复合材料论文合集12篇

时间:2023-02-14 16:09:53

复合材料论文

复合材料论文篇1

国外对碳纤维复合材料的研究起步比较早。结合研究需要成立了相应的碳纤维复合材料研究协会,制订了相应的测量标准、实施规范、检测标准、施工规程等,制订了研究发展方向,加大经碳纤维复合材料再实际中的应用研究,经过多年的研究,目前国外发达国家已经有较为成熟的碳纤维复合材料理论、研究体系和研究成果,并且通过实验性应用获得了第一手资料,通过大量实验已经有了一定的应用实例。目前由于碳纤维复合材料特有的可根据工程需要加工成各种织物材料,满足工程需要,而且织物表现出很高的强度的特点,因此碳纤维复合材料大量应用在房屋建筑工程的加固工程中、桥梁工程等的加固、维修和保养上。从研究现状来看,我国对碳纤维复合材料的研究起步比较晚,缺少系统化、本土化的研究体系,主要理论和研究标准、方法借鉴先进国家的研究成果,缺少实际使用经验的搜集和整理,施工规范上过于依赖国外成熟经验,缺少本土化的实践经验和研究体系,研究方向主要集中碳纤维增强聚合物片材加固和修复钢筋混凝土结构,而且应用也比较成熟。例如采用碳纤维增强聚合物片材对上海财经大学24m跨度的木结构进行加固,采用碳纤维布对天安门城楼上的大型木柱进行加固[1];等等。单丽萍《碳纤维布在建筑结构加固中的施工措施浅析》(民营科技2012.8)研究指出,碳纤维增强聚合物加固技术是一种新型高效的土木工程加固修复技术,具有质量轻、强度高强、施工简单等优点。并对碳纤维布在加固和维护建筑结构中的施工措施进行分析,之处随着对新材料碳纤维(CFRP)的研究的深入,用CFRP取代钢板作为外贴对建筑物进行加固是一种必然趋势。并现针对碳纤维加固的原理、依据、前提进行了探讨,并对施工工艺进行了简要的论述。张勇《CFRP加固混凝土梁的冻融试验研究》(河北建筑工程学院学报2012.1),碳纤维(CFRP)虽然在加固工程中已得到广泛应用,但其长期的加固性能尚未得到证实。尤其在我国北方较寒冷地区,因此研究冻融循环对碳纤维加固的混凝土构件的影响。试验研究显示碳纤维基本能够满足寒冷地区的加固要求。舒亚《码头改造工程中碳纤维加固技术的运用》(水利建设与管理2014.3)一文中研究指出:伴随着材料研究的深入,混凝土结构的加固技术也日益提高,结合工程实例,阐述在码头改造工程中如何将碳纤维加固技术运用到水工结构物的主要受力构件,为码头水工结构物的加固修复带来新的举措,保障了码头水工建筑物的安全。整体上来说,碳纤维复合材料在土木工程中的使用研究目前基本集中在混凝土结构的修复和加固上,相信随着研究的深入,碳纤维加固技术在土木工程结构的运用日益广泛。

1.2最新研究进展和趋势

日本开发研制成功一种带有铝合金接头碳纤维聚合卷管。研究发现这种聚合卷管具有高效的结构体系,在实际应用中可以获得特殊的建筑效果[1]。也有学者提出利用碳纤维优良的导电性,通过相应手段监测碳纤维复合材料加固部位导电性能的变化情况,实现对对土木建筑物或桥梁等的无创口健康监测和诊断,而目前利用碳纤维优良的导电性,实现对建筑结构的实时监测应用研究不多,郑立霞《局部叠层碳纤维水泥基材料的应变电阻效应研究》(四川大学学报(工程科学版)2011.2)研究指出利用不同将碳纤维所具有的特有的导电特性,将不同碳纤维取代钢筋加入普通混凝土中,普通混凝土便成为具有自诊断功能特性的智能混凝土。利用这些功能特性可望实现土木工程结构和基础设施的健康监测。并通过实验研究局部叠层碳纤维取代钢筋形成的三点弯曲梁在单调和循环拉应力作用下电阻的变化规律,分析了局部叠层碳纤维水泥基材料的应变-电阻效应,在此基础上进行横向对比,实验结果表明,局部叠层碳纤维水泥基材料的应变灵敏系数是连续碳纤维水泥基材料应变灵敏系数的近23倍,但稳定性要差一些;局部叠层碳纤维水泥基材料的电阻和拉伸应变成正比例,因此利用这一特性把可望把局部叠层碳纤维用于土木工程,便于实现在结构和基础设施的健康监测。

2碳纤维复合材料在构件承载力不足的情况下的应用

虽然在土木工程施工过程中在施工阶段,从上到下有严格的施工规范和要求,但是实际过程中却常常存在由于施工管理不严、施工人员能力缺陷、致使施工质量不能达到要求,特别是混凝土构件承载力不足导致在建工程或建成工程使用时在安全隐患,存在一定的潜在质量风险,可能导致伤害事故的发生,在这种情况下,如何在不拆除现有混凝土结构的条件下对混凝土构件进行范围内的加固和修复是要解决的问题,使用碳纤维复合材料为主要原料的纤维增强聚合布进行加固,可以在不毁坏现有结构的基础上,使混凝土结构得到理想的增补效果。加上纤维增强聚合布施工过程中无需任何重型机械,施工空间不受限制的优点,因此在维护和加固现有建筑中得到大量应用。

2.1碳纤维复合材料在民用建筑加固方面的应用

由于碳纤维增强聚合布的材料性能的特点,碳纤维增强聚合布大量应用在民用建筑中,如梁、板、柱、顶、梁腹裂缝发展过大的构件加固中。碳纤维增强聚合布加固可有效控制裂缝的发展。在使用碳纤维复合材料对不同部位进行加固时,操作手段、方法有一定差异。目前通常使用碳纤维布对钢筋混凝土裂缝等进行加固时首先选取合适粘合剂,以免造成粘合不紧密,加固效果差,在此基础上注意粘贴在混凝土裂缝处。在对钢筋混凝土抗弯构件进行加固时,通常采用特殊粘合剂将碳纤维布粘贴于混凝土构件强力受拉区,通过碳纤维布增加受拉区域强度,实现碳纤维布分担工程结构中混凝土钢筋的承受拉力,提高混凝土构件的抗弯承载力和受拉承载力。碳纤维复合材料加固损伤的受弯构件时,结果表明,通过碳纤维布的加固,检验结果显示,加固部位刚度恢复非常显著,加固部位强度和加固量、损伤程度具有一定关系,通过加固,两者都有不同程度的改善提高。在工程中使用碳纤维复合材料进行抗剪力加固时,一般要求将碳纤维复合材料粘贴于加固构件的受剪力区,力求形成整体的拉力,促使碳纤维复合材料的作用类似于箍筋,从而形成一定的加固力量,有效控制混凝土结构裂缝的进一步发展。目前研究结果表明,理论上推算碳纤维复合材料的随着外界条件变化应变发展比较缓慢,在实践中用于加固混凝土构件时,碳纤维复合材料达到的最大应变值比较小。在加固混凝土构件屈服后,碳纤维复合材料逐渐取代混凝土构件箍筋的作用逐,从而有效提高构件抗剪承载力,碳纤维复合材料对工程质量提高程度与加固方式、加固量、带间距及粘贴层数密切相关。因此实践中使用碳纤维复合材料对一定的混凝土结构进行维修和加固时,要区别对待,不同位置、强度的部件进行加强所需粘贴量不同,过多过少都不利于加固效果的最优化,如粘贴过量碳纤维增强聚合布,可能会导致不能充分的发挥碳纤维增强聚合布的优势。由于碳纤维增强聚合布的可设计性的优势它与所加固构建之间粘贴比较紧密,可以在不改变现有建筑外观形状的基础上进行整体加固,因此在一些对整体构件加固质量要求比较高,碳纤维聚合布在得到大量应用,如对历史建筑的抢救、保护和维护和原有建筑,同时构件的整体抗震性能得到提高。

2.2桥梁建设加固方面碳纤维复合材料的应用

由于碳纤维复合材料的使用特点,碳纤维增强聚合布可以应用在桥梁加固方面。如磨损、裂缝、局部塌陷的桥面,可以在保持现有混凝土构件的情况下,通过适当修补后加贴碳纤维增强聚合布,从而提高桥面坚固程度和增加使用寿命,如一般采用将碳纤维增强聚合布粘贴于桥面板下面,在提高桥面整体平整的基础上可以增强桥面板的抗弯及抗剪能力,延长桥梁使用寿命,目前碳纤维复合材料在桥梁建设方面的用途主要有两类,现有桥梁的加固方面和新桥梁的建设使用。在桥梁加固方面碳纤维复合材料主要用于混凝土桥梁的基本构件、节点、裂缝受弯构件、抗弯构件等的加固,加固的目的主要是提高桥梁的面板、构件的抗弯、受弯、抗剪、轴向抗压承载力等,桥梁建设加固方面碳纤维复合材料的应用在国外应用广泛,我国在这方面的工程实践是在引进吸收国外先进经验的基础上,结合我国桥梁工程和新材料发展状况,2003年7月对1971年建成的“宝成桥”进行了加固维修。提高了大桥承载强度,同时对大桥基本构件提供了抗裂防腐的保护作用[2-5]。但是碳纤维增强聚合布加固混凝土桥柱、桥梁时,应注意原有混凝土构件横向膨胀性能促使外包碳纤维增强聚合布的局部环向刚度增大,导致混凝土原有构件的脆性破坏,因此在应用碳纤维增强聚合布维修桥梁加固混凝土柱时要注意完全粘贴整个构件。

