统计教育论文范文

时间:2023-03-13 11:05:39

引言:寻求写作上的突破?我们特意为您精选了4篇统计教育论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

统计教育论文

篇1

鉴于数学问题提出在数学课程与教学中的重要作用,学者们开展了一系列关于数学问题提出的相关研究.例如,数学问题提出能力水平的调查研究表明,中国中小学生的数学问题提出能力还有待于提高[6~7].数学问题提出能力和数学问题解决能力关系的调查研究,揭示了学生的数学问题提出能力和数学问题解决能力之间存在较高的相关性[8~10].数学问题提出能力评价的研究认为学生的数学问题提出能力可以从提出数学问题的流畅性、变通性和创新性3个方面进行评价[11~21].但是,学生数学问题提出能力的评价,从数学问题的流畅性、变通性和创新性3个方面是不全面的,既然数学问题的复杂程度也代表了一个学生数学问题提出能力的高低,因此学生提出的数学问题的复杂性也应是其数学问题提出能力高低的一个评价方面.同时,对于数学问题提出能力和数学问题提出观念之间关系的研究还存在一定的空白.学者Philippou和Nicolaou对于数学问题提出能力和观念之间关系的研究提供了一些启示[22].他们调查了塞浦路斯五年级和六年级小学生数学问题提出能力和自我效能观念之间的关系.结果表明塞浦路斯小学生数学问题提出能力和自我效能观念之间存在一定的相关性.但是该研究仅仅调查了学生的自我效能观念与数学问题提出能力之间的关系,没有涉及学生其他的问题提出观念.例如,学生对数学问题提出的重要性的认识,对数学问题提出的兴趣,以及对数学问题提出的教学形式的认识.同时,数学问题提出能力是否能够被有效测量,将直接影响研究者深入探索数学问题提出能力和观念之间的关系.因此,该研究将首先界定数学问题提出和数学问题提出观念的概念,并构建了一套数学问题提出的评价体系.在此基础上,该研究调查了沈阳市小学生数学问题提出能力和观念的情况,以及二者之间的关系.

二、相关概念的界定

数学问题提出是指,新数学问题的提出和已有数学问题的重新阐释,它可以发生于数学问题解决之前、之中和之后[2].学生在数学问题提出的过程中经历信息的理解,信息的转换,信息的编辑,信息的选择4种心理过程[23].信息的理解发生在学生根据一些数学表达式提出数学问题的过程之中;信息的转换发生在学生根据一些数学图片和表格提出数学问题的过程中;信息的编辑发生在没有限制条件下,学生根据一些数学信息、数学故事提出数学问题的过程中;信息的选择发生在学生根据某一个答案提出数学问题的过程中.观念是个体所持有的主观认识和理论,它包含所有个体认为是正确的,但是却不能提供令人信服的证据的认识[24].在观念概念的基础上,研究者认为数学问题提出的观念是指学生对于数学问题提出的重要性、兴趣,以及数学问题提出学习过程中的信心等的主观认识与态度.

三、研究方法

1.样本

调查了沈阳新民市69个五年级小学生和朝阳北票市48个五年级小学生的数学问题提出能力和数学问题提出观念的情况.根据数学课程标准的要求,学生测试前已经学习了因数与倍数、平行四边形、三角形面积、梯形的面积、分数的基本性质,以及分数的加减法等相关知识.另外,由于参与调查的学生所使用的数学教材存在少数的数学问题提出的情境,所以学生对数学问题提出有一定的了解.

2.测试过程

为了避免部分学生对数学问题提出仍然不清楚,测试前,研究者先讲解一个数学问题提出的例题:“服装店中,一件上衣的价格是60元,一双鞋的价格是82元,根据已知条件提出数学问题.”如果学生提出数学问题的时候存在困难,调查者可以给出一个例子:一件上衣和一双鞋一共多少元?之后引导学生根据该情境提出其他的数学问题.例题讲解之后,研究者强调这次测试不是一次真正的考试,其目的是了解他们的数学问题提出能力水平,因此考试的时候不要紧张.在测试的过程中,如果学生对题意等不是很理解,教师可以给予必要的提示.数学问题提出测试结束后实施数学问题提出观念的测试,两个测试一共用时约50分钟.

