煤气化工艺论文合集12篇

时间:2023-03-20 16:29:24

煤气化工艺论文

煤气化工艺论文篇1

中图分类号:G712 文献标识码:A 文章编号:1673-9795(2014)02(a)-0059-01

《煤炭气化工艺》是煤炭深加工与利用专业的核心课程,对该专业学生专业能力的培养起关键作用。为了提高学生在煤炭气化生产各岗位的操作技能,使其具备煤炭气化生产工艺过程参数调节控制的能力,提高学生的综合职业素质。现拟对《煤炭气化工艺》课程进行教学改革,打破传统的课堂教学模式,使学生专业技能和综合素质得到进一步的提高和拓展,为学生零距离上岗铺平道路。

1 课程设计思路

首先深入企业开展课程建设专项调研活动,主要了解煤气化生产技术与新技术应用、生产岗位知识能力需求、企业对毕业生专业知识能力和综合素养的信息反馈、专兼职教师教学协作共同完成教学过程的组织形式等[1]。通过对《煤炭气化工艺》课程的分析,将本课程分为煤炭气化、煤气净化、煤化工产品生产三个模块,每个模块进一步分解成若干个课程单元,如煤气化分解成煤气化原理、气化过程生产技术;煤气净化分解成除尘、变换、脱硫、脱碳单元;煤化工产品生产分解成合成氨、甲醇生产和二甲醚生产单元,每个课程单元包含若干知识点,如原理、生产方法、工艺条件、工艺流程、主要设备及操作控制等,这些知识点整合成本课程任务点。

本课程总体教学设计为:理论教学水煤浆气化仿真软件教学煤化工产品装置仿真实训煤化工教学工厂操作实训生产实习毕业设计顶岗实习职业资格取证考取等环节。

2 课程内容的制定

依据职业岗位能力确定教学内容,以职业能力和专业知识的应用为目标,将课程内容与职业技能进行有效衔接。专业知识的讲授安排在一体化专业教室、实训室、车间进行现场教学,开发与实际生产结合的一体化教学案例,设置体现职业活动的教学项目,增强学生感知认识,让学生在真实仿工厂情境化环境中学习,强化职业技能和职业素质的培养。

《煤炭气化工艺》课程内容设计依托化工实训基地、煤化工教学工厂、仿真实训中心、煤化工反应实训中心等实训场所进行,确立基于工作过程的课程内容,充分体现教学过程的实践性、开放性、职业性。按照以煤为原料的煤化工生产过程这一主线,并与企业生产技术人员合作,结合教学条件设计了该课程的教学内容如表1所示,把理论教学、实训、实习环节融合成一个体系,以模块的形式实施,突出工学结合的特色。

3 教学内容的组织与安排

教学内容的安排以煤为原料的气化过程这一主线,将理论教学与仿真实训、实践教学有效穿插,对理论知识进行提升,再次进行煤化工装置的仿真操作开、停车、事故处理过程,之后进入煤化工实训基地进行甲醇生产过程的煤浆制备、德士古气化炉气化、低温甲醇洗等工段现场实践教学,最后与工厂实践相结合,联系以煤炭为原料生产化工合成气的企业进行工厂生产实习。在教学的过程中,结合知识目标、能力目标、素质目标,逐步将学生培养成高技能型人才。

3.1 教学方法

(1)理论教学(板书和PPT相结合):原料气制备的方法、原料气制备的原理、设备及工艺;原料气净化的方法、原理、设备及工艺;甲醇合成的原理、设备及工艺。

(2)仿真教学(仿真软件):离心泵、压缩机、精馏塔、吸收解析、换热器、管式加热炉等单元操作,德士古水煤浆加压气化、一氧化碳变换、低温甲醇洗、甲醇合成等工艺过程的开车、停车、事故处理。

(3)现场教学(参观):煤化工教学工厂水煤浆制备的展板教学。

(4)实操教学(实训设备):流体输送、吸收解析、传热、过滤、干燥等的单元操作过程;固定床反应器、流化床反应器、釜式反应器、纯水制备等工艺过程的开车、停车、产品的分析。

(5)生产教学(校内教学工厂、校外实训基地):煤化工教学工厂煤浆制备、耐硫变换、低温甲醇洗、甲醇合成、甲醇精制等过程开、停车、事故处理;校外实训基地顶岗实习。

3.2 教学组织

(1)每个模块“理论与实践相结合”、实现“教、学、做”一体化。

煤气化工艺论文篇2

中图分类号:X784 文献标识码:A 文章编号:1671-7597(2013)12-0067-01

1 新天煤质分析

该分析项目数据经委托由煤炭科学研究总院北京煤化工分院分析得出:

收到基:全水含量21.5%。

空气干燥基:水分含量6.49%;灰分含量6.81%;挥发分含量:35.31%;固定碳含量51.39%。

干燥基:灰分含量7.28%;挥发分含量37.76%;固定碳含量54.96%。

干燥无灰基:挥发分含量40.73%;固定碳含量59.27%。

由该煤质分析可以看出,该煤样中含挥发分和水分较高,尤其是挥发分含量在35%,煤种年轻,碳化率低,富含油分和挥发性物质,粗煤气中的挥发分杂质洗涤和洗涤废水的处理显得十分必要。

2 煤气洗涤废水的初步处理工艺

煤气洗涤废水的初步处理是将溶解气闪蒸出来,并且分离出焦油和中油产品。新天项目设置煤气水分离装置进行废水的初步处理。

煤气水分离的废水处理程序分为三步:

一是:煤气水的闪蒸,在膨胀器中进行,通过降压扩容原理将溶解在煤气水中的气体闪蒸出来,煤气水压力降至常压。

二是:煤气水中的焦油、油的沉降分离,在分离器中进行,通过油与水的密度差,分理出焦油和油。

三是:煤气水的过滤,主要设备是双介质过滤器,通过过滤除去煤气水中夹带的油、尘杂质。

煤气水分离装置的主要产品是纯焦油(10万吨/a)、中油(10万吨/a)和净化废水(860吨/h)。净化废水中基本不含焦油、油、尘及膨胀气,含尘焦油就地装车外卖。纯焦油和油送入罐区,膨胀气送硫回收进一步处理。净化后的废水送往酚回收进一步处理。

煤气水分离装置的操作难点:

1)在分离温度的选择和控制,根据煤质,在分离过程中选择40℃-70℃之间的某一温度,达到最佳分离效果。分离后的油含量在10 mg/L以下,基本不含尘土杂质。

2)装置设备多,面积大,含油量高,焦油和中油分离压力大,对操作人员的身体素质和操作能力要求高。

3 煤气洗涤废水的酚氨回收

经过煤气水分离装置的初步处理后,废水中还含有H2S、NH3、酚等危险化学品,新天项目设置酚氨回收装置对洗涤废水进一步处理,初步设计年回收粗酚2.5万吨。

酚氨回收装置的原料酚水和产品酚水组成(由赛鼎装置院提供初步设计):

进酚回收装置原料酚水杂质成分:CO2含量7070 mg/L;H2S含量300 mg/L;NH3-N含量7100 mg/L;含油量120 mg/L;总酚含量5550 mg/L;COD 14899 mg/L。

出酚回收装置废水中的杂质含量要求:CO2含量≤500 mg/L;

H2S含量≤50 mg/L;NH3-N含量≤500 mg/L;含油量

≤50 mg/L;总酚含量≤1000 mg/L;COD ≤4000 mg/L,二异丙基醚含量≤100 mg/L。

酚氨回收流程主要分为三步:

一是:脱酸,即脱除掉煤气水中残余的酸性溶解气CO2和H2S,在脱酸塔中进行,通过加热将溶解在水中的CO2和H2S释放出来,H2S气体冷却后送入硫回收装置,水送入脱氨塔进一步处理。

二是:脱氨,即脱除掉煤气水中夹带的NH3,在脱氨塔中进行,通过进一步加热并添加NaOH提高碱性将溶解在煤气水中的NH3释放出来,氨气通过三级冷却分凝后制作成氨水送入硫回收装置用于制作硫胺,水送入萃取擦进一步净化。

三是:萃取,脱氨后的水冷却到40℃送入萃取塔中,采用二异丙基醚作萃取剂将溶解在水中的酚类杂质萃取出来, 萃取后的水含酚量小于1000mg/L,COD量降到4000以下,送入污水处理车间进行进一步处理,污水处理采用生化处理的方式。

其他步骤还包括水分的气提和溶剂的回收。

酚氨回收装置操作难点:

1)脱氨塔内NH3-N物质的脱除:通过添加NaOH溶液调节塔釜的pH,提高NH3-N物质的脱除效率,难点在如何将塔釜pH控制在6.5-7范围内,找到合适的操作点,使NH3-N物质的脱除效率最大化。

2)溶剂回收:采用二异丙基醚萃取水中的酚类杂质,萃取后的萃余液中含油少量的溶剂,需要气提出来,以保证水中的溶剂残留在100 mg/L以下,为生化处理提供合格的废水。萃取液中的溶剂需要进行精馏分离,循环使用。

3)现场塔器设备多,操作复杂,易燃易爆点多,对工艺操作要求高。

4 小结

鲁奇气化工艺技术成熟,运行稳定,因此目前开工的大型煤化工企业主要采用这种工艺,如潞安煤制油项目、义马气化厂、哈尔滨气化厂、大唐克旗项目、新疆庆华项目、广汇新能源项目,均采用鲁奇工艺。但该工艺耗水量大,废水难于处理是该工艺的主要难题。新天煤化工工艺在以前各大项目的基础上,优化设计,克服了缺陷,该工艺的处理效果在理论上满足了废水处理的需要。目前,该项目正在安装建设之中,废水处理项目作为国家示范课题,能否得到高效的处理,值得大家期待。

参考文献

[1]张许达.鲁奇炉气化污水处理工艺的探讨[J].煤炭化工设计,1985(1).