复合材料论文篇2

针对金属基复合材料发展应用中的关键问题??成本和性能,本文开发设计了新型的钛基复合材料的制备工艺,可以低成本高效制备性能优异的钛基复合材料。即可利用钛与碳化硼、硼及石墨之间的自蔓燃高温合成反应,采用普通的钛合金冶炼工艺制备出单纯TiB晶须、单纯TiC颗粒增强或TiB晶须和TiC粒子混杂增强的钛基复合材料。为了拓展钛基复合材料的应用领域,为制备高性能的钛基复合材料打下坚实的基础,本文的研究主要包括以下几个方面工作:

1、研究了利用钛与石墨、硼及碳化硼之间的反应制备TiB和TiC增强钛基复合材料的原位合成机理。利用热力学理论计算了钛与石墨、硼、碳化硼反应的Gi自由能DG和反应生成焓DH,结果表明:各个反应的Gi自由能DG值都为负值,说明在热力学上上述反应是可行的。虽然在热力学上可以利用钛与碳化硼之间的化学反应合成TiB2和TiC增强体,但从化学平衡考虑,TiB2不能稳定存在于过量钛中,因此能够稳定存在于普通钛合金中的增强体为TiB和TiC。上述反应都为高放热的反应,从理论上讲绝热温度都大于自蔓燃高温合成的判据,表明反应能自发维持。

2、利用非自耗电弧炉和自耗电弧炉经普通的钛合金铸造工艺制备出单纯TiB晶须、单纯TiC颗粒增强或TiB晶须和TiC粒子混杂增强的钛基复合材料。X射线衍射分析结果表明:原位合成的增强体为TiB、TiC。这些增强体分布非常均匀,主要呈现为短纤维状、树枝晶状和等轴或近似等轴状。电子探针和带能谱的扫描电镜分析结果表明:短纤维状增强体为TiB,而树枝晶状和等轴或近似等轴状增强体为TiC。实验结果与理论分析一致,这为原位自生钛基复合材料的工业化生产提供了依据。

3、研究了原位合成钛基复合材料增强体的生长机制,结果表明:增强体的生长机制与凝固过程及增强体的晶体结构密切相关。原位合成的增强体以形核与长大的方式从熔体中析出而长大。对于原位合成TiB和TiC混杂增强的钛基复合材料,经历了析出初晶、二元共晶和三元共晶三个阶段。由于不同的晶体结构,增强体TiB与TiC形成不同的生长形态。TiB具有B27晶体结构,易于沿[010]方向生长长成短纤维状,而且TiB横截面的形状呈多边形,其晶面主要由(100)、(10)和(101)组成。同时,在TiB的(100)面上容易形成层错。而TiC具有NaCl型对称结构,容易长成树枝晶状、等轴状和近似等轴状。发现原位合成的增强体TiB容易在(100)面上形成高密度的层错,层错的形成与增强体的晶体结构、生长机制有关,同时也有利于降低增强体与基体合金界面的晶格畸变。而原位合成增强体TiC的晶格比较完整,偶尔在(111)面上形成孪晶,该孪晶结构在增强体形核与长大的过程中形成。

4、研究了合金元素铝的加入对原位合成钛基复合材料微结构及力学性能的影响。合金元素铝的加入,并不改变复合材料的物相组成,也不改变复合材料的凝固过程,但由于合金元素的存在,阻碍了增强体的形核与长大过程,导致形成的TiB和TiC初晶更为细小,尤其是使TiC增强体易于形成等轴状。合金元素铝不仅固溶强化了基体合金,而且细化增强体也有利于提高复合材料的力学性能。

5、利用透射电镜、高分辨透射电镜对原位合成(TiB TiC)/Ti复合材料界面微结构进行研究和分析,发现两种增强体与基体的界面均为清洁界面,为直接的原子结合、界面结合状况良好。TiC增强体与基体合金没有确定的位相关系,而TiB增强体与基体合金存在以下位相关系:、、(0002)Ti//(001)TiB和以及、(0002)Ti//(200)TiB和。该位相关系在凝固过程中形成,与增强体的晶体结构及基体合金的晶体结构密切相关,形成该位相关系有利于降低增强体与基体合金界面的晶格畸变能。

6、研究了铸态钛基复合材料和热锻后高温钛基复合材料的力学性能。由于原位合成增强体的加入,钛基复合材料的力学性能与相应基体合金比较有了明显的提高,在增强体含量为8%时,其弹性模量E、屈服强度s0.2和抗拉强度分别达到131.2GPa,1243.7MPa和1329.8MPa,与基体合金Ti6242比较分别提高了19.3,47.4和45.5。其强化机理主要来源于增强体承载、晶粒细化及高密度位错的形成。石墨的加入,形成更多等轴状、近似等轴状TiC粒子有利于提高复合材料的室温性能,这与短纤维状TiB的存在导致复合材料低应力断裂有关。

7、研究了原位合成钛基复合材料的高温瞬时拉伸性能。在600oC、650oC和700oC的抗拉强度分别超过800MPa,750MPa和650MPa,与高温性能较好的IMI834合金比较,在600oC的抗拉强度提高幅度超过25。随着温度的提高,其屈服强度、抗拉强度降低,塑性提高,但与基体合金比较高温强度有了明显的提高。断口分析表明:低温时,裂纹由增强体断裂引起,而在高温时裂纹最先在短纤维晶须TiB的端面上形核,然后裂纹扩展到基体合金中,最后导致材料失效。说明低温时,增强体承载对提高复合材料的力学性能非常有利,而在高温时,其强化作用主要由增强体与位错的交互作用引起。位错容易在短纤维状晶须TiB的端面处塞积,形成裂纹源导致材料失效。因此与等轴状及近似等轴状增强体TiC比较,短纤维状增强体TiB对复合材料高温力学性能的强化效果要低一些。这也是石墨的加入形成等摩尔的TiB和TiC增强体有利于提高复合材料高温性能的主要原因。

8、研究了原位合成钛基复合材料的高温蠕变性能和持久断裂性能。原位合成钛基复合材料的高温蠕变经历了典型的蠕变变形的三个阶段。蠕变持久强度与基体合金比较有了明显的提高。持久强度与温度及载荷密切相关,温度和载荷的提高都降低复合材料的高温蠕变和高温持久性能。石墨的加入形成更多的TiC粒子,同样有利于提高钛基材料的持久强度。在高温、持久载荷作用下,材料的失效仍然主要由短纤维端面处形成裂纹而导致材料失效引起。

本研究首先从理论上分析了原位合成TiB、TiC及TiB和TiC混杂增强钛基复合材料的原位合成机制,并以此为基础开发出了一种新型钛基复合材料加工工艺。利用该工艺钛合金生产厂家可以在不改变设备和工艺的条件下,低成本高效制备高性能的钛基复合材料。而采用该原位合成工艺制备复合材料的性能是可设计和可控制的,针对不同的应用条件,可以设计不同成分的基体合金及不同含量、不同配比增强体的复合材料以满足不同的需求。从合金相图、增强体晶体结构及凝固理论相结合分析了原位合成增强体的生长机制、生长形态、分布状态以及界面微区特征。研究了钛基复合材料的微观组织对钛基复合材料力学性能的影响规律。这些研究为以后制备高性能的钛基复合材料和拓展 钛基复合材料的应用领域打下了坚实的理论基础和为批量生成提供了实用途径。近两年来,研究成果引起了国家航空航天部门的关注,国家“十五”军工重点课题和航天支撑基金、航天创新基金课题获得了批准。并将用于我国的先进战略导弹XX-2改,战术导弹XX-19及新一代洲际导弹和潜地导弹的构件。鉴于该技术在国防军工方面具有的战略意义以及在民用领域的潜在应用前景,与国内大型钛合金加工企业—宝钢集团五钢有限公司开展产业化研究,完成了该材料的中试过程,实现了新型钛基复合材料的工业化生产。研制开发的材料近期将在国家战略、战术武器、宇宙飞船等方面得到验证和应用。并将逐渐推广应用于民用领域,为国民经济的发展作出贡献。

关键词非连续增强钛基复合材料,原位合成,生长机制,凝固,晶体结构,微观结构,力学性能,位向关系,界面结构

Fabrication,MicrostructureandMechanicalPropertiesofinsituSynthesizedTitaniumMatrixComposites

ATRACT

Duetoincreasingrequirementfortitaniumalloywithhighpropertiesinhightechnologyera,discontinuouslyreinforcedtitaniummatrixcompositesownthefollowingadvantages:highecificstrength,highecificmodulus,highelevatedtemperatureproperty,wearresistanceandlowfabricatingcost,sotheyhavebecometheresearchhotot.Theproceingtechnique,microstructureandmechanicalpropertieshavebeenexteivelystudied.However,themainaimisdiscontinuouslyreinforcedtitaniummatrixcompositepreparedbytraditionaltechniquesuchaspowdertechnologyandliquidmetallurgy,wheretheceramicparticlesaredirectlyincorporatedintosolidorliquidmatricesreectively.Inthispaper,paredwithtraditionaltechnique,insitutechniqueownthefollowingadvantages:thetechniqueisverysimpleandthepropertiesareexcellent,soitiseasiertofabricatetitaniummatrixcompositesintechnologyandeconomic.Theinsitusynthesisofceramicparticleavoidsthepollutionofreinforcementsandwettabilityexistingincastingtechnique,soitisvaluabletofabricatetitaniummatrixcompositeswithbetterproperties.However,therearestillquitealotofproblemstoberesolvedinordertofabricatetitaniummatrixcompositeswithhighpropertiessimplyandatlowfabricationcost.Therefore,theresearchontheseproblemsintheoryandexperimentisveryimportant.