3.测试工具

数学问题提出能力测试包括6个算术领域的问题提出测试题(测试题2对学生提出数学问题的解决策略的运算类型加以限制的目的是考察学生在数学问题提出过程中对信息理解的能力).从问题提出情境的表征方式来看,有图片、答案、算式、语言描述和表格等.例如,编写两个应用题,使其计算方法(列式)都为1.6×8.数学问题提出观念问卷包括20个五点李克特观念问题,涉及学生对于数学问题提出的重要性,数学问题提出学习过程中的信心,以及对于数学问题提出的兴趣等.这20个观念问题从设计方式上分为10个正向问题和10个反向问题.例如,“尽管我很努力地学习,但是我在提出数学问题的时候还是总遇到困难”为反向问题;“我认为能够从提出数学问题的过程中学到很多”为正向问题.

4.评价标准

数学问题提出测试从流畅性、变通性、新颖性和复杂性4个维度评价.流畅性指提出正确数学问题的个数【评价一个数学问题是否为正确的数学问题,首先,评价所提出的数学问题是否满足题意的要求.其次,评价所提出的数学问题是否为一个可解的数学问题(一个数学问题不可解是指这个数学问题的数学信息不充分或者和已知条件相矛盾).最后,评价所提出的数学问题是否符合生活实际】.对于某一个测试题,学生提出一个正确的数学问题,则得1分,否则得0分.变通性指学生根据某一个问题提出情境提出的两个数学问题的类型的变化程度,如果两个数学问题都错误,或者其中一个错误,或者两个数学问题都正确且属于同一个类型,都得0分,如果两个数学问题都正确且不属于同一个类型,则得1分.数学问题的类型根据该数学问题的总的语义类型来确定.加减法的语义类型分为变化、合并和比较3种类型,乘除法的语义类型分为等量组的聚集、倍数、矩形和组合[25].例如,“小明带了100元,买了2条围巾和1双手套,剩多少元?”和“买2副手套和1条围巾共多少元?”,前一个数学问题的语义类型为变化,后一个数学问题的语义类型为合并,所以该生测试题1的变通性维度得1分.新颖性是指学生所提出的数学问题比较有新意,具体的评价方法是如果提出的某一类正确的数学问题的个数占所有提出的正确数学问题的个数的百分比小于10%,那么这类数学问题就被评价为新颖性的数学问题.该维度中,数学问题类型的划分方法与变通性维度中数学问题类型的划分方法相同.学生提出一个新颖性的数学问题,则得1分,非新颖性的数学问题或者不正确的数学问题为0分.复杂性是指学生提出的正确的数学问题所包含的语义类型的个数.某一个测试题中,学生提出的两个数学问题中至少有一个数学问题包含两种语义类型,则得1分,至少有一个包含3种及以上语义类型的数学问题,则得2分,其余为0分(两个问题中至少一个问题错误或者两个数学问题都正确,但是每个问题仅仅包含一个语义结构).例如,一个学生提出两个数学问题“一共有多少个动物?”和“草地上有5只母鸡和8头牛,草地上一共有多少条腿?”,第二个数学问题包括合并和等量组的聚集两种语义结构,该生复杂性维度得1分.数学问题提出能力测试4个维度的分数重复累计,流畅性和创新性维度的总分各是12分,变通性维度总分是6分,复杂性维度总分是10分(测试题2要求学生根据指定的算式编写数学问题,因此,评价学生根据该问题情境提出的数学问题的复杂性是没有意义的),所以数学问题提出能力测试的最低分为0分,最高分为40分.

数学问题提出观念问卷中,反向问题反向记分.例如,对于问题“尽管我很努力地学习,但是我在提出数学问题的时候还是总遇到困难”,选项“非常不同意”记5分,选项“不同意”记4分,选项“不知道”记3分,选项“同意”记2分,选项“非常同意”记1分.正向问题正向计分,例如,对于问题“我能够正确地评价提出的某一个数学问题是否正确”,选项“非常不同意”记1分,选项“不同意”记2分,选项“不知道”记3分,选项“同意”记4分,选项“非常同意”记5分.数学问题提出观念问卷的最低分为20分,最高分为100分.

