注浆技术论文范文

时间:2023-03-22 17:49:07

引言:寻求写作上的突破?我们特意为您精选了4篇注浆技术论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

注浆技术论文

篇1

1概述:

圆梁山隧道全长11068m,是新建铁路渝怀线上最长的单线隧道,隧道主要穿越毛坝向斜和桐麻岭背斜,其中毛坝向斜高压富水区总长2200m,向斜翼部最大埋深780m,核部最小埋深550m。该段岩溶和岩溶水异常发育,岩溶、高压富水是地质难题。根据设计资料,毛坝向斜段正常涌水量为55000m3/d,,最大涌水量83000m3/d,且洞身处存在4.6MPa的高静水压力。毛坝向斜高压富水区大量排水将会引起地下水位大幅度下降,甚至可能被疏干,直接影响居民的生产、生活用水,也可能引起局部地面的塌陷或开裂。为了减少隧道修建对周围环境的影响。针对圆梁山隧道高压富水区采取了“注浆堵水,限量排放”的施工原则。

2开挖面超前地质探测及涌出物分析

为确保圆梁山隧道的安全优质、快速顺利施工,有效地采取施工方案,选择合理的注浆方法,在圆梁山隧道施工中采取了多种地质超前预测预报手段,如超前探水孔钻探、红外线、TSP地质雷达超前地质预测预报和地质素描等手段,通过对地质预报信息的综合分析,可以比较准确地判明前方地质情况。

2.1探测过程

圆梁山隧道出口端平导掘进到毛坝向斜高压富水区后,独头掘进达7133米,并在PDK355+058处开始进行反坡开挖,为了确保施工安全,每30m进行一次超前钻孔,以探明前方地质情况,圆梁山隧道出口端平导开挖至PDK355+019时,于2003年6月27日6点开始在掌子面采用MKD-5S地质钻机进行常规超前探测工作。超前探孔布置如图1所示。

图1探水孔横断面布置图2注浆段地质情况示意

Fig.1Layoutofwater-exploringholesFig.2Geologicprofileofgroutingsegment

在探水孔施作过程中,探1#在整个钻进过程中,岩粉为深灰色颗粒,有白色方解石颗粒,有刺激性气体逸出;钻至3m处为破碎岩层,宽度约0.2~0.3m,钻孔内有水涌出,涌水量为20m3/h,充填有黄泥;8~40.6m岩粉为深灰色,较坚硬,局部有破碎灰岩,发生卡钻。探2#有少量水,钻进过程岩石破碎。探3#孔深30.20米,当探水孔钻至15m处有0.3~0.5m岩溶管道,有岩溶水涌出,充填有泥砂和粘土,并含少量砾石,6月27日测得钻孔涌水压力为1.4MPa,全孔涌水量实测100m3/h左右。于2003年6月28日结束探孔。通过探孔情况和地质资料分析掌子面前方3m处有一宽度较小的破碎带,在15m处发育一小型岩溶管道。由于泥砂太多及停电影响,同时洞外大量降雨,导致探3#孔涌水量及水压急剧增大,7月5日涌水量增大到200m3/h左右,由于此处反坡开挖,抽水设施由于泥砂和停电的影响导致掌子面大量涌水不能抽出,引起掌子面淹没。后加快抽水,将掌子面水用两路Φ150mm钢管引出,并在掌子面施作了模筑混凝土封闭掌子面,止浆墙厚2m,又因水大混凝土密封困难改为3m。掌子面稳定后又进行了TSP地质预测预报和红外线超前探水等探测和验证。根据以上地质预测预报成果可判定前方地质条件大致如图2所示。

2.2涌出物分析

2003年6月29日现场采集涌出物并对涌出物进行筛分试验,测试结果图3、图4示。

图3涌出物成份比例图4涌出物筛分曲线

Fig.3Proportionofgushed-outmaterialsFig.4Sievingcurveofgushed-outmaterials

由图3、图4来看:涌出物中粉砂、中砂占86%,而粗砂和砾石等占13.8%,砾石长约3~10mm,说明涌出物在岩溶管道中经过长期迁移和冲蚀作用下被磨圆和筛选,因而隧道断面内岩溶管道或溶隙最大直径大于10mm,涌出物累计筛余百分率曲线比较平缓,可见原地层充填物在未受到压力水冲出前,其级配相当合理,呈较致密结构。从涌出物86%为中细砂可以看出,在岩溶形成过程中,由于地下水的溶蚀作用,泥砂被搬运填充在灰岩裂隙中,后经不断溶蚀,逐渐形成岩溶管道。一旦超前钻孔或隧道开挖揭穿岩溶管道容易发生涌水突泥。