Itiswellknownthatthekeyproblemindevelopmentandalicationofmetalmatrixcompositesiscostandproperty.Anewtechniquehasbeendesignedtoproducetitaniummatrixcomposites,inwhichitispoibletofabricatetitaniummatrixcompositeswithhighpropertiessimplyandatlowfabricationcost.TitaniummatrixcompositesreinforcedwithTiBwhisker,TiCparticleorTiBwhiskerandTiCparticle,wereproducedbycommontitaniumalloycastingtechniqueutilizingtheself-propagationhigh-temperaturesynthesisreactiobetweentitaniumandboron,graphite,B4C.Inordertodeveloptheutilizationareaoftitaniummatrixcompositesandmakebasisforproducingtitaniummatrixcompositeswithhighproperties,thefollowingworkshavebeendeveloped.

1.InsitusynthesismechanismoftitaniummatrixcompositesreinforcedwithTiB,TiCorTiBandTiCutilizingthereactiobetweentitaniumandboron,graphite,B4Chavebeeninvestigated.GifreeenergyDGandformationenthalpyDHofreactiobetweentitaniumandboron,graphite,B4Cwerecalculatedbythermodynamictheory.TheGifreeenergyDGofabovereactioisnegative,whichindicatesthattheabovereactioallcantakeplace.ItispoibletosynthesizeTiB2andTiCutilizingthereactionbetweentitaniumandB4C.However,coideringfromchemicalbalance,TiB2cannotexistintitaniummatrixalloystably.Theabovereactioreleasequitealotofheat.Moreover,theadiabatictemperatureisgreaterthanthetheoreticalcriterion,whichindicatesthatthereactioncanbesustainedbyitself,namelyself-propagationhigh-temperaturesynthesisreactioncanoccur.

2.TitaniummatrixcompositesreinforcedwithTiBwhisker,TiCparticleorTiBwhiskerandTiCpart iclehavebeenproducedbynon-coumablevacuumarcremeltingfurnaceandcoumablevacuumarcremeltingfurnace.TheresultsofX-raydiffractionshowthattheinsitusynthesizedreinforcementsareTiBandTiC.Thereinforcementsweredistributeduniformlyinmatrixalloy.Theshapesofreinforcementsareshort-fibreshape,dendriticshapeandequiaxedshapeornear-equiaxedshape.Thereinforcementwithshort-fibreshapeisTiB,thereinforcementwithdendriticshapeandequiaxedshapeornear-equiaxedshapeisTiC.Theexperimentalresultisingoodagreementwiththeoreticalresult,whichprovidesgistforcommercialproductionofinsitusynthesizedtitaniummatrixcomposites.

3.Thegrowthmechanismsofreinforcementsininsitusynthesizedtitaniummatrixcompositeshavebeeninvestigated.Thegrowthmechanismsarecloselyrelatedtosolidificationpathsandcrystalstructures.Thereinforcementsdiersefrommeltandgrowinthewayofnucleationandgrowth.FortheinsitusynthesizedTiBwhiskerandTiCparticlereinforcedtitaniummatrixcomposites,thereinforcementsundertakethefollowingthreestages:primarycrystal,binaryeutecticandternaryeutectic.Duetothedifferentcrystalstructures,TiBandTiCgrowindifferentshapes.TiBisliabletogrowalong[010]directionandformshort-fibreshapeduetoit’sB27crystalstructure.TheshapeofTiBatcrosectionispolygon,thecrystalfacesarecomposedwith(100),(101)and(10).Moreover,thereisstackingfaultinTiBandthestackingfaultislikelytoformat(100)crystalface.TiCwithNaClcrystalstructuregrowsindendritic,equiaxedornear-equiaxedshape.

4.Theeffectsofaluminumadditiononmicrostructureandmechanicalpropertiesofinsitusynthesizedtitaniummatrixcompositeshavebeeninvestigated.Theadditionofalloyingelementaluminumdoe’tchangephasesandadjustthesolidificationpath.However,thealloyingelementhindersthenucleationandgrowthofreinforcementsthatresultinmorefineTiBandTiCreinforcementsandmakeTiCreinforcementsgrowwithequiaxedparticleseasily.Aluminumnotonlystrengthethematrixalloybysolidsolutionstrengthening,butalsoimprovesthemechanicalpropertiesbyrefiningthereinforcements.

5.TheinterfacialmicrostructuresofinsitusynthesizedTiBwhiskerandTiCparticlesreinforcedtitaniummatrixcompositeshavebeenoervedbymeaoftramiionelectronicmicroscopyandhigh-resolutiontramiionelectronicmicroscopy.Theresultsshowthattheinterfacesareveryclean.Theyarebondedwell.ThereisnocoistentcrystallographicrelatiohipbetweenTiCandtitanium.However,therearefollowingcoistentcrystallographicrelatiohibetweenTiBandtitanium:,,(0002)Ti//(001)TiB,and,,(0002)Ti//(200)TiB.Moreover,itiscloselyrelatedtothecrystalstructuresofreinforcementandmatrixalloy.Theformationofabovecrystallographicrelatiohiisvaluabletodecreasetheenergyoflatticestrainbetweenreinforcementandmatrixalloy.

6.Themechanicalpropertiesofcast-titaniummatrixcompositesandhigh-temperaturetitaniummatrixcompositesafterhot-forginghavebeeninvestigated.Duetotheincorporationofinsitusynthesizedreinforcements,themechanicalpropertiesimproveobviouslycomparedwithmatrixalloy.Whenthevolumeofreinforcementsis8,theYoung’smodulusE,yieldstrengths0.2andteilestrengthare131.2GPa,1243.7MPaand1329.8MPa,reectively.Theyimprove19.3,47.4and45.5,reectively.Thestrengtheningmechanismsincludethefollowingfactors:undertakingloadofreinforcements,refinementofgrainsizeandformationofhigh-deitydislocatio.TheadditionofgraphiteformsmoreTiCparticleswithequiaxedornear-equiaxedshapethatisvaluabletoimprovethemechanicalpropertiesoftitaniummatrixcompositesatroomtemperature.ThisisrelatedtoexistingofTiBthatresultfractureofcompositesatlowlevelofaliedstrain.

复合材料论文篇3

2木塑复合材料的设计属性

2.1外观属性

材料的外观属性通常包括形态、色彩、肌理等方面。木塑复合材料大部分是挤出成型的,因此可以制造出凹凸的肌理,使其富有特殊的装饰效果(图4),但大多数情况下只能呈现直线状态[4]。木塑型材的通孔设计(图5)一方面可以丰富木塑复合材料的形态特征,使其呈现多变的断面形态,同时可以减轻重量,从而节约成本。在木塑复合材料中加入着色剂[5],不仅能使木塑制品显示出各种各样的色彩外观(图6),而且也可以改善其耐候性。随着对木塑复合材料的深入探究以及技术的突破,木塑产品表面还可以制成类似木材的纹理和色泽,营造温暖亲近的感觉。此外,木塑复合材料还可以覆盖塑料表层[6],增加材料颜色的多样性和耐潮湿性。

2.2加工性能

目前,木塑复合材料的成型工艺主要有三种:挤出、热压和模压。挤出成型凭着工艺简单,而且加工周期短、效率高,与其他加工方法相比,更广泛地应用于工业化生产中。木塑复合材料采用的主要连接方式有以下三种:胶接、焊接和机械连接。机械连接有连接件连接、钢钉连接和复合材料专用螺钉连接,相关实验表明,螺钉连接的木塑构件可以进行多达十次的拆装[7]。

2.3其它性能

木塑复合材料同时具有耐磨、耐腐蚀、防水和尺寸稳定性好等优点。在制造过程中加入阻燃剂,可使木塑复合材料具有一定的阻燃性,因此,可将其应用在具防火要求的公共家具设计中。此外,木塑制品本身同时具有可回收性、良好的经济性和环保性。比如在北京奥运会的工程建设中[8],就大量利用了这种环保的木塑复合材料(图7)。