四、研究结果

1.数学问题提出能力的结果

从测试总体情况来看,大部分学生能够提出正确的数学问题,数学问题提出能力测试的4个维度得分率情况分别为,流畅性:87.5%,变通性:45.7%,创新性:12.3%,复杂性:20.3%.可见,在问题提出的流畅性维度上,学生的数学问题提出的分数还是较高的.但是,也不乏一些学生提出不符合要求的数学问题,例如,在测试题2中,根据问题的要求,学生需要提出应用题,而有的学生却提出文字表述题,如:“8个1.6的和是多少?”在测试题4中,根据问题的要求,学生需要提出用乘法或除法解决(可以包含加法或减法)的应用题,而有的学生却提出:“小明存250元,小丽存300元,小明比小丽少多少?”在测试题5中,学生需要根据情境中隐含的规律提出问题,但有的学生却提出:“第四天,他用23根火柴搭了几个正方形?”显然这个数学问题不符合题中隐含的规律;在测试题6中,有的学生提出数学问题:“一只母鸡一天下10个蛋,那么5只母鸡一个月30天下多少个蛋?”可见提出的数学问题不符合生活实际.与数学问题提出的流畅性维度相比,学生在数学问题提出能力的创新性和复杂性维度上的表现不容乐观.学生倾向于提出和课本类似的、练习中常见的、简单的数学问题.例如,对于测试题1,类似于“买2双鞋和1副手套共需多少钱?”的合并问题为36%;类似于“2副手套花多少钱?”的等量组聚集问题为26%.

2.数学问题提出观念的结果

从数学问题提出观念问卷来看,部分学生对数学问题提出的观念不容乐观.例如,对于观念问题4“尽管我很努力地学习,但是我在提出数学问题的时候还是总遇到困难”中,有38%的学生选择同意或者非常同意,表明很大一部分学生对学好数学问题提出缺乏一定的信心.对于问题19“我愿意提出和课本上类似的数学问题”,高达62%的学生选择了同意或非常同意,这可能是学生数学问题提出的创新性较差的一个原因.但是,学生很喜欢数学问题提出的活动.例如,对于观念问题15“如果数学课堂能够给学生提供更多的数学问题提出活动,那么数学课堂就会变得更加有趣”,90%的学生选择了同意或者非常同意.

3.数学问题提出能力和观念之间的关系

皮尔逊相关分析表明,首先,学生的数学问题提出能力和观念在0.05的显着性水平上正相关(=0.21,P=0.02);学生的数学问题提出能力的创新性与数学问题提出观念在0.05的显着性水平上正相关(=0.27,P=0.00).其次,对于数学问题提出的4个评价维度,创新性分别和变通性(=0.29,P=0.00)和复杂性(=0.40,P=0.00)在0.05的显着性水平上正相关(研究中只计算了数学问题提出的变通性,复杂性和创新性之间的相关性,而没有把正确性包含在内,因为变通性、复杂性和创新性3个维度是以正确性为基础的,即,只有正确的数学问题才能评价其变通性、复杂性和创新性).最后,学生的数学问题提出观念能够从很大程度上预测他们的数学问题提出能力(R=0.21,F=5.47,p=0.02).

五、讨论

通过该研究,可以得出,学生倾向于提出一些常规性的、熟悉的数学问题,而不擅长提出创新性、复杂性的数学问题.因此,在日常教学活动过程中,需要教师把培养问题提出能力作为一个重要的教学目标,落实在各学段的课堂教学之中.