[2]煤气化废水处理工艺研究与运用[A].中国环保装备产业发展论坛论文汇编[C].2007.

[3]王连勇,蔡九菊.煤代油技术研究进展[A].2004全国能源与热工学术年会论文集(2)[C].2004.

[4]孙广,赵子忠,刘友.煤炭气化发展现状及趋势[A].2007中国钢铁年会论文集[C].2007.

煤气化工艺论文篇3

 

焦炉煤气脱氨工艺主要有硫铵法、磷铵法、氨焚烧法三种,兖州矿区焦化厂采用半直接法饱和器生产硫铵法。

1工艺介绍:这是焦炉煤气净化车间(又称化学产品回收车间)中洗氨工段(又称硫铵工段)。由鼓风机来的焦炉煤气,经电捕焦油器后进入煤气预热器。在预热器内用间接蒸汽加热煤气到60~70℃,目的是为了使煤气进入鼓泡式饱和器蒸发饱和器内多余的水分,保持饱和器(Dg4500)内的水平衡。预热后的煤气沿饱和器中央煤气管进入饱和器,经泡沸伞从酸性母液中鼓泡而出,同时煤气中的氨被硫酸所吸收。煤气出饱和器后进入除酸器,捕集其夹带的酸雾后,被送往粗苯工段。博士论文,饱和器。饱和器母液中不断有硫酸铵生成,在硫酸铵含量高于其溶解度时,就析出结晶,并沉淀于饱和器底部。其底部结晶被抽送到结晶槽,在结晶槽内使结晶长大并沉淀于底部。结晶槽底部硫酸铵结晶放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶,以减少硫酸铵表面上的游离酸和杂质。离心分离的母液与结晶槽满流出的母液一同自流回饱和器中。从离心机分离出的硫酸铵结晶经螺旋输送机,送入沸腾干燥器内,用热空气干燥后送入硫酸氨储斗,经称量包装入成品库。为了使饱和器内煤气与母液接触充分,必须使煤气泡沸伞在母液中有一定的液封高度,并保证饱和器内液面稳定,为此在饱和器上还设有满流口,从满流口溢出的母液经插入液封内的满流管流入满流槽,以防止煤气逸出。博士论文,饱和器。满流槽下部与循环泵连接,将母液不断地抽送到饱和器底部的喷射器。因而母液有一定的喷射速度,故饱和器内母液被不断循环搅动,以改善结晶过程。饱和器内所需补充的硫酸,由硫酸仓库送至高置槽,再自流入饱和器,正常生产时,应保持母液酸度为4%~8%(不生产吡啶),硫酸加入量为中和氨的需要量。博士论文,饱和器。饱和器在操作一定时间后,由于结晶的沉积将使其阻力增加,严重时会造成饱和器的堵塞。所以操作中必须定期进行酸洗和水洗。当定期大加酸、补水、用水冲洗饱和器及除酸器时,所形成的大量母液有满流槽满流至母液储槽,在正常生产时又将这些母液抽回饱和器以作补充。

2存在问题

2.1兖州矿区焦化厂是1988年开始设计、建设,发展到现在工艺已比较落后。焦炉经过近20年的运作,已接近老龄化,进行大的设备、技术改造已经不太现实。自动化控制方面太少,很多时候只能人工蹲守,在很大方面限制产品产能。

2.2在化学产品回收车间的冷凝工段,有大量的剩余氨水通过溢流管溢流走,经酚水沟流入环保车间进行废水处理。地沟里不断挥发出比较刺鼻的氨,致使整个厂区都能闻到,严重影响职工的工作环境和身体健康。

2.3在氨回收工段,每天的产量在4—5吨硫酸铵,与理论值相差较大,并且生产的硫酸铵比较黑,主要原因就是母液中有过量的酸焦油,由于清理不及时造成酸焦油沉积在结晶中。

3原因分析

3.1设备维护费用未按照计划投入。资金不到位,直接影响设备维护,造成设备未老先衰,或“带病“工作,逐渐形成不少安全隐患。博士论文,饱和器。设备老化造成的后果如:炉门、炉框变形造成荒煤气泄露;碳化室变形,影响装煤量,进一步影响炉顶空间温度,最终影响氨气的生成;初冷器结垢影响荒煤气降温效果,造成氨回收工段硫铵颜色较黑,电扑焦油器的分离效果,离心机的分离效果都影响产品质量。

3.2工艺设计存在的问题:冷凝工段溢流氨水直接排入酚水沟,这种设计太落后,不节能、不环保。

3.3饱和器泡沸伞的结构太粗糙,影响煤气洗涤效果;满流槽液面上漂浮的酸焦油比较多,人工打捞不及时,不彻底。

3.4焦炉车间、化学产品回收车间存在工艺管理不严现象。

3.4.1焦炉车间存在管理不严的现象。没有控制好均匀生成,没有严格按照推焦计划执行,造成系统压力波动。它很大程度上影响煤气的回收,影响炉子的冒烟冒火,还造成系统压力波动太大。严格控制好装煤量,并且要及时关炉门、盖装煤孔,减少煤气损失。

3.4.2化学产品回收车间冷凝鼓风工段严格控制各项指标(初冷后煤气温度,及时调节各集气管压力30-60pa,减少荒煤气逸散的可能)。

3.4.3硫酸铵工段管理不到位。

煤气化工艺论文篇4

 

焦炉煤气脱氨工艺主要有硫铵法、磷铵法、氨焚烧法三种,兖州矿区焦化厂采用半直接法饱和器生产硫铵法。

1工艺介绍:这是焦炉煤气净化车间(又称化学产品回收车间)中洗氨工段(又称硫铵工段)。由鼓风机来的焦炉煤气,经电捕焦油器后进入煤气预热器。在预热器内用间接蒸汽加热煤气到60~70℃,目的是为了使煤气进入鼓泡式饱和器蒸发饱和器内多余的水分,保持饱和器(Dg4500)内的水平衡。预热后的煤气沿饱和器中央煤气管进入饱和器,经泡沸伞从酸性母液中鼓泡而出,同时煤气中的氨被硫酸所吸收。煤气出饱和器后进入除酸器,捕集其夹带的酸雾后,被送往粗苯工段。博士论文,饱和器。饱和器母液中不断有硫酸铵生成,在硫酸铵含量高于其溶解度时,就析出结晶,并沉淀于饱和器底部。其底部结晶被抽送到结晶槽,在结晶槽内使结晶长大并沉淀于底部。结晶槽底部硫酸铵结晶放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶,以减少硫酸铵表面上的游离酸和杂质。离心分离的母液与结晶槽满流出的母液一同自流回饱和器中。从离心机分离出的硫酸铵结晶经螺旋输送机,送入沸腾干燥器内,用热空气干燥后送入硫酸氨储斗,经称量包装入成品库。为了使饱和器内煤气与母液接触充分,必须使煤气泡沸伞在母液中有一定的液封高度,并保证饱和器内液面稳定,为此在饱和器上还设有满流口,从满流口溢出的母液经插入液封内的满流管流入满流槽,以防止煤气逸出。博士论文,饱和器。满流槽下部与循环泵连接,将母液不断地抽送到饱和器底部的喷射器。因而母液有一定的喷射速度,故饱和器内母液被不断循环搅动,以改善结晶过程。饱和器内所需补充的硫酸,由硫酸仓库送至高置槽,再自流入饱和器,正常生产时,应保持母液酸度为4%~8%(不生产吡啶),硫酸加入量为中和氨的需要量。博士论文,饱和器。饱和器在操作一定时间后,由于结晶的沉积将使其阻力增加,严重时会造成饱和器的堵塞。所以操作中必须定期进行酸洗和水洗。当定期大加酸、补水、用水冲洗饱和器及除酸器时,所形成的大量母液有满流槽满流至母液储槽,在正常生产时又将这些母液抽回饱和器以作补充。