3木塑公共家具设计实践

3.1木塑露天桌椅

在加工过程中添加了阻燃剂的木塑复合材料具有优良的阻燃性能,适用于公共场所。这里把木塑复合材料设计成长短不一的条状板,以点、线、面的概念,构成木塑露天桌椅(图8)。整套桌椅统一采用金属作为底架,条状木塑板作为面板材料,营造出空间环境的整体感。在材料上,木塑复合材料的凹凸肌理与金属的精致肌理形成对比,木塑复合材料的温暖感与金属的冷峻感形成视觉感受上的对比。同时,不同色彩的金属与木塑复合材料的组合也可呈现出不同的视觉效果(图9),为人们的公共场所营造出温暖、清新、自然的现代感。在结构上,零件之间采用可拆装的螺钉连接,既方便安装,又可以降低运输成本。另外,玻璃下层可置菜单或广告单(图10),便于现代商业化宣传。

3.2木塑书架

这款供图书馆使用的六层双柱双面木塑书架(图11),在外观造型上,立柱部分处理成深色,旁板和层板处理成浅色,进行深浅色彩搭配,以塑造书架的平衡感。立柱设计成四面均带凹槽的结构,用于旁板的嵌入,既方便使用时的安装,同时使凹凸肌理成为一种装饰。立柱顶部的装饰件采用模压技术制成,可标准化批量生产。在加工工艺上,书架的立柱、旁板和层板均采用挤出成型工艺进行生产,利用木塑复合材料的凹凸肌理完成立柱与旁板、旁板与搁板的搭接(图12),减少了五金连接件的使用。在功能上,结合人体工效学原理,考虑到旁板横向凹凸肌理的需要和挤出成型工艺中幅面的限制,将旁板设计成多段拼搭结构,根据书籍的尺寸大小,其凹凸肌理按照比例进行合理设计,利于层板的高度调节,方便图书馆中不同尺寸大小的图书摆放。此外,旁板的双面凹凸肌理设计,使相邻两书柜柜体共用同一块旁板,一方面可根据室内空间的大小对书架数量进行调整,满足其在功能上的延伸,同时可充分利用空间资源,有效降低生产成本。

3.3等候椅与花坛

据调查,生活中等候场所(如火车站候车厅)的候车椅大部分为金属材质,这种材质虽强度较高,但因候车场所一般人流量比较大,对家具的耐久性自然要求比较高,金属表面掉漆以及生锈等后期维护工作并不易进行。并且金属制等候椅常给人冰冷的视觉感受,其舒适性也有待提高。相比较而言,木塑复合材料继承了木材和塑料的双重性质,具有温和自然的视觉和触觉感受,且它的强度并不逊于金属。因此可将其运用于人流量比较大的公共场所,进行如下设计。这款木塑休息椅(图13)删繁就简,没有多余的装饰,造型简洁。等候椅底部为金属支架,椅面为木塑材料组成的等腰梯形。等腰梯形的座面设计是为了便于使用者根据空间大小来调节休息椅的长度(图14),利用等腰梯形的特性,休息椅的长度延伸可以更显自然。在色彩上,木塑复合材料在生产过程中通过增加着色剂可以造出各种色彩的产品,这款公共场所的休息椅正是运用这一特性,设计出彩虹般色彩的椅子,为等候场所增添几分色彩和乐趣。结构上采用螺钉连接。此外,设计的配套花坛(图15),既可以给等候场所带来几分自然的气息,还保护了座椅的端面。花坛的数量可根据场所需要自由调整(图16)。

复合材料论文篇4

随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。

从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。

另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。

树脂基复合材料的增强材料

树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。

1、玻璃纤维

目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。

2、碳纤维

碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。

3、芳纶纤维

20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。

4、超高分子量聚乙烯纤维

超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。

5、热固性树脂基复合材料

热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。

热塑性树脂基复合材料

热塑性树脂基复合材料是20世纪80年展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。

高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。

滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。

云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。

我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。

我国复合材料的发展潜力和热点

我国复合材料发展潜力很大,但须处理好以下热点问题。

1、复合材料创新

复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为0.29kg,而美国为6.8kg,亚洲地区具有极大的增长潜力。

2、聚丙烯腈基纤维发展

我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。

3、玻璃纤维结构调整

我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。

4、开发能源、交通用复合材料市场

一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。

5、纤维复合材料基础设施应用

国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。

复合材料论文篇5

FRP(fiberreinforcedplastics)复合材料主要有碳纤维(CFRP)、芳纶纤维(AFRP)及玻璃纤维(GFRP)等,其材料形式主要有片材、棒材和型材。FRP的共同优点是:轻质高强、高弹模、抗疲劳、耐腐蚀耐久性能好、热膨胀系数低等。另外,FRP复合材料可以节省材料、自由裁剪、施工方便且速度快,虽然其前期投资较大,但维护成本低,经济效益明显。因此,FRP(片材)复合材料在土木结构加固工程中应用潜力巨大。

1、FRP复合材料的基本特性

随着增强纤维材料的发展,碳纤维、芳纶纤维及玻璃纤维已经成为当前结构工程中加固补强的重要材料。一些典型的FRP(片材)复合材料的基本力学性能见下表。

FRP复合材料的性能各异,在拉伸强度及拉伸模量方面,玻璃纤维和芳纶纤维一般比碳纤维低1/3左右;在断裂延伸率方面,芳纶纤维一般是碳纤维的2倍左右,玻璃纤维一般比碳纤维高70%左右;在韧性、抗冲击性能方面,芳纶纤维和玻璃纤维要比碳纤维好得多;在抗碱腐蚀方面,芳纶纤维和玻璃纤维则不如碳纤维好。关于其它方面的性能差异,这里不再赘述。

2、FRP复合材料在结构加固工程中应用领域

2.1民用建筑、桥梁及工业厂房

FRP复合材料因其优异的力学性能,在民用建筑及工业厂房的加固中应用很多,主要有:①梁加固。加固的作用包括抗弯和抗剪。在进行抗弯加固时,FRP复合材料的纤维方向与梁的轴向一致,一般贴在梁的受拉侧,已提高梁的承载能力。据有关试验得出,只要该梁不是超筋梁,贴一层AK-60可以提高承载力30%左右,贴两层可以提高40%左右;在进行抗剪加固时,FRP复合材料的纤维方向与梁的轴向垂直;②板加固。一般对于板的加固净空要求比较高,而且加固后不影响其外观,所以用厚度很薄且柔软的FRP复合材料进行加固是一种理想的选择;③柱加固。芳纶纤维布、玻璃纤维布是比较理想的柱加固材料。因为它们的弹模小,相对于碳纤维(弹模235Gpa),其延性较好;并且,在进行棱角打磨时一般只需要10mm左右,一般不需打磨,而碳纤维则需要30mm左右,若采用芳纶纤维就可以节约很多工时。

2.2地铁、隧道

因地铁和隧道是一种在地下工作的结构,所以它的受力与地面结构是不一样的。在洞顶和洞侧,它都有土压力的作用,而且也有净空的要求,所以进行裂缝修补时,传统的加固方法不可行,而用芳纶纤维布(不导电)进行加固维修就可以满足它的各方面要求,因为在地铁或隧道的拱顶或侧壁的裂缝一般是多向且不规则的,这就要求修复材料必须具有良好的抗剪性能,而且还是一种不导电的材料,所以芳纶布在隧道地铁工程中是一种最佳的选择。

2.3烟囱、水塔

由于烟囱水塔这样向高空发展的结构,加固维修特别困难,传统加固方法(如扩大截面法、粘钢法)基本上很难解决这样的问题,而采用轻质高强、耐腐蚀、耐久性能都很好的复合材料(尤其是芳纶纤维)进行加固,就是一种很好的方法。

3、几种加固方法的比较

3.1扩大截面法

这种加固方法是通过增大受力面积来提高结构的承载力,一般用在一些较小且对净空没要求不高的结构中。这种方法虽然具有成本较低的优点,但是增加了原结构的自重,同时减小了净空,工期长,有很大的局限性。目前,在较大的工程中很少用。

3.2粘钢法

在用钢板加固时,一般将钢板贴在被加固的结构受力部位的外边缘,同时封闭粘贴部位的裂缝和缺陷,约束混凝土的变形。粘钢法加固的特点:①既可提高结构强度,又可提高刚度;②适应结构(钢结构)又粘又铆,适应节点加固;③延伸率大,适应冲击、振动结构加固;④钢板表面处理要求严格,粘结面易生锈;⑤厚钢板端点处应力集中,混凝土易剥离。

由上述可知,采用这种方法加固必须注意几点:①对钢板的尺寸要求很严格。抗弯时宜薄点,以保证它和原结构的变形协调;抗剪时不仅宜厚点,而且在锚固时应使端部钢板延伸到应力较小区,防止应力集中造成对结构承载力的损害;②贴完后,必须对钢板边缘裂缝进行处理;③还要对钢板进行防腐处理,这也是一项长期的任务。所以其造价很高,而且它的使用范围还有一定的局限性,一般只用在刚度要求很严格的地方。

3.3FRP复合材料法

FRP复合材料法加固的特点:①高强度、高弹模,厚度薄、重量轻;②材料可任意长度,任意交叉,适应任意曲面和任意形状结构;③耐腐蚀,抗疲劳性能好;④施工简便,与混凝土结合密实;⑤材料防潮要求严格,且不宜加固节点区域。