首先,教师不仅要提供丰富多彩的数学情境,激发学生提出数学问题的欲望,鼓励学生提出数学问题,同时也要教给学生提出数学问题的一些方法,在学生提出数学问题的过程中给予一些帮助.例如,在学生提不出数学问题的时候给学生提供一些例子,在学生总是提出类似的数学问题的时候,提供学生从另外的角度提问的例子,鼓励学生对提出的数学问题进行评价与反思.此外,培养学生提出问题的能力,仅仅依靠课堂教学来促进学生的数学问题提出能力的提高是不够的.还需要借助于各类考试对数学教学的影响作用,即在考试中增加一些数学问题提出的测试题.当然,在考试中,增加什么形式的数学问题提出的测试题,还需要进一步研究.

篇2

1、学生学习不是从零开始的,而是基于原有知识经验背景的建构。即学生在学习统计课程之前,头脑里并非一片空白。学生通过日常生活的各种渠道和自身的实践,对客观世界中各种自然现象已经形成了自己的看法,建构了大量的朴素概念或前学科概念。这些前概念形形,共同构成了影响学生学习统计学概念的系统。学生的前概念是极为重要的,它是影响统计学学习的一个决定性的因素。前概念指导或决定着学生的感知过程,还会对学生解决问题的行为和学习过程产生影响。

2、学生学习知识是一个主体建构的过程,要突出学习者的主体作用。学习不仅仅是知识由外到内的转移和传递,而是学习者主动地建构自己的知识经验的过程,即通过新经验与原有知识经验的反复的、双向的相互作用,充实、丰富和改造学习者原有的知识经验。在这种建构过程中,学生一方面对当前信息的理解要以原有的知识经验为基础,超越外部信息本身;另一方面,对原有知识经验的运用又不只是简单地提取和套用,个体同时需要依据新经验对原有经验本身也做出某种调整和改造,即同化和顺应两方面的统一。学生不是被动信息的吸收者,而是主动地建构信息,这种建构不可能由其他人代替。因此,教师不能直接将知识传递给学生,而是要组织、引导,使学生参与到整个学习过程中去。

3、学生学习既是个体建构过程,也是社会建构过程。虽然知识是在个体与环境的相互作用中建构起来的,但社会性的相互作用也很重要,甚至更重要。因为人的高级心理机能的发展是社会性相互作用内化的结果(正如统计的特点具有社会性)。此外,每个学习者都有自己的经验世界,不同的学习者对某种问题可以有不同的假设和推论,学习者可以通过相互沟通和交流,相互争辩和讨论,合作完成一定的任务,共同解决问题,从而形成更丰富、更灵活的理解。同时,学生可以与教师、统计专家等展开充分沟通。这种社会性相互作用可以为知识建构创设一个广泛的学习共同体,从而为知识建构提供丰富的资源和积极的支持。因此,课堂上师生交互和生生交互活动起到了很重要的作用,“学习共同体”的形成以及对课堂社会环境和情境的营建是学生获得学习成效的重要途径。

二、建构主义理论教师“教”的特点

建构主义理论认为教师在课堂中的作用,可以概括为教师是课堂教学的组织者、发现者和中介者。

1、教师是课堂教学的组织者,起主导作用和导向作用。教师应当发挥“导向”的作用和教学组织者的作用,努力调动学生的积极性,帮助他们发现问题,进而去“解决问题”。

2、教师是课堂教学的发现者。教师要高度重视对学生错误的诊断与纠正,并用科学的原理和原则,给予正确的引导与指引。

3、教师是课堂教学的中介者。教师是学生与教育方针及知识的桥梁。教师既要把最新的知识和分析方法提供给学生,也要注意提高学生的综合素质。

从辩证法的角度看,教学是一个不断发展的动态过程,教与学是对立统一的矛盾运动,随着教学活动的变化,矛盾的主要方面,或在教师,或在学生。分开来看,“教”的主体是教师,客体是学生,教师发挥主导作用,学生发挥能动作用;“学”的主体是学生,客体是教师,学生进行认识活动和实践活动,教师则对这些活动施加影响。合起来看,在教学活动这一不断发展、循环往复的全过程中,教师与学生的主体客体地位是相互依存、相互规定,又在一定条件下相互转化的。因此,“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师可以实行“提出问题──探索问题──解决问题”的模式组织课堂教学。