2.3涌水量及水压测试

在超前探测和注浆过程中对平导掌子面涌水量进行了测试和水压测试如图5、图6所示。由图5可见:在进行顶水注浆前平导掌子面处涌水量是急剧增大的,然后逐渐趋于稳定,最大涌水量200m3/h;由图6可见:在封堵掌子面后涌水压力不断上升,最后稳定在2.4MPa。

图5掌子面涌水量变化曲线图6水压力变化曲线

Fig.5CurveofwatersprayingonthefaceFig.6Curveofhydraulicpressure

3注浆设计及施工

3.1注浆方案的确立

根据超前探孔过程中涌水状况,从安全性、经济性考虑,结合该工程实际情况,针对前方出现的岩溶管道水,经过反复研究,制订了“以堵为主”的施工原则,采用了“注浆堵水,封堵岩溶管道,加固破碎地带”的施工方案。根据溶洞区工程及水文地质复杂,选用“深浅孔结合复式全断面注浆”堵水措施。

3.2顶水注浆和小导管周边注浆

根据二院要求及现场实际,在掌子面施作2.5~3m厚砼止浆墙,两个探水孔的孔口管预埋入止浆墙,然后对其进行顶水注浆。由于砼止浆墙与开挖面周边密封施做的不够严密,导致顶水注浆时周遍跑浆严重,于是决定在止浆墙周边进行小导管注浆。如图7所示。

⑴小导管注浆管长L=3m,采用Φ32mm焊接钢管。注浆管前端加工成圆锥状并封死。花管部分长2m,在花管段上间隔30mm~40mm,按梅花型布设Φ4~6mm的溢浆孔。管尾部分采用两道Φ8mm的圆型钢筋焊箍,其中一道用于缠上60cm左右的麻丝后用于止浆,另一道采用丝扣和注浆管连接。

⑵小导管沿隧道开挖轮廓线布置,略向外倾斜,外插角为50~100。

⑶注浆材料采用水泥-水玻璃双液浆和HSC浆液,其配比为W:C=0.8:1,C:S=1:1,凝胶时间为30s~3min。超细水泥MC浆,其水灰比为1:1~0.6:1,HSC浆液水灰比为1:1~0.8:1,凝胶时间为30min~60min。

⑷注浆结束标准采用定压结合定量的原则,注浆终压为2~3MPa,单孔注浆量为0.2~0.4m3。

3.3超前预注浆加固

全断面超前预注浆是在整个断面上布孔,通过注浆形成截水帷幕,并加固周围岩体,注浆加固范围为隧道开挖面及开挖轮廓线外5.0m,注浆段长30m,即PDK354+020~9DK355+990。注浆设计如图8、9所示。

⑴注浆孔采用MKD-5S型钻机成孔。开始用大直径钻头钻进2m后安设φ108mm无缝钢管作为孔口管。再改用φ90mm钻头钻至15~30m。孔口管长度150cm,孔口处缠60cm的麻丝。并用HSC浆锚固。

⑵钻孔深度以达到钻入岩层2~3为原则,采用前进式分段钻进和注浆工艺。

⑶在岩溶管道段注浆是以堵水加固为目的,在岩石破碎带(少量水)注浆是以加固地层为目的。因此在浆液配置及单孔注浆顺序上予以区别对待。

①用引水管将水引出后,封闭掌子面。注浆时关闭阀门,形成静水压力注浆。

②对破碎无水岩层,初始注浆可注入稀浆(1.5:1~1:1),因稀浆中的水泥颗粒在脉冲压力的作用下对冲开及沟通裂隙能够起到剂的作用,一旦裂隙冲开后即进入正常的双液浆注浆。