在目前的FRP材料加固市场中,碳纤维占的比例最多。碳纤维是一种导电、易发生脆性破坏的材料,可以承受很大的静载,但在绝缘性要求很高的电气化铁路、地铁及隧道工程中,不宜采用;同为高强高弹模的芳纶纤维不存在这样的局限,能经常承受冲击载荷,芳纶纤维的极限破坏形式为塑性破坏,而且还是它的优势所在,其在抗剪方面也有很大的优势,在加固墩子时一般也是利用它优异的抗剪性能,但芳纶纤维在裁剪时须用专门的陶瓷剪刀。

4、FRP复合材料的选择

4.1环境影响

在高碱度和高潮湿度的地区,宜选择碳纤维复合材料,不宜选择玻璃纤维复合材料;在温度变化较大的地区,玻璃纤维的热膨胀系数与混凝土相似,宜选择玻璃纤维;玻璃纤维和芳纶纤维是良好的绝缘体,而碳纤维是可导电体,为避免钢筋的潜在电流腐蚀,碳纤维材料不应与钢筋直接接触。

4.2荷载影响

对于经常承受冲击或振动荷载的结构,应优先选择芳纶纤维和玻璃纤维复合材料,它们的韧性、抗冲击性能都比碳纤维复合材料好;对于要求耐蠕变和疲劳的结构,应优先选择碳纤维复合材料,碳纤维材料耐蠕变和疲劳的能力比芳纶纤维和玻璃纤维材料好得多。

4.3保护层影响

复合材料论文篇6

为了克服传统灌输式、填鸭式教学模式的弊端,积极响应教育部的高校本科生教学模式改革号召,专注于培养动手能力强、理论结合实践、高水平、综合素质的新世纪人才,许多高校的诸多专业课程都在进行教学模式改革。我校材料科学与工程专业为宽口径的大专业,主要培养无机非金属材料方向的毕业生。《复合材料》作为本专业的一门必修课,这门课程涵盖知识点很多,包括聚合物基复合材料、金属基复合材料和陶瓷基复合材料等各个领域的基础知识、制备工艺和实际应用[1]。该课程对于扩大学生的专业知识面、提升学生的专业知识和实践技能具有重要的理论指导作用。针对目前该课程教学中存在的一些问题,本文提出了《复合材料》教学改革的一些方案和措施。

1课程的主要内容和培养目标

《复合材料》是材料科学与工程专业本科生的基础课、必修课,也是本科毕业生从事材料、复合材料等相关工作、科研、工程应用的必备课程。本课程主要讲授常见复合材料的分类、加工制备技术及应用背景,如聚合物基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料和纳米复合材料等。在毕业设计、科研实践中掌握上述几种复合材料的制备及工艺技术,是材料类专业毕业生能够胜任本专业工作的基础和保障。这门课程的培养目标是理解复合材料的界面优化设计及界面作用机理,掌握复合材料的种类和制备工艺方法。了解复合材料界面及性能测试表征方法,学会分析材料研究和生产中的复合材料如金属基、聚合物基、陶瓷基、水泥基复合材料及纳米复合材料的成分、组织形貌和结构性能,并能够适当的调整配方或改进制备工艺最终实现目标所需的力学性能或特殊功能。

2教学中发现的问题

《复合材料》课程内容繁多,涉及三大类材料金属、无机非金属和聚合物的配方、加工、性能及应用,涉及到大量的增强材料、基体材料制备工艺参数和配方,使得学生难于寻找重点内容,学习起来很难抓住重点,接收效果差。另外,学生也不清晰自己将来所面对的就业方向。因此,很有必要让学生自己动手查阅感兴趣的复合材料及相关产品,增强对某一材料产品及其知名企业的了解。在加深对这门专业课的认识和理解的同时,知道自己感兴趣的行业和就业方向[2-3]。这门课程一般期末考试成绩权重大于80%,平时成绩占的比重很小。因此,学生缺乏主动的学习意识,学生对于琐碎繁杂的知识点理解起来也很吃力,上课时容易产生懈怠的情绪、玩手机、精神溜号等现象。多年的教学经验发现:学生期末时候考前突击,只会应付期末考试,只求分数不求甚解,学生对知识的掌握不扎实、不系统,影响后续课程的学习效果和专业技能的培养。学生虽然经过突击性理论学习,但是仍然缺乏专业的实践、应用能力,不能学以致用。学生往往考完试后再问就什么也答不上来,遇到一些实际应用问题也不能马上想起课本上的理论知识体系。这些现象的根本原因在于学生缺少对知识点所对应的实践、范例的了解。

3《复合材料》课程的教学改革措施

3.1以工业产品、科研信息为导向,加深学生对不同类型复合材料的深入理解

本课程涉及到金属基、聚合物基、陶瓷基、水泥基复合材料及纳米复合材料等理论方面的内容,理论较深奥、知识面广、内容概念复杂,学生在学习过程中会遇到许多问题。在教学中充分考虑到知识面的拓宽和不同复合材料应用之间的相互关系,注重产品应用开发为导向,对复合材料的理论配方、制备工艺、性能要求、开发新产品的思路等方面的进行强化,在保持课程系统性的前提下,对一些次要的偏理论的内容适当删减。着重对近期出现的新型复合材料在结构材料和功能材料领域的应用实例进行介绍。通过引入实际产品和工业化生产问题,促进学生深入理解每种复合材料的基础知识和应用前景[4]。将目前与课程有关的科研动态带入课堂,让课程有足够的吸引力。如讲述通过介绍阻燃电缆护套料配方及工艺让学生深入聚合物基复合材料的加工原理和应用场合;通过介绍现有的锂电池正极材料让学生了解碳基复合材料以及纳米复合材料的应用;还有近期Science、Nature等顶级期刊发表的最新纳米尺度金属的伪弹性、功能材料,碳纳米管、石墨烯的微观尺度研究及其在复合材料、功能材料中的最新应用。这些科研实例的讲解可以激发学生的科研热情,调动学生的学习积极性。

3.2以查找和阅读期刊文献为导向,培养学生的主动学习意识

每一章节都给学生布置一定数量的关键词、主题词,让学生去期刊网或外文电子资源网站查阅相关章节关键词的期刊论文或发明专利,填写文献资料统计表。每个学生都要在课堂讲解文献,学生需要提问互动。通过这种能力培养,加深学生对某一复合材料的了解同时,也锻炼学生的查阅文献能力、阅读能力和课堂表达能力,发挥互动、让更多同学参与到课题讨论中,从兴趣和讨论中掌握复杂的知识点。“学生讲,教师听”的这种新模式可以增加教学互动效果,课堂上适当增加学生汇报文献、专利的内容,可以增进师生的相互交流、相互影响。这种方法可以活跃课堂气氛,加深学生对所学知识的理解,激发学生的创新意识和独立思考能力,显著提高课程的教学效果。培养学生一丝不苟、精益求精的学习和科研精神。

3.3增加学生的课外实训环节,让学生到实验室动

手参与复合材料的设计和制作除了课堂教学以外,还可以以材料生产和应用中的实际问题出发,培养学生的动手实践能力和团队协作意识。增加学生的课外实训环节,培养学生从发现问题、提出问题到解决问题的能力,真正意义摆脱课本的死知识[5]。要求老师到实验室亲自指导,让学生到实验室亲自动手参与某些复合材料的设计制备,要求每组学生实践不少于7个工作日,自己动手完成一个小实验,在课堂上互相交流自己的所学、所做、所感,是如何将文献知识转化为直接的功能或结构材料并实现其应用价值。让学生亲手参与实验设计和制作可以提高学生的主动性,再次回到课堂后能够更深刻听讲,认识到课本上基础知识的重要性。逐渐培养学生从提出问题,到寻找解决问题思路,最终解决问题的能力。实训结束后最终以实验报告形式上交并考核。这种实训环节可以在培养学生的应用技能的同时,培养学生团队协作意识,激发学生的课外学习热情。加强学生对知识的理解,提高对课本知识的应用能力,避免“读死书、死读书”。

4《复合材料》课程的教改考核及预期效果

该课程在增加课堂文献讲解、答辩和课外实训环节后,期末考核时弱化期末考试成绩的比重,侧重上课过程中文献讲解、答辩和课外实训的考核,即增加平时成绩的权重。具体成绩比例可以调整如下:(1)期末考试分数:占考核总成绩的50%。(2)文献调研、讲解、讨论环节分数:每名学生不少于两次文献调研、讲解、讨论,共计占总成绩的30%,其中文献整理情况10%、课堂讲解10%和回答问题10%。加分条件:学生查阅参考文献可以查阅英文文献,考察学生对英文文献的理解,根据实际情况给予加分0.5~1分;课堂讲解文献后能够准确回答课堂老师或同学提出所有问题的学生得满分。(3)课外实训环节分数:两次实验占总成绩的20%,其中两次实训过程中的动手实验及实验报告各占10%。通过在《复合材料》课程教学中增加文献讲解和课外实训环节进行教改,改革后的保守目标是:100%学生能系统掌握查阅期刊文献和发明专利的方法,并且能够读懂科技论文的核心研究思想和理论内涵;90%的学生应能掌握课程重点知识,熟悉课本知识中的某种复合材料的制备方法和应用实例;20%学生能掌握英文期刊文献的查阅能力并且能够读懂英文文献含义,具备书写科研论文的基本素质和功底。上述比例都以学生总数为基数,各部分不互相独立,存在相互重叠。希望通过任课教师和学生的共同努力,最终实现由大学的应试教育到应用型人才培养的转变。

5结语

作为一门材料类专业本科生的必修课,《复合材料》对于增加学生的知识面和了解专业方向具有重要作用。因此,这门课程的学习效果影响毕业生的综合素质和专业技能。作者针对平时教学中的一些问题,如上课死气沉沉,学生玩手机,期末考试突击复习等现象提出了一系列教改方法,主要是增加课堂上的工业产品、科研信息吸引学生的兴趣,增加文献讲解、答辩环节和课后的实训环节来弱化期末考试成绩的权重,这样来督促学生主动学习并且能够活跃课堂互动,通过课外实训环节提高学生的实践技能和对基础知识的应用能力。通过教师和学生的共同努力实现由应试教育到应用型人才培养的转变,进一步提升毕业生的专业技能和综合素质。

参考文献

[1]周曦亚.复合材料[M].北京:化学工业出版社,2005:1-225.