“基于学生为主体,教师为主导”的教学思想,在教学过程中,“学”与“导”的活动、学生与教师之间的关系应该是互动的、融合的,在和谐中不断向前发展。因此,按照“学与导和谐发展”的教学要求,教师在课堂教学中按照“提出问题──探索问题──解决问题”的模式组织课堂教学时,可以采取“诱导试学——引导探学——开导活学”方法组织课堂教学。

(1)设置情境,提出问题,激发学生学习的兴趣和热情

教师引导学生学习首先要从现实的、有兴趣的、富有挑战性的真实问题情境开始。让学生一开始进入学习探索就真切地感受到统计就在自己身边,体验到学习统计的价值,从而激发起学习统计的兴趣,萌发积极主动探索统计理论和方法的求知欲望。教师要通过对课堂的组织,让学生对学习统计产生学习兴趣,“热爱是最好的老师”,兴趣盎然地进入了对统计学知识的探索,学生才能学有所长。(2)探索问题,增强学生主角意识,激励学生积极参与

“基于教师在课堂中组织者、发现者和中介者”的角色作用,课堂教学方式应从根本上改变原有的教师讲、学生听,教师指挥、学生操作的教学现象。学生要在自己生活经验的基础上不断地提出问题,分析问题,对各种信息进行加工转换,对新经验和旧经验进行综合概括,解释有关现象。在教学过程中,教师可以提供一定的支持和引导,设计有思考价值、有意义的问题。学生可以进行小组合作研究探索,教师允许学生从不同的角度去观察分析,允许学生用自己喜欢的方法学习,通过各自想法的交流、碰撞,发现学生有价值的建设性建议及方法措施,及时制止学生运用统计方法计算分析问题时可能出现的偏差,使问题得到正确的解决。

(3)解决问题,培养学生创新能力,提高学生综合素质

在以往统计学教学中,我们关注比较多的是学生能否记住计算公式、方法、意义、应用条件,能否利用这些知识完成所设问题的正确计算。而“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师在课堂中,就应该更加关注学生能否将科学知识与自己的生活经验紧密联系起来,关注学生在灵活应用统计学知识、创造性地解决实际问题时所表现出来的情感、态度和价值观。并通过实践活动,使学生对学习统计产生兴趣,变抽象的科学法则、科学方法为得心应手的工具,从而使学生在解决问题过程中,体验参与学习统计的快乐,享受成功解决实际问题的愉悦。

三、以建构主义理论为指导统计学教法探讨

1、设计课堂教学新模式

统计学课程旨在培养学生能够运用统计学基本理论和定量分析方法,对经济现象进行定性和定量的分析和评价。统计学课程内容基本分为三个模块两个层次。第一模块:研究统计学的一般问题,属于基础理论。第二模块:推断统计的理论与方法,相关与回归分析,属于一般的统计方法及其在社会经济领域的运用。第三模块:时间序列分析与预测,统计指数与因素分析,统计综合评价,属于社会经济统计方法的特有问题,侧重于各种统计分析方法运用。两个层

反映了知识、能力、素质培养的要求。在建构主义学习环境下,教师和学生的地位、作用和传统教学相比已发生很大变化。因而首先教师必须改变传统的教育思想与教育观念,以现代教育思想和学习理论为指导,利用多媒体等现代化技术优势,探索最优的课堂教学模式。课堂教学中应进一步发挥好学生的主体作用,让学生主动地参与到获取知识的过程中去,做到:(1)合理处理好教材,创造性地使用教材,充分展示学习内容的实用意义。(2)教学思路清晰,过程流畅、自然。(3)采用启发式、精讲多练式、答疑式、案例式等教学方法,构建情景逼近式的教学模式,努力提高课堂教学效果。

2、设计课内课外相融共生的大课堂

课堂教学不仅要教会想要传授给学生的知识,还要教会学生在书本之外查阅图书、报刊、杂志、网络等资料,以开阔视野,扩大知识面,吸取精华,为我所用,要教给学生发现问题、分析问题、解决问题的方法。此外,还要通过课内设计的实训教学内容激发学生主动参与的热情,实训教学内容主要包括统计调查方案的编制、调查问卷的设计、统计表统计图的制作、综合指标分析、统计案例分析等内容。统计实训的课内教学采用精讲、示范、多练、答疑的方式;课外教学采用学生自行分散复习和有组织分组制表、制图、社会调查、整理计算分析等方式。

