。而且一般教材也更倾向于将每个章节的内容独立出来,如仅仅在第二章讲述控制系统模型的建立方法,在以后的学习中就直接拿现成的传递函数来用;再如第三章讲述时域分析法之后,在后续章节的讲述中几乎不会再涉及。很可能造成的一个后果就是学习过程中常常不清楚各个知识点之间的相互联系,也无法真正的做到融会贯通,在遇到实际的工程问题时就会显得束手无策、不知如何下手。这需要授课教师帮助同学们理清线索,弄清楚各个章节之间的因果关系。