[2]马庆宇.复合材料概论课程教学改革初探[J].石家庄职业技术学院学报,2011,23(4):53-55.

[3]杨继年,丁国新,王周锋,等.《复合材料概论》课程的教学设计与实践[J].广州化工,2015,43(3):167-168.

复合材料论文篇7

[中图分类号]TB33;G642[文献标识码]A[文章编号]2095-3437(2014)03-0089-02

复合材料是一种科技含量较高的新材料,广泛应用在航空航天工业、汽车工业、高速铁路、军工领域以及风电叶片新能源等领域。随着我国制造业水平的不断提升,在新产品上应用新材料也越来越多,如大飞机项目的启动,复合材料是其制造的关键技术。复合材料和钢铁等材料不同,钢铁材料是在钢铁厂由自动生产线生产出来的,而复合材料即使在欧美等发达国家的飞机制造厂,也是由一线工程师在现场进行人工裁剪制造出来的,因而产品的质量在很大程度上取决于一线工程师的水平。而这样的企业也需要大量卓越的一线工程师,这也正好与上海应用技术学院对毕业生的培养目标定位相吻合。

复合材料与工程专业是一个新专业,在我国的许多大学都开始设置复合材料与工程专业。而国外的大学未见开设复合材料与工程专业,而是仍将其作为材料科学专业的一个方向。在我国的一些研究型大学,其专业培养方案的导向主要放在培养研究型人才上,原理性、理论性的课程较多,主要以培养研究生为主,学生毕业后也主要在高校研究所从事科研工作。伴随高等教育的大众化,产生了许多应用型本科高校。自改革开放以来,我国新建的地方高校和近年来由高等专科学校升格的本科高校,比如上海应用技术学院,都属于应用型本科高校。在这类高校中设置的复合材料与工程新专业,主要是以经济及社会发展需求为导向,结合国家和地方的战略性新兴产业,培养既具有一定的专业理论知识,又具有较强的实践性专业技能的应用型人才,学生毕业后主要到相关复合材料企业和行业从事技术和管理工作。[1] [2] [3] [4] [5] [6]

复合材料与工程专业是上海应用技术学院2010年经教育部批准开设的几个本科新专业之一,2010年已开始招生。本文以经济社会对该专业高级应用型人才需求为导向,结合我校实际情况,并借鉴、比较国内其他大学本专业的培养方案与课程体系,找出构建并优化我校复合材料与工程专业理论教学体系和实践教学体系的对策。这对于提高应用型工程技术人才的培养水平,实现培养卓越一线工程师的目标定位,具有较大的理论和实践借鉴意义。

一、复合材料与工程专业人才培养目标的定位

作为应用型本科高校,在人才培养目标上应找准自己的定位,形成自己的特色。我们本着依托行业、按市场需求培养、实施产学研一条龙建设的理念,以上海及长三角地区对复合材料制备、加工、应用等领域的工程技术人才需求为依据,建立“宽基础、重技能”的人才培养模式。另外还引进具有丰富实践经验的企业与行业专家进入我校教学工作委员会,参与人才培养方案的制订。

我们制订的复合材料与工程专业的人才培养目标是:培养德、智、体、美、劳全面发展,适应上海及长三角地区经济建设以及现代制造业所需要的应用技术型人才。毕业生具备复合材料与工程专业的理论基础、专业知识与技能,具有良好的学习能力和团队工作能力、高度的社会责任感、良好的道德文化修养和健康的身心素质,可以胜任复合材料领域的研究与技术开发、材料加工工艺和设备设计、材料产品技术贸易与生产管理等工作。

具体要求是:掌握复合材料与工程方面的基础理论与专业知识,掌握复合材料的工业生产过程、设备和工艺;了解复合材料在不同行业中的应用及其相关知识,了解本专业的发展现状和趋势;掌握复合材料与工程工作所需的工程科学技术知识及较丰富的人文和社会科学知识;了解本专业领域技术标准及相关行业的政策、法律和法规。

同时要求具有以下素质和能力:复合材料与工程专业方面的研发,工程实际问题的分析和解决;能够阅读中英文专业文献,能够运用英文进行交流和翻译;懂得运用计算机知识解决复合材料与工程中的各类问题;善于科技创新、技术管理、工程项目管理与市场营销;善于沟通与交流。

二、复合材料与工程专业人才培养计划的构建

(一)复合材料与工程专业的特色

结合我校应用型本科高校的定位和二本的生源特点,我们提出了依托材料学院上海市材料加工工程重点学科建设,与其他高校错位发展,形成自己特色的办学思路。以复合材料制备工艺为突出重点;重视理论联系实际,增加实习课与实践课,形成系统的材料工艺教学体系;要求本专业学生动手能力要强,至少掌握一门复合材料工艺技术。

我校为上海市地方所属高校,大部分学生选择在上海市和长三角区域就业。随着商业大飞机产业和风力发电新能源产业成为上海及长三角的战略性新兴产业,对复合材料与工程专业的应用型高级工程技术人才需求较大。而这些行业的产品构件主要采用树脂基复合材料制造,因此在专业方向的设置上,我校以树脂基复合材料的制备、加工为主要方向。另外由于我校在无机陶瓷材料、铝基复合材料、碳/碳复合材料方面有科研方面的支撑,以及就业前景趋势方面的考虑,也设置了金属基复合材料、陶瓷基复合材料、碳/碳复合材料等专业方向。

(二)复合材料与工程专业的人才培养计划

为了实现复合材料与工程专业的人才培养目标,达到培养要求,我们制订了本专业的人才培养计划,即课程体系的构建。[7] [8] [9]课程体系的知识层次框架包括公共基础课、公共选修课、学科大类基础课、学科专业基础课、专业课、专业选修课和实践教学等课程模块。其中,公共基础课和公共选修课是大学的通识课程模块,使学生掌握数学、物理、英语、计算机、企业管理、法律等方面的基础知识,提高其政治思想、文化艺术品德、身体素质等。学科大类基础课是应用型工科化工材料类课程模块,使学生掌握较宽的工科基础知识。学科专业基础课包括材料学概论、材料科学基础、计算机在材料科学中的应用、材料现代分析技术、高分子化学与物理基础、复合材料原理、复合材料聚合物基体、材料表面与界面等课程,目的是让学生扎实掌握专业基础理论知识。专业课的设置体现了本专业的特色,即适应地方经济战略性新兴产业对应用型高级工程技术人才的需求,以复合材料的设计与制备工艺技术为重点,课程包括复合材料工艺与设备、复合材料结构设计基础、金属基与陶瓷基复合材料、材料性能、材料科技英语等。为进一步拓宽学生的专业知识面,设置了专业选修课:复合材料制备新技术、航空材料、无机建筑材料、复合材料加工、表面工程、复合材料工厂设计概论、材料商品学、材料实验设计优化与数据处理。

我校复合材料与工程专业的另一特色是课程体系重视理论联系实际,安排了较多的实习课和实践课,开设的大型实验课具有设计性、综合性等特点。其中,实践性环节学分占总学分的比例达24.7%,学时占总学时的比例达43.7%,这符合应用型工科高校对学生专业实际动手操作能力、创新实践能力的要求。

三、结论

长三角地区是我国制造业最密集的地区之一,新材料是上海三大支柱产业之一。复合材料在大飞机、风力发电、高速铁路等战略性新兴产业中正在被越来越广泛地应用,为了满足这些行业的需求,作为上海市地方所属高校,我校开办了复合材料与工程新专业。基于我校培养卓越一线工程师的办学定位,我们确定了培养既具有一定的专业理论知识,又具有较强的实践性专业技能的应用型人才的培养目标。根据培养目标我们制订了以复合材料制备工艺为突出重点,重视理论联系实际,增加实习课与实践课,并形成系统的材料工艺教学体系的人才培养计划和课程体系。经过近三年的教学实践,我们修改和完善了人才培养计划,加强了专业实验室建设和实习基地建设,但复合材料与工程专业作为一个新专业,目前仍处于探索阶段。相信经过时间经验的沉淀,我们一定能够培养出符合经济社会要求的应用型高级专业人才。

[参考文献]

[1]秦润华,郝凌云.复合材料与工程专业应用型人才培养的思考[J].广东化工,2012(10):167-169.