3、实行点、线、面、体相结合的大统计

“点”是指让学生根据某一知识点完成作业、实习。“线”是指让学生针对某一问题进行深入分析。“面”是指让学生把若干知识点联系起来进行综合的分析和实训。“体”是指让学生能就学科体系及相关学科的内容进行深入、全面、综合的分析与应用。在讲授基本理论和基本知识的同时,注重学生基本技能培养、综合能力培养、设计能力的培养。使学生能从高度整体把握统计的思路和统计分析、评价思想。

4、充分发挥学生的主体作用

建构主义理论强调学习者在建构性学习中的积极作用,是要求教师在课堂教学中善于激发学生的好奇心和求知欲,使学生主动积极的学习。教学中应根据统计教学内容和学生特点,选择适当的教学方法,灵活运用适当的教学手段,设置悬念,使学生产生好奇心和强烈的求知欲。统计学教学过程中涉及到特有的概念及科学家,教学中可以适当拓展,开阔学生的视野,影响学生的心智,塑造学生的灵魂,在潜移默化中激发学生学习统计的兴趣;教师的教学语言要准确生动形象,善于设疑,启发学生思维,活跃课堂气氛,使学生充满求知思索的激情;做到理论联系实际,强化学习的动机,激发学生学习统计持久的浓厚的兴趣,激励学生不断提高对自己能力的欲求,不断增强自己的学习信心,不断地在自我实现中超越自我。

5、设置情境,在交互中实现教学目标

学校是社会的一个细胞,是社会的一个重要组成部分。课堂也不单纯是“老师教、学生学”的木讷课堂。课堂中的社会性环境主要包括两方面,一是师生之间的交互,二是学生之间的交互。建构主义认为,每个学习者都有自己的经验世界,不同的学习者可以对某种问题形成不同的假设和推论。师生在课堂上可以通过合作解决问题、小组讨论、意见交流、辩论等形式,促进学习者之间的沟通和互动。统计教学要从过去主要关注“人机交互”到关注“人际交互”;从只关注学生与教师、教学信息的交互到关注学生之间的交互以及学生与校外专家、实践工作者的交互;从关注个别化学习到同时关注学习共同体的建立。教学中要充分利用社会性资源,调动学生的学习情趣,拓展学生的知识面,在交互中实现最佳的教学效果。

6、构建科学的考核评价体系

篇3

二、通识教育的内涵和本质

通识教育的思想起源于古希腊的“自由教育”,第一个把它与大学教育联系起来的是美国博德学院的帕卡德(A.S.Packard)教授。目前通识教育已成为当代国际教育领域的一大潮流。究竟什么是“通识教育”?英语中有两个词:liberaleducation、generaleducation可译为“自由教育”、“博爱教育”,“普通教育”或“一般教育”,现在所说的“通识教育”大致包含这两个方面的涵义。了解通识教育的内涵和本质,成为我们认识所面对的客观世界的基本问题之一。一般说来,通识教育从性质、目的和内容等各个方面都有别于传统的知识传承和狭隘的专才教育。首先,从性质上来说,通识教育被定义为“非专业、非职业性的教育”,其本质是对自由和人文精神的传承;其次,就教学目的而言,通识教育是培养健全的个人和自由社会中健全的公民,“造就具备远大眼光、通融识见、博雅精神和优美情感的人才”,因此,更加注重人在生活和情趣、道德和理智、性格和情感等方面的协调发展;再者,从教学内容上,通识教育不再局限于对单纯专业知识的传授,而是追求自然科学、社会科学与人文学科之间的沟通和交流,科学精神与人文精神的融合与统一。