2存在问题

2.1兖州矿区焦化厂是1988年开始设计、建设,发展到现在工艺已比较落后。焦炉经过近20年的运作,已接近老龄化,进行大的设备、技术改造已经不太现实。自动化控制方面太少,很多时候只能人工蹲守,在很大方面限制产品产能。

2.2在化学产品回收车间的冷凝工段,有大量的剩余氨水通过溢流管溢流走,经酚水沟流入环保车间进行废水处理。地沟里不断挥发出比较刺鼻的氨,致使整个厂区都能闻到,严重影响职工的工作环境和身体健康。

2.3在氨回收工段,每天的产量在4—5吨硫酸铵,与理论值相差较大,并且生产的硫酸铵比较黑,主要原因就是母液中有过量的酸焦油,由于清理不及时造成酸焦油沉积在结晶中。

3原因分析

3.1设备维护费用未按照计划投入。资金不到位,直接影响设备维护,造成设备未老先衰,或“带病“工作,逐渐形成不少安全隐患。博士论文,饱和器。设备老化造成的后果如:炉门、炉框变形造成荒煤气泄露;碳化室变形,影响装煤量,进一步影响炉顶空间温度,最终影响氨气的生成;初冷器结垢影响荒煤气降温效果,造成氨回收工段硫铵颜色较黑,电扑焦油器的分离效果,离心机的分离效果都影响产品质量。

3.2工艺设计存在的问题:冷凝工段溢流氨水直接排入酚水沟,这种设计太落后,不节能、不环保。

3.3饱和器泡沸伞的结构太粗糙,影响煤气洗涤效果;满流槽液面上漂浮的酸焦油比较多,人工打捞不及时,不彻底。

3.4焦炉车间、化学产品回收车间存在工艺管理不严现象。

3.4.1焦炉车间存在管理不严的现象。没有控制好均匀生成,没有严格按照推焦计划执行,造成系统压力波动。它很大程度上影响煤气的回收,影响炉子的冒烟冒火,还造成系统压力波动太大。严格控制好装煤量,并且要及时关炉门、盖装煤孔,减少煤气损失。

3.4.2化学产品回收车间冷凝鼓风工段严格控制各项指标(初冷后煤气温度,及时调节各集气管压力30-60pa,减少荒煤气逸散的可能)。

3.4.3硫酸铵工段管理不到位。

煤气化工艺论文篇5

众所周知,我国能源从整体上来说,煤炭、天然气资源相对比较丰富,而石油资源则较为匮乏。随着近年来国内石油资源的日趋紧张,加之国家在煤炭资源开发利用方面更加重视,并且天然气液化技术更多的向民用方向推广,甲醇汽油技术也逐步得到研究与推广,使得传统的通过渣油、天然气为基本原来制备甲醇的工艺逐步为煤炭制甲醇的新型技术所替代。国内煤制甲醇行业也迎来了巨大的发展机遇。然而随着煤制甲醇技术的大氛围推广和应用,在煤制甲醇生产环节中产生的污染物如何处理,也成为了摆在甲醇生产企业面前的必须正视和解决的问题。运用煤为基本原料制备甲醇的工艺流程比较复杂,涉及到空分、气化、合成、精馏等多个不同的生产工段,而在上述各个环节中产生的污染物形式也有所差异。煤制甲醇生产环节会产生大量的废气、废水等污染物质,具体来说,气体污染物主要包括碳氧化合物、氮氧化合物、硫化物以及NH3等多种不同的有毒有害污染气体,废水中则主要包括氯化物、氰化物、以及P、As等具有污染性的化学元素和固体废渣。这些废水废气污染物危害程度各异,然而都会对生产工作者以及设备造成损害,也会严重的威胁当地的自然环境,故而在生产中需要重视对于煤制甲醇工艺中产生的污染物进行有效的处理再进行排放。

一、煤制甲醇工艺流程中气体污染物主要来源以及处理措施

1.粉尘气体污染物

这类污染物的主要来源是煤炭储仓、粉煤气化储仓及煤粉制作环节上产生的粉尘,在上述储仓的顶端排放点应该设置高效袋式除尘装置。除尘装置收集到的煤尘应该尽可能回收到储仓以提高利用效率。在废气高空排放时必须符合排放标准,废气含尘浓度不能超过120mg/m3。

2.工艺气体污染物

为了保障生产装置运行的稳定、现场员工的生命安全以及尽可能的保护化工企业周围环境,通常会设置火炬装置,在生产开车、日常运行、紧急停车和事故处理时流程中产生的无法回收以及有毒有害的气体污染物进行燃烧处理。煤制甲醇工艺流程中气化装置刚开车后制备的煤气后系统不能及时的接气,产生的这部分气体通常都通过火炬燃烧进行处理,而且在生产稳定后一旦发生生产事故也能够将气化装置生产的煤气通过火炬燃烧出来,待解决了生产事故后在接气生产。工艺废气还可以通过燃烧和换热进行体系内的换热循环。例如对于甲醇合成工艺流程的尾气、甲醇精馏环节回收的不凝气,其主要包括H2、CH4、CO、甲醇等。通过这些废气燃烧,为将热量送至整体的换热网络供其他用户使用。煤质甲醇生产中硫回收装置可以同时回收硫磺成品,通过把净化工段收集到的硫化氢气体进行处理,尽可能的回收硫,以保证尾气能够达标排放。

二、煤制甲醇工艺流程中水污染物主要来源以及处理措施

煤气化是煤制甲醇工艺中不可或缺的重要工艺,对于不同的煤气化工艺,产生的污染物无论是种类还是数量都有较大的差异。为了提高甲醇生产企业对于水资源的重复利用效率,绝大多数的煤制甲醇企业都将其工业废水的循环使用作为了工艺设计的重点,在降低水资源消耗的同时,也降低了污水处理系统的处理负荷。可以合理的在工艺中引入预处理系统,先在体系内部循环,再进行污水处理。例如在德士古水煤浆气化工艺中通过灰水处理装置的运用,能够将气化过程中收集的黑水通过闪蒸、沉降、压滤等工艺的处理,将绝大多数的灰水回收利用,仅将很少一部分的污水送至污水处理体统中;煤气冷凝液,能够被用来洗涤煤气。利用污染物质含量低的新鲜水与循环水,减少污水系统里污染物的含量,排放污水通过换热器将潜热回收后,进入生化污水处理装置进行净化,以满足排放标准;气化工艺污水、甲醇装置污水和生活废水同直接进入污水处理装置,完成净化处理后再进入循环体系回收利用。鉴于煤制甲醇工艺污水中氨氮含量较高实际情况,结合目前行业内对于氨氮废水处理的有效方法,绝大多数的煤制甲醇生产企业都采用了预沉降+SBR+多介质过滤工艺。SBR生化净化工艺流程较为简单,处理效率高、占地面积小。此外,使用效果好,处理时间快,净化后的水质佳。并且能够根据不同工段的工艺条件,灵活的进行调整;最后,这种方式对于氮、磷物质的脱除效果好,且不易产生污泥膨胀,便于污水的循环利用。

三、煤制甲醇工艺流程中废渣污染物主要来源以及处理措施

与废水、废气相比,废渣等固体污染物对于人员以及设备的危害程度相对较低,只需要及时将污染物进行清理避免对土地资源的长期占用。在废渣存放时,应该用布遮盖污染物,避免由于天气原因造成的扬尘,影响厂区的空气质量。煤制甲醇生产中会使用到一些含贵金属催化剂废渣。应该将这些废渣收集起来返回至生产厂家回收利用。对无法加以回收利用,有具有危险性的废渣,需委托具有危险污染物处理资质的企业进行处置。

四、结论

综上所述,用煤炭为基本原料制备甲醇的工艺,生产流程十分复杂,并且各个环节中产生的污染物种类也很多,只有切实研究污染物的基本类型和来源,有针对性的采取合理有效的污染物防治措施,一方面能够将甲醇生产过程中产生的污染物排放控制在合理的范围内,保护了化工企业周围环境;另一方面通过对污染物的治理也能够提高热量和物料的回收利用率,提高了企业生产中的经济回报。

参考文献

[1]赵利霞,张春禹.煤化工企业SBR法污水处理工艺[J].河南化工.2010(05).