[2]陈小虎,吴中江,李建启.新建应用型本科院校的特征及发展思考[J].中国大学教学,2010(6):4-6.

[3]潘懋元,董立平.关于高等学校分类、定位、特色发展的探讨[J].教育研究,2009(2):33-38.

[4]李伟,钟昆明.新建本科院校应用型人才培养方案构建研究[J].重庆科技学院学报(社会科学版),2011(3):157-159.

[5]周德俭,莫勤德.地方普通高校应用型人才培养方案改革应注意的问题[J].现代教育管理,2011(3):63-67.

[6]王钟箐,胡强,陈琳.应用型本科人才培养方案的探索与构建[J].教育与教学研究,2009(10):56-58.

复合材料论文篇8

不饱和聚酯(UP)复合材料是一种热固性材料,是增强材料领域中使用最为普遍的热固性树脂,该树脂加入引发剂发生自由基聚合反应,固化后成为不溶不熔的热固性材料。与一般微观复合材料相比,含有少量蒙脱土的纳米塑料表现出优异的综合性能,因此它们比常规填充复合材料要轻。良好的性能组合、简单的加工工艺和低廉的价格使得纳米塑料在各种高性能管材、汽车及机械零部件、电子和电气部件等领域中有广泛的应用前景。

用插层复合的方法制备有机-无机纳米复合材料是近年来材料科学领域发展的热点,具有理论意义及应用前景.熔体插层是插层复合的一种重要复合方式,它可用传统的熔体共混技术制备纳米复合材料,方法简单,不需溶剂,易于工业化生产。

本文简述了不饱和聚酯/蒙脱土纳米复合材料的特点,介绍了插层法制备不饱和聚酯/蒙脱土纳米复合材料的方法,展望了应用前景。

关键词:蒙脱土, 插层,纳米复合材料,不饱和聚酯

UP/MONTMORILLONITE NANOCOMPOSITES

Abstract The kinetics of isothermal crystallization of UP/montmorillonite nanocomposites with different content of montmorillonite prepared by melt intercalation process has been investigated by intercalation.It is shown that the presence of nanometer montmorillonite particles displays a high propensity to nucleate UP crystallization,enhance the crystallization rate of UP,reduce the surface free energies of the developing crystals and improve the behavior of isothermal crystallization of UP dealt with the Avrami and Hoffman theories.The crystallization process of UP is composed of two stages:the spherulite growth stage and the spherulite nucleation stage.With the increment of the clay content in the UP/montmorillonite nanoconposites,the crystallization rate parameter k decreases and the surface free energy of theUP crystals increases;the spherulite growth stage would become the main stage of the crystallization process in place of the spherulite nucleation stage.Key words UP, Montmorillonite, intercalation, Nanocomposites

摘 要

第一章

第二章 纳 米 材 料

2.1 纳米材料的基本概念和性

2.1.1 纳米材料的主要研究内容

2.1.2 纳米材料的主要性质

2.2 纳米复合材料

2.2.1 纳米复合材料分类

2.2.2 纳米复合材料性能

2.2.3 纳米技术的突破点

2.2.4 高分子基纳米复合材料

第三章 不 饱 和 聚 酯

3.1 饱和聚酯复合物

3.2 不饱和聚酯的性能和应用

3.2.1 层压塑料与模压塑料

3.2.2 云母带黏合剂

3.2.3 油改性不饱和聚酯漆

3.2.4 无溶剂漆

第四章 蒙 脱 土

4.1 蒙脱土的结构及特性

4.2 插层法复合技术

4.3 插层法的优点

第五章 复 合 材 料 的 制 备

5.1 不饱和聚酯/蒙脱土纳米复合材料分析

5.2 部分实验

5.2.1 实验原料

5.2.2 实验步骤

5.2.3 复合机理

第六章 性 能 讨 论

6.1 插层法制复合材料优点

6.2 实验分析

6.3 数据及结果

结 论

参 考 文 献

致 谢

复合材料论文篇9

用插层复合的方法制备有机-无机纳米复合材料是近年来材料科学领域发展的热点,具有理论意义及应用前景.熔体插层是插层复合的一种重要复合方式,它可用传统的熔体共混技术制备纳米复合材料,方法简单,不需溶剂,易于工业化生产。

本文简述了不饱和聚酯/蒙脱土纳米复合材料的特点,介绍了插层法制备不饱和聚酯/蒙脱土纳米复合材料的方法,展望了应用前景。

关键词:蒙脱土, 插层,纳米复合材料,不饱和聚酯

up/montmorillonite nanocomposites

abstract the kinetics of isothermal crystallization of up/montmorillonite nanocomposites with different content of montmorillonite prepared by melt intercalation process has been investigated by intercalation.it is shown that the presence of nanometer montmorillonite particles displays a high propensity to nucleate up crystallization,enhance the crystallization rate of up,reduce the surface free energies of the developing crystals and improve the behavior of isothermal crystallization of up dealt with the avrami and hoffman theories.the crystallization process of up is composed of two stages:the spherulite growth stage and the spherulite nucleation stage.with the increment of the clay content in the up/montmorillonite nanoconposites,the crystallization rate parameter k decreases and the surface free energy of theup crystals increases;the spherulite growth stage would become the main stage of the crystallization process in place of the spherulite nucleation stage.key words up, montmorillonite, intercalation, nanocomposites

目 录

摘 要

第一章 绪 论

第二章 纳 米 材 料

2.1 纳米材料的基本概念和性

2.1.1 纳米材料的主要研究内容

2.1.2 纳米材料的主要性质

2.2 纳米复合材料

2.2.1 纳米复合材料分类

2.2.2 纳米复合材料性能

2.2.3 纳米技术的突破点

2.2.4 高分子基纳米复合材料

第三章 不 饱 和 聚 酯

3.1 饱和聚酯复合物

3.2 不饱和聚酯的性能和应用

3.2.1 层压塑料与模压塑料

3.2.2 云母带黏合剂

3.2.3 油改性不饱和聚酯漆

3.2.4 无溶剂漆

第四章 蒙 脱 土

4.1 蒙脱土的结构及特性

4.2 插层法复合技术

4.3 插层法的优点

第五章 复 合 材 料 的 制 备

5.1 不饱和聚酯/蒙脱土纳米复合材料分析

5.2 部分实验

5.2.1 实验原料

5.2.2 实验步骤

5.2.3 复合机理

第六章 性 能 讨 论

6.1 插层法制复合材料优点

6.2 实验分析

6.3 数据及结果

结 论

复合材料论文篇10

用插层复合的方法制备有机-无机纳米复合材料是近年来材料科学领域发展的热点,具有理论意义及应用前景.熔体插层是插层复合的一种重要复合方式,它可用传统的熔体共混技术制备纳米复合材料,方法简单,不需溶剂,易于工业化生产。

本文简述了不饱和聚酯/蒙脱土纳米复合材料的特点,介绍了插层法制备不饱和聚酯/蒙脱土纳米复合材料的方法,展望了应用前景。

关键词:蒙脱土, 插层,纳米复合材料,不饱和聚酯

up/montmorillonite nanocomposites

abstract the kinetics of isothermal crystallization of up/montmorillonite nanocomposites with different content of montmorillonite prepared by melt intercalation process has been investigated by intercalation.it is shown that the presence of nanometer montmorillonite particles displays a high propensity to nucleate up crystallization,enhance the crystallization rate of up,reduce the surface free energies of the developing crystals and improve the behavior of isothermal crystallization of up dealt with the avrami and hoffman theories.the crystallization process of up is composed of two stages:the spherulite growth stage and the spherulite nucleation stage.with the increment of the clay content in the up/montmorillonite nanoconposites,the crystallization rate parameter k decreases and the surface free energy of theup crystals increases;the spherulite growth stage would become the main stage of the crystallization process in place of the spherulite nucleation stage.key words up, montmorillonite, intercalation, nanocomposites

目 录

摘 要

第一章 绪 论

第二章 纳 米 材 料

2.1 纳米材料的基本概念和性

2.1.1 纳米材料的主要研究内容

2.1.2 纳米材料的主要性质

2.2 纳米复合材料

2.2.1 纳米复合材料分类

2.2.2 纳米复合材料性能

2.2.3 纳米技术的突破点

2.2.4 高分子基纳米复合材料

第三章 不 饱 和 聚 酯

3.1 饱和聚酯复合物

3.2 不饱和聚酯的性能和应用

3.2.1 层压塑料与模压塑料

3.2.2 云母带黏合剂

3.2.3 油改性不饱和聚酯漆

3.2.4 无溶剂漆

第四章 蒙 脱 土

4.1 蒙脱土的结构及特性

4.2 插层法复合技术

4.3 插层法的优点

第五章 复 合 材 料 的 制 备

5.1 不饱和聚酯/蒙脱土纳米复合材料分析

5.2 部分实验

5.2.1 实验原料

5.2.2 实验步骤

5.2.3 复合机理

第六章 性 能 讨 论

6.1 插层法制复合材料优点

6.2 实验分析

6.3 数据及结果

结 论

复合材料论文篇11

 