三、通识教育的特征和属性

通识教育的基础性和多元性乃是不同的教育理念、教育环境以及教学实践活动的主、客体之间相互作用、相互碰撞的具体体现,也决定了通识教育的特征和属性。

1.基础性。通识教育既不是专业教育也不是精英教育,而是面向全体学生的综合素质教育,教育的最终目的是培养具有完善的知识结构、完备的人格以及拥有正确价值观和人生态度的“全人”。因此,也决定了通识教育的基本属性。

2.多元性。通识教育作为一种广泛的、非专业性、非职业性的教育,其内容涵盖德、才、学、能、识等多个方面,是一个多种元素、多重联系相互作用、相互渗透的矛盾统一体。

3.自主性。作为古典“自由教育”的延伸,通识教育继承了自由教育的注重理性、有修养和主体能动性的思想,突出学生的主体特征,尊重学生的主观能动性,给学生自主选择的空间,促使学生的全面发展。

4.开放性。通识教育的理念和多元性决定了教学过程的开放性,不再局限于以教师讲授和课堂教学为中心的传统、单一的教学方法和模式,根据学生的特点开展灵活有效、形式多样的教学活动。

5.发展性。学生是发展的人,学生身心的发展具有客观规律性。通识教育注重每个学生的发展,且教育是一个不断完善的动态的过程,充分相信每一个学生,努力激发学生的潜能。

四、通识教育中的多重关系及矛盾统一性

1.教学实践中的主体与客体。通识教育既是一种教育理念,更是一种认识和实践活动。传统的教学过程把教师作为实践的主体,形成“以教为中心”的教学模式,学生成为被动的、接受教育的对象。比如在课堂上,基本上是教师讲、学生听,师生之间的对话、交流和互动很少,课堂气氛也显得比较沉闷和松散。另外,教师的讲课往往很满,现成的结论和定理较多,未能给学生留下太多思索的空间。教师与学生之间的关系,基本上是一种主体施与和客体接受的关系,而不是主体与主体之间的互动关系。现代教育则更注重学生的主观能动性,强调学生在教学过程中的作用,让学生真正成为教学实践中的主体。也就是说,他们不再单单是教育的客体和对象,而是学习的主动进取者,构建以学生为中心、以教师为主导的“主导—主体相结合”的教学模式,教师和学生一起,共同参与和完成对教学规律的认识活动。然而,由于历史和文化等多种因素的影响,在教学活动中要真正实现主体与客体、教师与学生、学生与学生之间的相互作用和良好互动仍然是今后教改中所面临的一个难题。

2.通识教育与专业教育。客观世界具有二元论的特征,通识教育和专业教育是密切相关的,它们之间可以存在非常明显的相互影响。通识教育没有专业的硬性划分,旨在拓展学生视野、培养学习兴趣,提高学生的科学素养与人文素养;专业教育则依托特定的背景,重在培养学生的专业思维与技能。但通识教育并不排斥专业教育,二者相互融合、相互作用、互为支撑、对立统一,作为一对矛盾体共同构成整个高等教育的架构。传统的专业教育往往局限于狭窄的专业范围和单纯的知识传承,抑制了学生的创造潜能;通识教育虽能较好地弥补这一点,但过于空泛的通识教育又往往因缺乏明确的应用背景和专业支撑,也会使学生感觉学无目标和无所适从。因此,只有将二者有机地结合起来,才能相辅相成、相得益彰。

篇4

笔者对广西教育系统部分高校调查了解,结果表明:只有一半的高校设立审计部门,这其中有三分之一是与纪检、监察合署办公;审计人员大部分是从财务岗位劝退转型的,一部分审计人员还兼任学校其他管理岗位。调查显示:某些校领导认为公立高校属于全额拨款预算单位,不象企业存在风险问题,内审工作可有可无,没必要设立独立部门和配备专职专业人员。

2.内部审计信息化水平过低。

由于受到环境、人才、硬件、软件等多种因素的制约,中国的审计信息化发展远远落后于会计信息化。比如广西教育系统的财务部门基本上采用会计电算化软件,业务部门采用信息管理系统,这些信息技术比较成熟,更新升级的速度快,但是相对应的审计部门主要采用手工审计,计算机起到辅助作用,并没有一个成熟的审计软件能赶得上审计对象的变化少数高校也采用审计软件,但事实证明实用性不强,使用效果不理想。原始的简单的审计方法适合于传统的制度导向的财务收支审计,根本无法满足现代风险社会和现代科学技术进步对内部审计的基本要求,无法进行涉及各种环境因素的综合风险分析及防范。