[2]罗刚,张文耀,邢艳萍.煤制甲醇工艺废水改造[J].黑龙江科技信息.2011(23).

煤气化工艺论文篇6

中图分类号TQ536 文献标识码A 文章编号 1674-6708(2012)80-0096-02

人类要生存,社会要发展就必须依靠能源,而煤能源在世界矿物能源储量中位居首位。我国的能源主要依靠煤能源,煤炭在能源结构中所占的比例为75%,它合理利用煤炭能源,充分体现了高效、洁净、经济的优点,这对煤化工的利用是一个重大突破。煤化工所牵涉到的范围很广,可以生产绝大部分的石油化工产品。在当前阶段,我国的油储存量开采不足和油品紧张的矛盾日益突出,在未来煤化工的发展也直接关系到我国经济的发展和能源战略的安全。本文在此从国产化和工程化的方面出发,对煤气化工艺技术的发展和合成气制乙烯以及甲醇、二甲醚等一些工业化和大型化途径进行了阐述。煤气化工艺技术是煤化工的重要技术,在此重点论述了煤气化技术的未来发展和应用开发等问题。

1 煤化工的三个工业化层次

在煤炭工业发展中,煤气化、化工原料和燃料的合成已经成了主要研究对象。在煤气化新技术的不断发展中,化工原料合成工艺也日趋成熟,当前阶段,将煤制合成气作为重要原料来生产多种化工产品和合成燃料已经形成,这也是煤化工工业的重大改革。

煤化工工艺根据它的步骤来划分,可以分为煤制合成气、合成气的加工和深度加工三个主要步骤。其中,煤化工的第一个层次是水煤浆或者干煤粉通过部分的氧化法生成了合成气。而醇类、烃类以及其他碳氧化合物的合成构成了合成气加工的工艺路线。它们不仅可以成为单独的工业产品,也可以作为加工的中间品。那么,甲醇下游产品如碳酸二甲酯、醋酸等,和烯烃的下游产品如聚乙烯、聚丙烯等所占的比例最多,它是化工行业的重要支柱。

2 煤气化的方法和技术

2.1煤气化的方法

在煤转化发展过程中,煤气化是最主要的一种技术。近年来煤气化技术的不断发展,所形成的气化方法也不尽相同,可以分成流化床气化、移动床气化、熔融床气化以及气流床气化这四种方法。其中,熔融床气化方法还在试用时期,而其他三种方法都已经工业化。

2.1.1流化床气化方法

这种方法是采用了不大于八厘米的颗粒煤作为原料,同时把气化剂作为流化介质,然后通过流化床的气体分布板从下由上通过床岩。流化床内气和固直接的返混和接触良好,它的传质和传热速率都很高,所以流化床的组成和温度都比较均衡。

2.1.2移动床气化方法

这种方法又叫固定床气化,这种方法需要逆向操作。一般可以分为常压和加压两种方法,常压法操作简单,但必须用块煤,不可以采用低灰熔点的煤。而加压法是在常压法的基础上进行改进和提高的,一般采用氧气和水蒸气作为气化剂,很大提高了煤种的适应能力。这种方法一般采用Lurgi加压气化法,所生产出来的煤气中的甲烷含量比较高。

2.1.3气流床气化方法

气流床是固体在燃料气化时,气化剂把煤粉带进气化炉进行并流气化。它的特点主要是气流隔开了各自的煤粒,燃料的粘结性不对气化过程产生影响。燃料在气流床气化炉的反应区做短时停留,燃料和气化剂快速反应。采用氧气和少许水作为气化剂,可以保持较高的反应温度。在气流床气化方法中,K-T炉法是最早被使用的。它一般在常温状态下操作,但出现了一些问题,后来又研究出了加压气化工艺-Shell和Prenflo方法。

2.2 煤气化的技术

如今已工业化的煤气化工艺有以下几种:Texaco水煤浆加压气化、Lurgi固定床加压气化、Dow水煤浆加压气化以及Shell粉煤气化。

2.2.1 Texaco水煤浆加压气化技术

Texaco水煤浆加压气化技术是将水煤浆作为原料,和工艺氧气在气化炉中进行部分的氧化反应,在气化压力和高温下,最后获得合成气CO和H2。这种工艺碳转化率和有效气成分很高,它安全性高,对煤种的适用范围广,有比较大的操作弹性,三废处理比较简单,有利于保护环境。

2.2.2 Lurgi固定床加压气化技术

这种气化法对煤质有比较高的要求,只能用块煤,粗煤气中甲烷的含量比较高,比较适合生产城市煤气,而且三废不容易处理。

2.2.3 Dow气化技术

这种气化技术工艺优良,有可能被用在化工生产方面。Dow气化炉可以分成两段,它具有以下一些优点:和Texaco互相比较,它的氧耗、煤耗以及吨氨能耗都比较低,气化条件比较温和,在二段炉可以采用一般的耐火砖,而且成本低,材料适应性广。运用这种水煤浆气化来生产甲醇和合成氨,或许是一种可行的方法。

2.2.4 Shell粉煤制气工艺

它是一种洁净的煤气化工艺技术,原料适应性强,这种工艺不仅适合联合发电,还可以将制取的合成气作为化工原料。它直接采用干粉煤进料,对于原料选择更广泛,成本低,煤种的转化和煤的消耗低。

2.2.5水煤浆化工的现状和技术开发

在煤化工中,采用水煤浆为原料,最难解决的问题就是怎样才能提高水煤浆的煤浓度,让浆体保持稳定状态。在工业配置中,水煤浆离气化炉比较短,中间贮槽的容积比较小,储存时间可以在几个小时到几天之内。提高浆体中的煤浓度可以采用对添加剂性能进行改善和增加第二种含碳固体的方法。这几年来,国家引进的水煤浆气化设备已经慢慢投产,虽然操作流程简便,但也存在一些缺点。干粉煤气化在我国的经验还不成熟,在国外主要是用来发电。

3 对煤气化未来的设想

总的来说,煤化工工艺还有一些缺点:例如运输困难、成本高、污染环境等。运输渠道都是通过轮船和铁路,运输量很大,成本很高,而且在生产过程中排出的废渣、废气等毒害物质,给水源、空气和土地带来了污染。化工装置在配置煤气化技术的时候,都是独立设置的。这种气化设置比较分散,根本无法解决运输量大,污染环境等问题,在21世纪的化学工业发展中已经不能适应形势的发展。在未来的煤气化发展中,可以考虑在煤矿的坑口,设置很多大型化的煤气化装置。另外,还可以在坑口旁边建立大型的煤化工综合性企业,从而提高煤化工产业的经济效益,让运输紧张状况得到缓解,也让城市周围工业区的环境污染得到改善,希望在不久将来这种设想能成为现实,成为将来煤化工发展的方向。

参考文献

[1]曹征彦.中国洁净煤技术[M].北京:中国物资出版社,2008.

煤气化工艺论文篇7

1 我国的焦炉煤气简况

焦炉煤气(COG)是指经过配比的炼焦煤在焦炉中经过高温干馏后,与焦炭和焦油产品的同时产出的一种可燃性气体,是炼焦副产品。平常所述的焦炉煤气是焦化厂经过化产车间“四脱”(脱焦、脱硫、脱氨、脱苯)处理后的净焦炉煤气,其主要成分为氢气(体积分数55~60%)和甲烷(23~27%)。2012年焦炭产量4.4亿吨,其中,1/3来自于钢铁联合企业,2/3来自独立焦化企业;而独立焦化企业主要分布在山西、河南、山东、云南、内蒙等地,其中山西为世界上焦炭最大聚集地。我国每年可供综合利用的焦炉煤气高达1700亿方。

每1吨焦炭大约会副产焦炉煤气420m3,其中一半用于焦炉回炉,其余部分必须进行回收净化处理,有很多非钢焦化企业所产的焦炉煤气无法利用被直接燃烧排放(俗称“点天灯”),既造成大量的资源浪费,同时又造成严重的大气污染。

2 焦炉煤气的综合利用

2.1 焦炉煤气可用于工业与民用燃料、发电、化工原料、还原剂直接还原炼铁、制氢、生产天然气等用途

在工业与民用燃料方面:工业生产,如金属镁锻造等;亦可接入城市供气管网作为居民用气。发电方面:焦炉煤气可替代燃煤进行发电。化工原料方面:可利用焦炉煤气生产合成氨、尿素、甲醇等,也可合成生产清洁燃料油;还原炼铁:焦炭是高炉炼铁过程的还原剂(CO作为还原剂),焦炉煤气可以作为直接还原炼铁的还原剂。制氢:焦炉煤气主要成分为氢气(体积分数55~60%)和甲烷(23~27%),因此可以焦炉煤气为原料制备氢气。目前一般采用变压吸附法(PSA)提取氢气。生产合成天然气(SNG):是近年来的技术方向,合成的天然气产品可利用管道输送到用户,也可以加工成压缩天然气(CNG)或液化天然气(LNG)。