0引言

复合材料是由两种或两种以上组分材料组成的新材料, 根据不同的需要,可以选取不同的组分材料和细观结构来优化材料的性能,在航空航天、建筑、交通等领域得到越来越广的应用。为了预测复合材料的宏观力学属性,人们提出了许多的方法。早期主要以解析模型为主,如Eshelby等效夹杂法[1]、微分法[2]、Mori-Tanaka法[3]等,这些方法只考虑了复合材料结构的一些基本信息,而忽略了复合材料内部的结构特征,计算精度和适用范围有限。随着计算机技术的发展,数值法得到了广泛的应用,如通用元胞法[4-5]和有限元方法[6-8],其方法通常是对复合材料细观结构的“代表性体积元”(RVE)进行力学分析,进而获得其宏、细观力学性能。数值法很好地考虑了复合材料细观结构特征,预测精度较高。

对于高填充比和填充颗粒尺寸跨度大的复合材料,如固体推进剂[9],建模时为了使RVE具有代表性,模型中通常包含数百个颗粒,数值法预测这类材料的有效属性时前处理变得异常困难。毕业论文,有效属性。为了解决这一问题,B. Banerjee[10]利用一种递归算法预测了复合材料PBX9501的有效弹性属性,但是该算法所采用的正交化网格并不能很好的反映颗粒的边界。毕业论文,有效属性。K. Matous[11]在进行固体推进剂损伤分析时,通过Mori-Tanaka方法将基体与小尺寸颗粒均质化为一种混合物。毕业论文,有效属性。

本文将不同尺寸类型的颗粒分别与基体进行均质化,提出一种预测复合材料有效弹性模量的多步骤方法。利用多步法计算了不同填充分数和组分模量比复合材料的有效弹性属性,并与全尺寸有限元计算结果进行了对比。

1多步骤法

高填充分数和颗粒尺寸跨度大的复合材料细观结构RVE通常很大,如图1所示。多步法将预测有效弹性属性的过程分为几个步骤,首先将小颗粒与基体视为一种混合物,利用有限元或细观力学等均质化方法计算出其有效属性后,再把它当成一种新的基体,如此反复,直至计算出整个代表性体积元的有效属性,过程如图2所示。在每一步计算过程中,与基体相混合的颗粒种类越多,计算精度也越高,同时计算模型也越大。多步法计算过程中,参与混合的颗粒体积分数通过下式计算得到:

(1)

其中,为颗粒在“混合物”中的体积分数,,为参与均质化的颗粒和基体体积分数。

图1 复合材料“代表性体积元”

Fig .1 RVE of composite

图2 多步法预测复合材料宏观有效属性过程

Fig.2 Progression of propertyprediction of multi-step method for composite

2均质化方法

2.1有限元法

利用有限元方法预测复合材料有效属性时,首先在将“代表性体积单元”进行网格剖分,再施加周期性边界条件模拟均匀介质的力学行为。周期边界条件表示为

(2)

其中,为RVE的边长,,为施加于边界上的位移载荷。假定平面应变情况下,通过有限元方法计算得到的细观应力、应变场为和,对其进行体积平均得到平均应力(有效应力)和平均应变(有效应变)

(3)

(4)

其中,,为平均应力和平均应变,,为单元平均应力和单元平均应变,为单元数,为单元体积。则二维杨式模量和泊松比计算如下

(5)

(6)

三维杨式模量和泊松比可通过上式转化得到[12]

(7)

(8)

2.2 Mori-Tanaka方法

解析法中,由于Mori-Tanaka方法计算简单,同时在一定程度上考虑了复合材料中夹杂之间的相互作用,成为预测复合材料有效属性的有效工具,对于多相复合材料,其体积和剪切模量可表示为[13]

(9)

(10)

式中,,,,,,分别为体积模量和剪切模量,为体积分数,下标和0分别代表第相颗粒与基体, 为相的数目。杨式模量和泊松比为

(11)

(12)

由(9)-(10)可知,Mori-Tanaka法只考虑了颗粒体积分数,而忽视了复合材料中颗粒的形状、大小及分布等结构特征。

3计算结果

考虑三相颗粒增强复合材料,各组分为各向同性弹性材料,具体组成及力学参数如表1所示。计算中,颗粒体积分数为40%~70%, 颗粒1与颗粒2之间的体积比为1:1.8。迭代法预测该复合材料的有效弹性模量分两个步骤,每一步分别用有元法(FEM)或Mori-Tanaka(MT)方法计算,计算结果与全尺寸RVE的有限元和Mori-Tanaka计算结果进行对比,全尺寸模型颗粒总数为90,每个单步中颗粒数为50。毕业论文,有效属性。四种多

步法与全尺寸有限元计算结果如图3所示

表1 复合材料组分参数

Tab.1 Parameters of composite constituents

 

复合材料论文篇12

1 教学内容的选择

目前,《复合材料成型工艺》这门课程在我院属于专业选修课,学时有限,只有32学时。然后复合材料成型的工艺又非常的多,所以在课程教学内容的选择上,应该结合当前复合材料的发展趋势,既充分考虑材料类专业课程建设的“宽口径,厚基础”的要求,又要满足学校培养应用型本科人才的培养目标。在《复合材料成型工艺》这门课程中,低压接触成型工艺、模压成型工艺、树脂灌注成型工艺和缠绕成型工艺等因其自身工艺的特点而在实际生产中被广泛地采用,因此,这部分内容应该是重点讲授的部分。考虑到当前所用的复合材料多为聚合物基复合材料,所以有关金属基复合材料和无机基复合材料等的成型工艺方面的内容只需要简单介绍。对于那些学有余力的同学,可以通过课外课外交流或推荐相关课外书籍、文献等方式来满足学生的学习要求。此外,仅仅讲授课本知识不能够很好完成《复合材料成型工艺》课程的教学任务。为了让学生及时了解当前最新的有关复合材料成型工艺方面的知识,可以安排3-4个学时的时间介绍当前先进复合材料成型工艺、应用及发展趋势。这方面的成果更新速度很快,这就要求教师能够与时俱进,不断提高和完善自我知识水平,使学生能够学到前沿的科学知识,为将来从事有关复合材料的生产实践打下良好的基础。

2 教学方法和教学手段的创新

课堂教学是向学生传授知识和技能、增进学生智力和创造力的基本形式, 是学校教育的主要途径。教师在教学过程中应根据课程的特点和学生的实际情况,灵活变换教学方法, 帮助学生更好地学习,从而提高教学质量。首先,教学方式应该采用多媒体结合板书的形式进行。信息拓展展示以多媒体为主,重点原理、理论的讲解以板书为主。对于复合材料应用方面的知识,采用多媒体教学并结合结合复合材料在实际生活中的应用,做到图、文、声并茂,充分调动学生的好奇心和学习动力,轻松愉快地把知识传授给学生。而对于一些重要的公式和原理的推导,则应该以板书为主,多媒体为辅的手段教学,通过板书带动学生的思维,促进学生的理解。其次,在教学过程中碰到一些理论性比较强的知识的时候,应该采用启发式教学方法,让学生结合以前学到的化学和物理等基础知识,启发学生理解和掌握复合材料成型过程中的基本理论。再次,理论教学不应该仅仅局限于课堂教学,而应该与课外教学相结合。我校材料专业属于江苏省品牌专业,每年举办许多关于复合材料方面的专家报告会,在理论教学期间,根据课堂教学的内容和实际情况,组织学生积极参加学术报告会,扩充学生的知识面,激发学生独立思考问题的能力和学习兴趣。最后,在理论教学过程中,充分利用我校图书馆资源及网络资源,给学生介绍当前先进复合材料成型工艺的发展趋势及应用进展,让学生接触到最新的科学知识,达到提高教学效果,扩充学生视野的目的。

3 理论教学与实践教学相结合

理论联系实际是教学的基本原则,理论教学的目的是为生产实践服务。复合材料成型工艺一门实践性非常强的专业课,只有理论和实践相结合才能让学生更好地掌握课堂知识,调动学生的学习积极性。首先,在课堂教学时,应该注重理论联系实际。例如在讲到低压接触成型工艺时,可以列举我们生活中的例子(大型雕塑、交通设施)说明此种成型工艺的应用。让学生在日常生活中的实物面前理解课本理论知识。其次,注重实践教学,在目前的教学过程中,结合我院老师的科研情况,组织学生参加老师的科研课题或者是大学生实践创新活动。通过上述的训练,既培养了学生的学习兴趣,加强了对课程内容的理解;又提高了学生的动手能力、实践能力和团队精神。最后,利用学院组织工程实训的机会,带学生到盐城市内有关复合材料厂参观实习,进一步开括学生的思维,增长学生的见识。

4 课后在线答疑

及时解答学生在学习《复合材料成型工艺》课程中的所遇到的困难也是提高教学质量的一个重要途径。在信息技术高度发达的今天,手机和电脑已经在大学校园里面普及。通过一些常用的社交软件,例如微信、电子邮件和QQ等可以及时地掌握学生的学习情况,回答学生在学习过程中的疑问。此外,通过与学生的交流,还可以进一步促进师生之间的感情,激发学生的学习热情。

5 成绩考核与评价