③对于涌水量较大岩层,凝胶时间可适当缩短,使浆液进入地层后能较快凝固,避免浆液随水流失,达到控制注浆的目的。

图8超前预注浆孔位布置(单位:cm)图9超前预注浆纵断面布置(单位:cm)

Fig.8Crosssectionofadvancedpre-groutingholesFig.9Longitudinalsectionofadvancedpre-grouting

3.4注浆材料

注浆材料采用普通水泥单液浆或普通水泥—水玻璃双液浆(CS)。

注浆孔无水时采用普通水泥单液浆,水灰比W:C=0.8:1~1:1;有水孔则采用单液水泥浆、普通水泥—水玻璃双液浆(C—S浆)和超细水泥浆、HSC浆,根据水量大小选择配比和浆液凝胶时间。涌水量小时,水泥C浆:水灰比W:C=1.:1~0.8:1,C:S=1:1~0.8:1,水玻璃S浆浓度30Be'。孔内水量较大时,水灰比W:C=0.8:1~0.6:1,C:S=1:0.3~0.6,水玻璃S浆浓度35~40Be',当双液注浆压力上升到3MPa左右时,开始注入超细水泥(MC)或HSC浆,直到达到设计终压7MPa。

3.5注浆工艺

采用前进式分段注浆工艺,钻一段,注一段。分段长度根据钻孔情况确定,若出现大的涌水或泥砂(Q>10m3/h)则按1~2m分段;若涌水涌泥(砂)较小(Q<10m3/h)或轻微卡钻,则钻孔注浆段长度可适当加大至3~5m。如无涌水涌泥(砂)和卡钻的情况发生,则可采用全孔一次性注浆方式进行。以保证注浆质量和减少扫孔作业,增加作业时间和效率。

3.6注浆参数

注浆参数主要依据设计加固范围和经验选定,本段注浆纵向加固长度30m,主要参数如表1所示

表1注浆参数表

Table1Parametersofgrouting

参数名称

全断面深孔超前预注浆

备注

加固范围

掌子面及开挖轮廓线外5m

钻孔深度

15m~30m

浆液扩散半径

2m

凝胶时间

30s~2min30s

普通水泥—水玻璃双液浆

注浆速度

10~100L/min

注浆分段

岩层完整且有水3~5m、

岩层破碎且有水1~2m

根据钻孔情况确定

注浆终压

6~9MPa

单段注浆量

1.1~3.32m3/m

单段注浆量按Q=π·R2·L·n·α·β计算

参数取值n=0.1~0.3α=0.8β=1.1

3.7注浆顺序

注浆顺序原则上先施作短孔,再施作长孔,最后施作检查孔。注浆孔顺序按由外到内,从下往上分三序孔施工。三序孔的设计原则是水平方向上采取跳孔原则(Ⅰ序孔采取跳孔,Ⅱ序孔采取间隔跳孔,Ⅲ序孔为余下孔位),垂直方向上采取隔行跳排原则。同时结合涌水水源点位置和水流方向,按由有水孔到无水孔的顺序施工,检查孔施工顺序待注浆孔注浆结束后视现场情况而定。

3.8注浆结束标准

采用定量定压相结合方式进行注浆结束标准控制,当注浆量达到设计注浆量时,而注浆压力不上升则调整浆液配比,缩短凝胶时间,并采取间歇注浆措施,控制注浆量。或注浆压力达到设计终压,且注浆量达到设计注浆量的80%以上,即可结束注浆。

3.9效果检查与补孔注浆

篇2

注浆技术当前在我国各个建筑施工中几乎都可以看到其身影,尤其是在一些混凝土工程中几乎都少不了注浆技术的应用,比如一些市政工程、路桥工程、房屋建筑工程中都可能用到注浆技术,但是其最为常用的一个方面还是在混凝土裂缝的修补上,一旦混凝土施工过程中或者在后期出现了裂缝造成了渗漏现象,我们都可以采取注浆技术来进行修补。具体到房屋建筑中来看的话,很多地方都有可能发生渗漏现象,比如厨房、卫生间、地下室等都会发生渗漏的可能,而这时候就是注浆技术大显身手的时候。具体到注浆技术的应用过程中还是存在很多问题需要我们注意的,比如在最初材料的选择上就需要我们根据工程的性质进行有针对性的选择,而在具体的施工过程中需要我们注意的内容就更多了,只有注意了这些施工的细节才能够最大程度的确保工程施工的质量。