2.2 焦炉煤气制甲醇工艺

甲醇是基本有机原料和燃料,用途广泛。由焦炉煤气生产甲醇的关键是将焦炉煤气中的甲烷转化为氢、一氧化碳。国内经过多年的摸索和研究,开发出了纯氧部分氧化制甲醇技术,包括催化、非催化工艺。

焦炉煤气制甲醇的工艺流程,由焦炉煤气压缩、精脱硫、转化工序、甲醇合成、甲醇精馏等。甲烷转化技术主要有蒸汽转化、非催化部分氧化转化、纯氧催化部分氧化等几种工艺。目前多采用纯氧催化部分氧化工艺,该工艺流程相对比较简单,比蒸汽转化法反应速率快,转化率高,技术成熟,投资较小,在目前已投产的装置中利用最多,已经有40多套,生产能力超过600万t以上。其工艺流程见图1。

2.3 焦炉煤气生产LNG 工艺

天然气作为清洁能源,在全球能源供应中的比例迅速增加,是全球增长最迅猛的能源行业之一。近年来全球LNG的生产和贸易日趋活跃,LNG已成为稀缺清洁资源,正在成为世界油气工业新的热点。利用剩余焦炉煤气生产LNG,既有效解决了焦炉尾气的排放问题,又具有十分可观的经济效益和社会效益。

焦炉煤气制LNG技术工艺过程主要有焦炉煤气净化、甲烷化、分离、加压、深冷液化等几个部分。其工艺流程见图2。

3 焦炉煤气制甲醇与制天然气对比分析

3.1 工艺技术

焦炉煤气制甲醇与制LNG的工艺比较见下表1所示:

从上表1可知,焦炉煤气制LNG的工艺相对较简单。

3.2 能耗

甲醇的能耗和焦化企业的焦炭产能有关,如果焦炭的产能较小,用焦炉煤气生产甲醇的能耗增加。

焦炉煤气制LNG过程中,大部分氢气在液化之前被脱除,不参加甲烷化及低温分离,可大大降低综合能耗。

3.3 装置规模

从经济性考虑,焦炉煤气制甲醇的经济规模不宜低于10万吨/年。一般设计指标为2000~2200m3/吨,即年产10万吨甲醇至少需要100万吨/年的焦炉规模,小于100万吨时选用此方案不经济。

焦炉煤气制LNG的适用规模范围较大,配套焦炭规模为年产10 万吨到数百万吨均可。

3.4 产能规模

2012年我国甲醇装置总产能预计逾5200万吨,国内已建成和在建的焦炉煤气制甲醇产能已达到1000万吨。目前甲醇装置平均利用率不足55%。

近年国内天然气市场需求呈井喷式增长,LNG接收站及LNG液化项目增速明显,截至2011年底LNG液化产能1470万方/天。预计到2015年,国内LNG工厂总产能到达750万吨/年。焦炉煤气制LNG于2011年刚起步。

3.5 技术成熟度

焦炉煤气制甲醇:原化二院开发的国产化甲醇技术已成熟运用。

焦炉煤气制LNG:西南化工研究院自主研发的甲烷化工艺具备产业化条件,加上国外先进的甲烷化工艺包(英国戴维、丹麦托普索)被引进,长期以来困扰我国焦化企业的技术难题有望得以解决,我国于2011年先后建立了几个大型的焦炉煤气制LNG项目,集中于2012年投产。

3.6 经济效益

因国内甲醇产能过剩,而进口甲醇价格较低,以及国内劳动力成本和原材料价格上涨,国内甲醇市场持续低迷,企业开工不足,普遍处于亏损状态。

焦炉煤气制LNG经济效益相对较高。据测算,年产60万t炼焦企业可以配套一套18 万m3/d LNG 项目,投资约2.6亿元,年产LNG 约4.5 万t ,按照目前LNG市场行情,仅LNG 产品一项每年可收入1.6 亿元,投资回报率较高。

3.7 未来的发展趋势

进入“十一五”以后,焦炉煤气制甲醇因市场化路径较快,成本相对较低的优势,已经成为目前我国焦炉煤气综合利用的主要方式。因其属于国家鼓励的循环经济和节能减排项目,故在目前国内产能过剩、开工不足的情况下,仍有些企业仍将焦炉煤气综合利用定位在制甲醇项目上。长期看,如果甲醇的下游市场未得到充分开发,焦炉煤气制甲醇项目将很难获得预期的回报,而且不利用煤化工行业的发展。

目前液化天然气紧缺,价格提高将是未来的趋势。2012年全国LNG工厂扩能加快,而相对爆发式增长的上游产能,面临开发滞缓的下游市场,LNG行业利润较2011年有明显下滑。除依靠市场调节外,还需要加强政策引导,避免出现价格混战、行业亏损的局面。

4 结论

目前国内的焦化企业经济效益低下,企业亏损面达1/3。在此情况下,努力降低焦炭生产成本的同时,积极完善提高产业链建设,提高焦炉煤气利用价值等,是提高企业和社会效益的重要途径。企业应根据焦炉煤气量的大小,选用合适的利用方案,防止只为降低初期投资,而选择利用效率低的利用方案,跟风盲目上马,导致经济效益低下。利用焦炉煤气生产LNG具有工艺要求相对简单、相对投资小、能耗低和投资回报率高等优点,是中小型炼焦企业综合利用焦炉煤气的一个较好途径。

参考文献

[1] 王太炎.焦炉煤气: 发电、制氢、生产甲醇、生产直接还原铁等不同利用方式技术经济比较[D]. 2005 中国煤炭加工与综合利用技术、市场、产业化信息交流会暨发展战略研讨会论文集,241-243

[2] 刘建卫,张庆庚.焦炉煤气生产甲醇技术进展及产业化现状[J].煤化工,2005(5)

[3] 丰恒夫,罗小林,熊伟,吴木之. 我国焦炉煤气综合利用技术的进展[J].武钢技术,2008(4)

煤气化工艺论文篇8

摘要:节能减排是企业实现可持续发展,提高经济效℃的主要手段,本文结合鹤岗市征楠焦化企业的余热回收工艺,阐述如何改进余热回收工艺,实现对余热的高效、持续回收。

关键词 :焦化系统;余热回收;可持续发展

焦化企业在生产过程中会产生大量的热量,而这些热量一直被焦化企业所忽视,造成了资源的巨大浪费,在我国构建生态可持续发展、实现企业节能减排的当前时代背景下,焦化企业要重视对余热的回收,通过余热回收实现资源的最大利用,并且为企业增效提供重要的创收途径。

1 总论

鹤岗市征楠煤化工有限公司现设计年产120 万吨焦炭生产线,生产过程中产生荒煤气,荒煤气被氨水喷洒冷却至90℃左右,荒煤气中的焦油等同时被冷凝下来,煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间,净化车间利用横管换热器间接冷却煤气到25℃,同时循环水可达到40℃,循环水利用凉水架降温,严重浪费能源。

如果这些余热不进行回收利用,不仅浪费了宝贵的能源,也污染了环境。因此采取措施,对焦炉产生的煤气进行余热回收利用,对有效降低能耗,推动实现可持续发展战略具有十分重要的现实意义。

为落实科学发展观,贯彻节能减排的可持续发展战略。我公司拟对焦炉煤气余热进行回收利用,拟建一套余热采暖装置,将产生的热量供厂区所有采暖使用。

2 焦化工艺

在焦化企业生产过程中,备煤车间将配置好的煤装入到煤塔中,相关工作人员将煤按照作业计划从煤塔中取出相应重量的煤炭之后,装入装煤车之后,将其推入碳化室内,然后煤炭在碳化室内经过系列的高温作业之后形成焦炭,并且与此同时产生荒煤气。当碳化室内的经过高温作业形成的焦炭成熟之后,就会利用推焦车将其推出,并且利用拦焦车将其置于熄焦车内,并且经过相关设施的牵引,将其置于熄焦塔内进行喷水熄焦。熄焦后的煤炭将被卸到相应的凉焦台中进行凉却,成熟后的焦炭在冷却一段时间之后,就会送到筛焦工段,经筛分按级别贮存待运。