3.内部审计制度建设不到位。

尽管审计署2007年以来了《国家审计数据中心基本准则》和一系列专业审计数据规划,以及2008年通过建立审计方法目录体系和审计方法规范要素而完成了计算机审计方法体系的标准规范工作,但是各施各法的内部审计执法行为可能隐藏着会计信息真实性、完整性和审计作业安全性、科学性、审计证据可靠性及审计报告恰当性等背后的各种审计风险。信息化背景下内部审计工作环境发生了根本变化,工作中出现的新情况新问题,因计算机审计的范围、目标、程序、技术、方式等缺乏法律法规的明确规定而导致在审计实践中遇到了很多的障碍。

4.内部审计风险更趋复杂化。

在信息技术普及化、信息交流全球化和信息传输自动化的背景下催生了会计核算电算化以及内部审计信息化。这种背景下内部审计,审计环境更趋复杂化,审计数据采集难度、审计证据的充分性、信息系统的成熟度与安全性、审计人员掌握计算机专业知识与技能的熟练度等审计因素,均有可能使得审计风险在审计业务发生前就已经产生或存在。

二、内部审计风险防范措施建议

1.与时俱进,更新理念。

对于内部审计的负责部门,应做好内部审计制度建立和完善工作,形成完备的内部审计制度体系,避免出现以领导的意图作为内部审计工作的基本要求的情况。对于被审单位,要树立主动接受内部审计的意识。只有这样,才能不断提升从传统的查错防弊到现在的价值增值管理服务的内部审计内涵。

2.重视技术,坚持创新。

随着信息时代的迅猛发展,内部审计人员的工作理念必须随着内部审计标准、审计方式、审计手段、人员要求、审计目标等变化而与时俱进,必须从传统的手工作业转变为现代内部审计的办公自动化系统、审计项目管理系统的信息化轨道上来,实现由财务控制逐步向业务控制和信息系统控制转变,以计算机及其软件技术、网络通信技术、集成技术、数据管理为依托,重视科技知识与技能在创新内部审计方法上的作用。

3.完善制度,健全体系。

广西教育系统内部审计风险防范工作应尽快研究制订适应本地本系统发展现状的、统一的审计准则和标准,这些准则和标准应当包括内部审计工作标准、风险评估、系统评价、内控评价、人员资质以及审计技术、基础设施、系统流程等方面的规章制度、业务规范和管理体系。不仅仅从战术上对广西教育系统内部制制度进行健全性和符合性测试,继而识别风险并进行有效防控,而且要强调审计战略,应虑广西教育系统内部的各种环境因素,强调财务审计与绩效审计等多种审计模式融合成一个整体体系,以达到审计工作的效率性和效果性。

4.强化培训,打造队伍。

广西教育系统内部审计风险防范工作质量很大程度上取决于所打造的内审队伍的综合素质。培养满足广西教育系统内部审计风险防范工作要求的、财审专业知识与实践经验和计算机技能交融的复合型内部审计人才尤为重要。应通过多种途径培养和培训内审人员的综合素质与能力,诸如加强审计理论研究及其成果转化,以科研促进审计实践,理论研究指导审计实务,并进行考核评价,以适应时代对内审人员的基本要求。

5.注重分工,强调效率。

根据亚当.斯密(AdamSmith,1776)著名的劳动分工论,广西教育系统内部审计风险防范工作可以充分利用社会优质的专业审计资源如审计中介机构,将部分风险程度高以及我们力所不能及的业务项目(如大型基建审计项目或者是巨额融资项目等审计成本高相对较高、专业分工相对专业的审计业务实行内部审计外部化,外包给社会专业机构,不但可以转移和规避审计风险,增强内部审计的权威性和公信力,而且可有效提高审计质量与效率。

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页