1.2注浆施工独有的施工特点

注浆施工技术相对于其他的一些填补结构裂缝的技术来看的话其施工特点和优势还是比较明显的,具体来看主要表现在以下三个方面:(1)可操作性强,注浆施工技术的应用范围极广,其对于施工环境的要求并不高,因此在任何环境下都可以进行注浆技术的应用,尤其是其和施工场地也不存在明显的关系,对场地的要求不高;(2)效果好,采用注浆施工技术来进行施工裂缝的修补效果是极为明显的,它一方面能够在很大程度上提高修补表面的强度,另一方面又不会对原有的工程表面造成破坏,在很大程度上确保了工程的完整性;(3)环保性能优越,这也是当前我国较为提倡的一点,其对于周围环境的污染较小,减少了对于环境的破坏。

2注浆施工技术在房屋建筑中的应用

2.1如何在施工前挑选施工材料

施工材料的选择对于施工质量来说至关重要,这一点对于注浆施工技术来说也是如此,因此,在注浆施工前我们应该恰当地选择合适的注浆材料。在材料的选择上我们首先看中的就是其快速凝固的性能,一般只有能够快速凝固的材料才能够在最大程度上确保注浆的效果,这也是我们选择材料的一个主要标准,此外,我们还应该关注材料在环保指标上是否存在超标现象,选择对环境污染较小的材料也是材料选择的一个主要指标,就当前现状来看,我们常用的主要材料是一些无污染的化学材料以及水泥浆等。

2.2墙体裂缝的注浆填补方法

墙体裂缝是房屋建筑施工中常见的一种问题,针对这种问题我们采用注浆施工技术能够起到很好的效果,但是就墙体裂缝而言还是存在着很大的不同,尤其是针对不同类型的墙体裂缝我们应该采取不同的注浆处理办法才能够在最大程度上提高注浆效果。一般说来,墙体裂缝的操作流程都是首先进行钻孔,然后埋设一定的管道,最后进行浆体的灌注,这时对于材料的要球不仅仅需要其能够快速凝固还应该具备较强的粘结力,注浆完成后还需要进行封闭处理,尤其是要注意水泥浆可能在施工中会产生干缩现象,这也是需要我们处理的一个主要问题。

2.3对基、桩、柱等结构部位的注浆处理

基、桩、柱等结构部位对于房屋非常重要,它起到了支撑作用,如果出现了问题,一定要及时排查,及时补救,在对结构部位进行处理时,首先要找到病因,可以从房屋的设计、还有施工的过程、房屋的管理使用过程依次进行认真的检查,找到病害部位后,以病害部位为参照点,找到钻孔的孔位,两个孔之间的距离在35cm左右,钻孔的深度根据病害决定,干燥的缝隙表面在离缝隙两边的4cm左右处,涂上环氧胶来进行密闭处理,以免注浆时浆液流出,如果是潮湿的缝隙,就沿着缝隙开槽,槽宽在2.5cm左右,槽深也在2.5cm左右,缝隙一定要小心处理,在清洗钻孔和槽内后,压上早强水泥封槽和埋管,将干缝内注入低粘度的环氧树脂类材料,固化时间要在14h左右,然后进行及时的填筑,这样才能起到相应的粘结作用。用于湿缝中的环氧材料,要具有亲水性和排水性,从而进行固结补强。一定要注意:注浆时,如果注浆液只有部分发生的作用,起到了效果,并没有全部起到粘连效果,这就说明注浆失败了,要进行重复的注浆。

2.4厨房和卫生间出现裂缝的注浆填补工艺

在房屋建筑中厨房和卫生间是出现裂缝并且发生渗漏的重点场所,在这里发生渗漏的话会严重的影响到人们的正常生活,因此,需要进行及时的填补,事实证明,在厨房和卫生间采取注浆填补技术能够起到很好的效果,其主要的施工流程就是先在砖缝上开一个小道,然后注入环氧浆,并且要注意进行多次注浆,确保施工的效果。