经过焦化处理工艺,煤在碳化室内经过干馏过程会产生大量的荒煤气,而这些荒煤气会聚集到碳化室顶部的空间,然后这些荒煤气则会经过系列的管道进入集气管,而荒煤气的温度要在700℃左右,而这些热量却没有被焦化企业所有效的应用起来,而是其在相应的桥管中被氨水喷洒之后冷却下来了,无形之中造成了大量热量的损失。与此同时荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。

来自焦炉90℃左右的荒煤气首先通过气液分离器实现气液分离,分离出的粗煤气由上部出来,进入横管初冷器分两段冷却。

初冷器分上、下两段,煤气上进下出,冷却水下进上出,煤气在初冷器上与冷却管内的循环水换热,从90℃冷却至45℃,循环水由32℃升至40℃,然后煤气进入初冷器下段与冷却管内的低温水换热,煤气从-45℃冷却到20-25℃,低温水由19℃升至27℃。

对于其中40℃循环水仍有较大的余热回收价值。

3 工艺流程介绍

3.1 流程图

3.2 采暖流程

本工艺是采用将冬季使用的循环水分为两段,上段为采暖换热段,下段为循环水冷却段,上段的采暖水通过1-3(3 台初冷器)换热后,进入4(采暖水槽),通过5、6、7(采暖加压泵)加压后送往8(用户)使用,用户使用后的回水再次回初冷器换热使用。如果换热后温度不够,可以通过加汽阀门补充适量的蒸汽。在使用过程中,水量不足时,可以通过补水阀门来控制采暖水槽的液位。

3.3 余热回收系统的组成

该系统由3 台初冷器、200 立水槽、3 台采暖泵组成。

4 余热回收系统技术参数

三台初冷器上段可带30000㎡采暖面积,室内温度达到35℃。因此要对余热回收系统技术参数进行设置,根据余热回收的总体要求对相关的设备进行参数设置,以此实现余热的有效回收。

5 结论

随着近几年来焦化行业的余热回收项目造价大幅度降低,同时余热回收效率大幅度提高。从上述分析可以看出,余热利用项目,创造巨大的环保效℃,同时能够创造可观的节能效℃和经济效℃,本设计方案在不影响生产的前提下,采用成熟的余热回收技术,实现了一举多得的收℃,确实是应该大力提倡的节能减排项目。

参考文献:

[1]金刚.氧化铝生产系统余热综合回收利用[J].轻金属,2014(11).

[2]刘松清.吴小平.焦炉烟道气余热回收利用技术的研发与实践应用[J].宜春学院学报,2013(12).

[3]齐卫杰.焦化生产过程中炼焦余热回收利用工艺探析[J].企业技术开发,2011(02).

煤气化工艺论文篇9

我国及东南亚地区褐煤的蕴藏量丰富,近年来,这些年轻煤种的开采量不断增加。由于褐煤炭化程度低,水分高、发热量低、反应活性强、燃点低,传统热风干燥损失大,干燥效率低,产品不稳定[1],因此褐煤很难适合远距离运输,通过新型的预干燥技术,在源头降低煤中的水分,可望实现褐煤的经济运输。因此进一步完善褐煤干燥脱水的技术性能,对满足煤炭产品市场的要求,具有十分重要的意义。本文采用空气干燥法对褐煤干燥工艺进行研究。

一、实验部分

1.主要仪器与设备

干燥箱:766-5型,上海阳光实验仪器厂。带有自动控温装置和鼓风机,并能保持温度在105~110℃范围内。管式炉,反应器等。

2.实验目的

通过实验找出降低特种煤全水分所需的最适宜、最经济的工艺条件。

3.实验内容

实验所需要的热空气温度,通过调节空气流速和管式炉温度来实现。通过实验,研究不同热空气温度、流量等操作条件对煤干燥性能的影响,确定最适宜、最经济的工艺条件降低特种煤的水分含量。

煤样的制备按GB/T474-1996[2]制备方法进行。

煤中全水分的测定按GB/T211-1996[3]方法进行。

二、结果与讨论

1.小流速下热空气温度对煤脱水性能的影响

在不同热空气温度下,当空气流速相同时,找出小流速下热空气温度对全水分测定的影响,从而确定不同热空气温度对煤脱水性能的影响。结果表明在0.4m3/h的空气流速下,随着热空气温度的升高,全水分降低百分点增加,温度越高干燥效果越好。

在0.4m3/h的空气流速下,通过控制干燥时间控制总的空气流量,找出不同流量对煤干燥性能的影响。实验得出在小流速下,达到同样的干燥效果,需要的干燥时间较长。根据实际情况,本实验拟采用通过增加流速的方法增大总的空气流量,进行下一步实验。

2.大流速下干燥时间对煤脱水性能的影响

2.1实验结果

表1 1.8m3/h流速下干燥时间对全水分降低的影响

2.2 讨论

在1.8m3/h的空气流速下,通过控制干燥时间控制总的空气流量,找出大流速下不同流量对煤脱水性能的影响。实验表明在相同的流速下,干燥时间越长,全水分降低百分点越大,干燥效果越好。在空气流速为1.8m3/h,干燥时间为12min的条件下,即可达到很好的干燥效果,达到工艺要求。

下一步通过控制干燥时间、空气流速,进行大流速下热空气温度的影响实验。

3.大流速下热空气温度对煤脱水性能的影响

3.1实验结果

表2 1.8m3/h流速下热空气温度对全水分降低的影响

3.2讨论

在不同热空气温度下,当空气流速较大时,找出热空气温度对全水分测定的影响,从而确定不同热空气温度对煤脱水性能的影响。结果表明并不是无限制的升高温度都起到很好的干燥作用,当温度达到180℃,同比之下脱水性能不太理想,考虑到经济性,应在较短的时间内,较低的温度下,寻求适宜的工艺条件。

4.验证实验

表3 1.8m3/h流速下,干燥时间为12min的实验结果

三、结论

在干燥时间为12min,空气流速为1.8m3/h,热空气总量360L的条件下,温度达到160℃时,全水分降低约12%,干燥效果最好,最经济。

参考文献

[1]黄爱民.煤炭干燥技术的新进展[J].选煤技术,2006,(S1):43-45.

煤气化工艺论文篇10

    1.粉尘气体污染物

    这类污染物的主要来源是煤炭储仓、粉煤气化储仓及煤粉制作环节上产生的粉尘,在上述储仓的顶端排放点应该设置高效袋式除尘装置。除尘装置收集到的煤尘应该尽可能回收到储仓以提高利用效率。在废气高空排放时必须符合排放标准,废气含尘浓度不能超过120mg/m3。

    2.工艺气体污染物

    为了保障生产装置运行的稳定、现场员工的生命安全以及尽可能的保护化工企业周围环境,通常会设置火炬装置,在生产开车、日常运行、紧急停车和事故处理时流程中产生的无法回收以及有毒有害的气体污染物进行燃烧处理。煤制甲醇工艺流程中气化装置刚开车后制备的煤气后系统不能及时的接气,产生的这部分气体通常都通过火炬燃烧进行处理,而且在生产稳定后一旦发生生产事故也能够将气化装置生产的煤气通过火炬燃烧出来,待解决了生产事故后在接气生产。工艺废气还可以通过燃烧和换热进行体系内的换热循环。例如对于甲醇合成工艺流程的尾气、甲醇精馏环节回收的不凝气,其主要包括H2、CH4、CO、甲醇等。通过这些废气燃烧,为将热量送至整体的换热网络供其他用户使用。煤质甲醇生产中硫回收装置可以同时回收硫磺成品,通过把净化工段收集到的硫化氢气体进行处理,尽可能的回收硫,以保证尾气能够达标排放。

    二、煤制甲醇工艺流程中水污染物主要来源以及处理措施

    煤气化是煤制甲醇工艺中不可或缺的重要工艺,对于不同的煤气化工艺,产生的污染物无论是种类还是数量都有较大的差异。为了提高甲醇生产企业对于水资源的重复利用效率,绝大多数的煤制甲醇企业都将其工业废水的循环使用作为了工艺设计的重点,在降低水资源消耗的同时,也降低了污水处理系统的处理负荷。可以合理的在工艺中引入预处理系统,先在体系内部循环,再进行污水处理。例如在德士古水煤浆气化工艺中通过灰水处理装置的运用,能够将气化过程中收集的黑水通过闪蒸、沉降、压滤等工艺的处理,将绝大多数的灰水回收利用,仅将很少一部分的污水送至污水处理体统中;煤气冷凝液,能够被用来洗涤煤气。利用污染物质含量低的新鲜水与循环水,减少污水系统里污染物的含量,排放污水通过换热器将潜热回收后,进入生化污水处理装置进行净化,以满足排放标准;气化工艺污水、甲醇装置污水和生活废水同直接进入污水处理装置,完成净化处理后再进入循环体系回收利用。鉴于煤制甲醇工艺污水中氨氮含量较高实际情况,结合目前行业内对于氨氮废水处理的有效方法,绝大多数的煤制甲醇生产企业都采用了预沉降+SBR+多介质过滤工艺。SBR生化净化工艺流程较为简单,处理效率高、占地面积小。此外,使用效果好,处理时间快,净化后的水质佳。并且能够根据不同工段的工艺条件,灵活的进行调整;最后,这种方式对于氮、磷物质的脱除效果好,且不易产生污泥膨胀,便于污水的循环利用。

    三、煤制甲醇工艺流程中废渣污染物主要来源以及处理措施

    与废水、废气相比,废渣等固体污染物对于人员以及设备的危害程度相对较低,只需要及时将污染物进行清理避免对土地资源的长期占用。在废渣存放时,应该用布遮盖污染物,避免由于天气原因造成的扬尘,影响厂区的空气质量。煤制甲醇生产中会使用到一些含贵金属催化剂废渣。应该将这些废渣收集起来返回至生产厂家回收利用。对无法加以回收利用,有具有危险性的废渣,需委托具有危险污染物处理资质的企业进行处置。

    四、结论

    综上所述,用煤炭为基本原料制备甲醇的工艺,生产流程十分复杂,并且各个环节中产生的污染物种类也很多,只有切实研究污染物的基本类型和来源,有针对性的采取合理有效的污染物防治措施,一方面能够将甲醇生产过程中产生的污染物排放控制在合理的范围内,保护了化工企业周围环境;另一方面通过对污染物的治理也能够提高热量和物料的回收利用率,提高了企业生产中的经济回报。

    参考文献

    [1]赵利霞,张春禹.煤化工企业SBR法污水处理工艺[J].河南化工.2010(05).

    [2]罗刚,张文耀,邢艳萍.煤制甲醇工艺废水改造[J].黑龙江科技信息.2011(23).

煤气化工艺论文篇11

关键词: 煤化工工艺学;教学;体会

Key words: coal chemical technology;teaching;experience

中图分类号:G642.3 文献标识码:A 文章编号:1006-4311(2014)02-0238-02

0 引言

《煤化工工艺学》是煤化工专业的专业必修课,煤化工专业在我校是属于化学工程与工艺专业的一个方向。为了顺应国家大力发展煤化工产业的大战略,培养煤化工专业的应用型人才迫在眉睫。而只有学懂《煤化工工艺学》,才能基本了解煤化工专业的实质内涵。《煤化工工艺学》课程的主要内容包含:煤的低温干馏、炼焦、炼焦化学产品的回收与精制、煤的气化、煤的液化、煤的碳素化、煤化工生产的污染与防治,内容涉猎了煤的绝大部分转化原理、工艺及其方法。通过本书的学习,可以使学生获得专业基本知识,具备在专业生产第一线工作的基本能力。所以教授好这门课程,并且使学生获得必要的收效显得尤为重要。

《煤化工工艺学》是一门以应用为主的专业技术课,学生学起来比较抽象难懂,因此比较科学而易懂的讲授方法,才能够与学生引起共鸣,达到较好的收效。这门课程的基础课是《煤化学》、《有机化学》、《化工原理》、《物理化学》等,作者本人讲授《化工原理》和《煤化学》课程多年,同时结合自己多年的生产实践经验,在驾驭这门课程方面谈一下自己的教学体会。

1 合理分配课时,顺应人才需求

我校引用的《煤化工工艺学》教材是大连理工大学郭树才老师编写的,建议课时80学时。而我校在教学计划中规定课时是128学时,大三下80学时,大四上48学时,因此在分配教学内容时,笔者将煤的低温干馏、炼焦、焦化产品回收与精制三大部分放在大三下的80学时里,把煤的气化、煤的液化、煤的碳素化、煤化工生产的污染与防治放在大四上。这样分配的优点在于:大三下的内容主要是传统煤化工的精髓,学生利用较多的学时理解、消化、吸收;大四上的内容主要是新型煤化工的知识,并且是传统煤化工与石油化工的交汇。从我校的特色办学里可知,我校的煤化工专业既保留了煤化工专业的特色,又吸收了石油加工专业的营养,具有大化工的优势。同时,由于国内现在煤化工的开发利用重点在煤气化、煤液化以及煤制天然气等方面,所以把新型煤化工知识放在这个学期学习,可以使参加应聘的同学很容易回忆起所学过的东西,面试时更有自信。

2 内容详略有当,紧跟学科前沿

郭树才老师的《煤化工工艺学》是按照80学时的课程来设计的,我们拆开来讲解,如果只理解课本上的知识远远不能满足教学需求,因此,必须依托课本,适度引进《炼焦工艺学》、《煤化学产品工艺学》、《煤炭气化工程》、《煤炭直接液化》、《煤炭间接液化》、《煤基醇醚燃料》、《煤化工过程中的污染与控制》等相关教学内容,才能达到既使课堂内容饱满,又使学生了解学科前沿,了解新装置、新技术、新工艺的发展动态,具有对新装备、新技术、新工艺、新方法理解、运用和掌握的初步能力。

比如在第一章,煤炭的低温干馏内容里,实质重点是煤的低温干馏和中温干馏的基本原理、工艺过程、主要设备以及主要技术,为第二章煤的高温干馏做足了铺垫。在讲解的过程中,笔者就结合国内的央企大唐国际比较成熟的“褐煤提质工艺”,以及《煤化学》教材中讲到的相关煤的基本性质与工艺性质来做适当重点讲解,这样,既使学生回顾起来《煤化学》课本上的基本重点知识,又使学生了解了煤低温干馏工艺的风向标,既满足了学生的专业好奇,又为未来就业打下良好基础。在第二章炼焦内容里,大量引进《炼焦工艺学》的基本原理、工艺过程、国内外主要焦炉类型、焦化工艺等的主要内容,同时也结合国内鞍山焦耐院与化六院开发并且使用的各类大型焦炉,展开评价,既使学生把握了煤的高温干馏的基本知识,也使学生认识到了煤焦化的瓶颈以及突破的入口,为未来煤高温干馏的技术研发打下深厚的基础。在第三章炼焦化学产品回收与精制一章,除了详细讲解煤气净化过程中如何提取并且回收重要的化学产品,同时也就目前比较看好的苯加氢工艺,以及煤焦油加氢工艺做了必要的阐述。使学生了解了课本知识的同时,也较好的把握了国内煤化工专业动态,为自己选择专业方向做好了准备。在第四章以后的煤炭气化、煤炭液化等新型煤化工知识方面,更是结合国内现在的煤化工产业动态,在讲解气化原理、气化设备、气化工艺的同时,结合本人对欧洲煤化工技术的考察,把学生引进以煤气化为基础的碳一化工领域,使学生对未来煤化工发展的大战略有了初步的思考,并对就业有了更深刻的认识。在煤化工产业的背后,实质是大量的能耗、大量的污染,如何解决,必须要使学生了解污染产生的主要环节,污染物的主要类型,针对不同性质的污染如何在生产的初、中、末,采用必要的技术消除。因此,学生在学习知识的同时,也知道了自己的专业不仅可以去煤化工行业去就业,也可以去环保、能源动力方面去就业,拓展了思维,开阔了眼界。