2.5地下室发生渗漏的补救方法

地下室发生渗漏也是我们比较不愿意见到的一种裂缝危害,但是地下室渗漏却是常见的一种病害,因此,针对这一现象我们需要及时的采取注浆施工技术进行弥补,首先我们需要找出裂缝位置,然后清理裂缝内的一些杂物,清理完成后进行高压注浆,注浆完成后再针对注浆过程中可能产生的一些渗漏点进行后期的修补和完善。

篇3

1.基坑降水技术的类型

施工中基坑降水技术主要有以下几种类型:明沟加集水井法;轻型井点法;喷射井点法;管井井点法;深井井点法;综合井点法。

2.各类基坑降水法的技术要点

(1)明沟加集水井法

该方法的技术要点是在基坑内部设置明沟和集水井,再使用抽水机从集水井中直接把地下水排出,从而把基坑里的地下水疏干。

(2)轻型井点法

该方法的技术要点是:利用真空原理,在吸力的作用下让基坑内的空气与水变成水气混合液,再将水气混合液通过管路系统吸入分离器中,由分离器上部排出空气和水。该降水技术在国内的各建筑施工中应用都比较广泛,与其他技术相比,这种技术更加简便、经济、安全,尤其在基坑面积大、水位降低浅的工程中,更加适合。另外,当土层渗透系数比较低时,应该使用气密性措施,从而提高系统的真空度,达到降水效果。

(3)喷射井点法

主要使用高压水泵,利用水管把水压入井点内,使其内外形成空间,再使水从喷射器的两边孔流进喷嘴,随着喷嘴截面面积的减小,水流速度会随之加快,在完成整个喷射后,会在喷射水柱周围形成负压,将空气和水吸入到混合室中。在施工中注意一点,井点管必须设置为双层形式,并且井孔底部也要设置喷射器,并使用两根总管把各个井点管连为一体。这种方法的优点是降水深度比较深,但是其地面敷设工程比较复杂,工作效率很低,这给管理工作带来了困难,所以这一技术必须结合实际需要进行选择。

(4)管井井点法

此方法的技术要点主要是使用钻孔成井的方法,围绕基坑设置若干管井,管井的距离间隔在20~50米之间,并为每一个管井配备水泵,使之可以独立进行地下水抽取,从而达到降低地下水水位的目的。但该技术在渗透系数大于0.1和砂质土层、粉土层以及碎石土层等地下水储量丰富的地质条件中,因为其排水能力强、便于维护的优点而被普遍使用。

(5)深井井点法

该方法具有基降水深度较大的特点,在管井的深度大于15米时,使用普通水泵很难满足工程要求,而要使用特制的深井泵。该方法主要适用于降水深度深且水量较大的工程中,尤其是在渗透系数大并且透水层较厚的工程中,更为适用。其主要的优点是降水深度大,可以设置于施工范围以外,这一点得到了施工单位的一致好评,并被广泛应用。

(6)综合井点法

该方法是一种综合性方法,主要是在复杂的施工环境下使用多种技术作业的方法,使用这种方法不仅能够节省造价,而且还可以加快施工进度。然而,在施工中,要根据实际情况选取具有针对性的施工方法。

二、基坑降水技术的应用分析

1.工程基本资料

本工程长125米,宽88米,基坑深度9米。该地区的地下水主要是潜水,水位埋深1.5米。基坑采取轻型井点环形布置结构,场地中心设置少量管井用于降水。场地土层向下分别是粉土——粉砂——粉土——粉质粘土。