3 教学方法灵活,学科联系紧密,学生互动加强

在《煤化工工艺学》的教学过程中,如果仅仅是循规蹈矩地一味去讲解,学生会觉得枯燥、晦涩、难以进入模型。因此,教学方法的灵活多变可以促进学生的理解。

首先采用比拟的授课方式,为学生建立立体的图形,使学生对设备及工艺加深认识。比如在讲解煤加工的设备时,我们习惯称“炉子”,使学生与家庭里常见的火炉联系起来,建立形象化的模型,然后,把模型拆开来,逐一再理顺,大家就对设备有了直观的认识。然后又把“炉子”与化工生产中的“反应器”联系起来,大家就知道了在不同的领域,设备的叫法有所不同,但是原理基本相似;再就是在焦炉的认识过程中,我把学生坐的桌子和椅子分别形象地比拟成“炭化室”和“燃烧室”,使大家直观地对焦炉建立起了立体的印象,然后再把成焦过程中模型分解开来画在黑板上,大家就很直观地对“单向供热”、“成层结焦”有了更深刻的体会。其次采用相关专业课的知识关联,强化了专业理论的理解,同时也强化了相关专业课的应用。比如在学习《煤化工工艺学》之初,先复习《煤化学》相关知识重点,使大家为不同煤化度和不同性质、不同产地的煤种如何应用,对号入座;在讲到焦炉燃烧系统及烟囱的流体流动时,我们及时地与《化工原理》课程的精髓之流体流动和传热对接,把各个环节流体流动的性质分析到位,同时把如何废气循环和节能关键点抛给学生,使学生带着问题去思考,培养大学生分析问题和解决问题的能力;还有在讲解炼焦化学产品的回收与精制过程中,及时与《化工原理》里吸收及萃取的单元操作联系起来,使学生在学习本专业课的同时,把握了专业基础课如何应用的方法,既促进了本专业的理解,也促进了其他课程的学习,一举两得。再次,利用复杂的工艺流程路线图,强化训练,启发学生快速识别并分解工艺路线。教会学生如何去理清复杂的化产回收工艺流程图,然后再自己去设计工艺加工步骤,既可以快速地理清工艺,又可以把机械制图及AUT CAD用到实处。在工艺学的学习过程中,不仅仅是学会原理、工艺,认识设备,识别流程,更重要的还有如何去设计、开发,因此,组织学生讨论,带着问题去学习思考,利用相关知识去引导学生自己动手,写专业小论文,进行相关工艺设计,工艺计算以及工艺设想,掌握专业领域内工艺与设备的基本设计能力,很值得去推广。

参考文献:

煤气化工艺论文篇12

中图分类号:TQ54 文献标识码:A 文章编号:1006-4311(2014)04-0064-02

0 引言

近些年来,全球经济水平得到了迅速的发展,工业水平也越来越成熟,与此同时,世界范围内对于石油的需求量也呈现出逐年攀升的趋势,这就导致石油的价格越来越高。同时,石油是作为一种不可再生资源,一旦发生石油危机,必然给世界经济带来深重的打击,在这一大环境之下,世界各个国家也寻求新能源的制造方法,也取得了初步的成效。就现阶段来看,在众多新能源之中,甲醇有着制作简易、价格低廉的特征,也能够通过工业合成实现大规模生产,因此,甲醇的大规模生产也受到了各个国家有关部门的高度重视。目前,甲醇的使用包括两种类型,即直接使用和间接使用,甲醇的直接使用又包括部分掺混与全额甲醇两种形式,在间接使用过程中,甲醇可以转化为烯烃、二甲醚以及甲基叔丁基醚等等。因此,各个国家为了解决能源问题,也采取各种各样的措施开展煤制甲醇,在这一方面,我国有关部门与各个工厂也进行了深入的研究,下面就针对煤制甲醇项目煤气化技术的选择进行深入的分析。

1 煤制甲醇工艺技术分析

就现阶段我国的实际情况来看,用煤作为原料生产甲醇过程中有着很多关键性的工艺与技术,这包括多个方面的内容,如煤气化技术、酸性气体的脱除、空分、甲醇的合成、甲醇的转化、制冷等等,其中,煤气化技术是作为关键的核心技术,究其根本原因,是由于煤气化技术对于酸性气体的脱除、空分、甲醇的合成、甲醇的转化、制冷有着决定性的作用,因此,在确定煤制甲醇方案时,就需要优化煤气化技术。煤气化的技术较多,早期的代表就是Lurgi气化技术,经过了一段时期的发展,BGL气化技术出现,该种技术是建立在早期Lurgi气化技术基础上发展而来,与传统的Lurgi气化技术相比而言,BGL气化技术有着一系列的优点,如资源消耗量低、废水排放量与副产品量少。目前,西方发达国家常用的煤气化技术包括单喷嘴水煤浆气化工艺等技术。而我国使用较多的则是多喷嘴对置式水煤浆气化技术、Shell干煤粉气化技术。下面就针对这几种技术进行深入的分析,根据我国的实际情况选择出最优的技术。

2 煤制甲醇煤气化技术方案分析

以年产量为300万吨二甲醚作为研究对象,煤制甲醇项目煤气化技术主要包括几种方案,下面就对这几种方案进行深入的介绍:

2.1 第一种方案 第一种方案就是使用水煤浆气化工艺来生产合成气,在对生产出的合成气进行转化、精制处理,待以上的工序完成之后,即可将甲醇生产为二甲醚。

2.2 第二种方案 第二中方案即使用BGL煤熔渣气化技术来生产合成气,合成气生产完成就即可将其转化成为甲醇,再利用甲醇来生产二甲醚。在这种制造方案之中,BGL气化炉生产出的合成气之中,含有较高的甲烷成分,但这些甲烷成分是可以进行回收与利用的,因此,在生产完成之后,可以使用PSA来收集合成气中的甲烷,再进行氧化,将生产出的合成气合并至系统中。

2.3 第三种方案 第三种方案即使用Shell技术将干煤粉转化为合成气,经过净化之后即可得到甲醇,再利用甲醇来生产二甲醚。

3 煤制甲醇煤气化技术方案经济指标分析

方案一、方案二与方案三建设范围大致相同,均包含工艺装置、总图运输、公用工程系统、热电联产、煤储运转运、辅助生产设施等等,方案二与方案一与方案三相比,需要额外增加污水预处理系统、型煤制备系统、甲烷非催化部分氧化系统以及PSA。为了从这三种方案中筛选出经济指标最为理想的方案,现将几种方案的指标统一化,假设方案一、方案二与方案三二甲醚销售量均为300万t/a,方案一、方案二与方案三副产品均纳入制造成本中,通过计算与比较,可以得出各个方案的生产成本。目前国际油价为97.22美元/桶,那么可以得出方案一、方案二与方案三的成本价格差别不大。

4 煤制甲醇煤气化技术方案的比较

4.1 原料适应性比较 在使用多喷嘴对置式水煤浆气化工艺时,应该保证原料煤的成浆性,这样就可以有效的优化气化装置的工作效益,同时,还要控制好灰熔点FT,不宜过高,灰熔点FT过高会影响设备的寿命,此外,还要采取科学的方法提高原料煤成浆性。对于BGL而言,技术的关键就是控制好煤熔渣气化工艺,并将煤粒度控制在6-50mm。而Shell粉煤气化工艺则对原料的含水量与灰分要求较高,需要将含水量控制在2%-5%,将灰分控制在10%-30%。

4.2 产品适应性比较 采用多喷嘴对置式水煤浆气化工艺制得的合成气汽气比例为1.4:1,该种方式适宜用于甲醇、合成氨、羧基合成气、氢的生产之中,生产的用途十分广泛;采用BGL煤熔渣气化工艺生产得出的合成气中甲烷质量分数为6%,因此,该种方式适宜用在合成天然气与燃料气的生产中,而使用该种方案时需要额外增加污水预处理系统、型煤制备系统、甲烷非催化部分氧化系统以及PSA,以便收集合成气体中的甲烷,因此,这种方案的资金投入较高,也较为复杂;Shell工艺使用的是废锅流程,在变换的过程中需要低水汽比变换流程、水蒸汽等,这就会导致低温甲醇制造负荷增加。

4.3 各个方案资金投入情况分析 从各个方案资金的投入情况来看,多喷嘴对置式水煤浆气化技术是最少的,Shell工艺的投资最大,BGL煤熔渣气化工艺介于两者之间,虽然从理论上而言,Shell工艺不需要增加备炉,但是从国内外的实际生成情况来看,在生产的过程中还是需要增加少量备炉,这就会导致资金的投入量增加。

4.4 各个方案污水处理情况分析 多喷嘴对置式水煤浆气化技术与Shell技术都属于洁净生产技术,废气的排放量少,也容易处理,BGL煤熔渣气化工艺的污水中则含有油、氨与酚,与多喷嘴对置式水煤浆气化技术与Shell技术相比,废水处理量虽然少,但是处理难度较大。目前,我国在污水处理方面相关的工艺还不成熟,考虑到这一因素,在使用BGL工艺时,需要控制好煤种,在试烧完成后才能够进行处理。

5 结语

本文对比了多喷嘴对置式水煤浆气化技术、Shell技术、BGL煤熔渣气化工艺的生产成本与技术要求,从原料、产品与投资方面进行了综合的分析与比较,比较结果显示,在保证原料质量的前提条件之下,多喷嘴对置式水煤浆气化技术最为理想,该种生产方式是值得进行推广与使用的。

参考文献:

[1]冯亮杰,郑明峰,尹晓晖,张骏驰.煤制甲醇项目的煤气化技术选择[J].洁净煤技术,2011(02).

[2]郑洪亮.以褐煤为原料制取甲醇合成气煤气化技术的选择[J].广州化工,2011(05).