2.基坑降水方案

该工程的降水设计目标以基坑中最大坑深为依据。因为工程地基土中可能存在软弱层,往往需要加大开挖深度,在降水设计中对于水头的降低深度需要加以控制,并且留下余地。另外,由于基坑开挖工期较短,要缩短疏干地下水的时间,降低地下水水位于基坑底之下。基坑降水工程使基坑四周土体应力发生了改变,一方面,地下水位下降导致了土体自重应力的增加;另一方面,地下水由静止状态变成运动状态,渗流作用增加了土层附加应力。基坑工程中出现的渗流应看作平面二维渗流,在本工程设计中出于简化计算的目的,将坑外土体假设为重力方向上发生的一维渗流。在总应力变化与一维渗流条件之下,基于基坑边缘距离在4米、8米、12米、30米之上的应力变化情况,计算得出的基坑深度分别是3.4米、5.6米、9.0米、13.5米(由天然地下水水位算起)。针对与工程地质结构的问题,工程降水方案设计中的技术是轻型井点法与管井降水法相结合的综合方法,这样可以有效地解决水滞留与渗出的问题。管井有效深度要足够深,并且可以根据实际的需要,留下泵头加深深度以及进行水泵流量调整时的管井内径余地。基坑中需要设置一定数量的疏干井点,以加快开挖土体中地下水疏干速度。把周边住宅楼和裙房的降水工程与本工程连为一体,设置统一的轻型井点与管井,使得一次施工完成全面降水的要求。

三、施工工程中基坑降水技术问题的思考

基坑降水施工工程是一项复杂的系统工作。所以作为施工人员,为了保证工程效果最大化,达到地下水位降低的目的,就必须在确定采用哪种基坑降水方法的基础上,加强对下面问题的处理:首先,防止降水施工引发的大面积地面不均匀沉降的情况出现,在降水井点管和周边建筑物及路面之间进行井点回灌作业,连续使用清水进行回灌,从而补充此处的地下水,达到地下水水位基本不变的目的;其次,结合实际施工状况,针对性地处理施工问题。比如施工地的地下粘土层相对较厚的问题,在打孔时,应使用能够套管和水枪在井点轴线以外打孔,采用埋设井点管的方法成孔,进而使地层中的上下水得以贯通;最后,抽水时,特别在抽水开始阶段,应检查各井点管是否出现淤塞的情况,检查的方法主要是监听管内水流声和查看管子表面是否潮湿。如出现淤塞的死井数量大于整体的10%,则会对降水效果产生严重的影响,这时应该采取一定的措施,如利用高压水对井点管进行反复冲洗。

篇4

随着社会的不断进步,物质文明的极大提高及建筑设计施工技术水平的日臻成熟完善,同时,也因土地资源日渐减少与人口增长之间日益突出的矛盾,高层及超高层建(构)筑物越来越多。为了保证建构筑物的正常使用寿命和建(构)筑物的安全性,并为以后的勘察设计施工提供可靠的资料及相应的沉降参数,建(构)筑物沉降观测的必要性和重要性愈加明显。

现行规范也规定,高层建筑物、高耸构筑物、重要古建筑物及连续生产设施基础、动力设备基础、滑坡监测等均要进行沉降观测。

特别在高层建筑物施工过程中应用沉降观测加强过程监控,指导合理的施工工序,预防在施工过程中出现不均匀沉降,及时反馈信息为勘察设计施工部门提供详尽的一手资料,避免因沉降原因造成建筑物主体结构的破坏或产生影响结构使用功能的裂缝,造成巨大的经济损失。

根据本人在高层建筑施工过程中沉降观测的应用,在此对高层建筑施工过程中沉降观测工作浅谈管窥之见。

一、沉降观测的基本要求

1、仪器设备、人员素质的要求

根据沉降观测精度要求高的特点,为能精确地反映出建构筑物在不断加荷作下的沉降情况,一般规定测量的误差应小于变形值的1/10——1/20,为此要求沉降观测应使用精密水准仪(S1或S05级),水准尺也应使用受环境及温差变化影肉小的高精度铟合金水准尺。在不具备铟合金水准尺的情况下,使用一般塔尺尽量使用第一段标尺。

人员素质的要求,必须接受专业学习及技能培训,熟练掌握仪器的操作规程,熟悉测量理论能针对不同工程特点、具体情况采用不同的观测方法及观测程序,对实施过程中出现的问题能够会分析原因并正确的运用误差理论进行平差计算,做到按时、快速、精确地完成每次观测任务

2、观测时间的要求

建构筑物的沉降观测对时间有严格的限制条件,特别是首次观测必须按时进行,否则沉降观测得不到原始数据,而是整个观测得不到完整的观测意义。其他各阶段的复测,根据工程进展情况必须定时进行,不得漏测或补测。只有这样,才能得到准确的沉降情况或规律。相邻的两次时间间隔称为一个观测周期,一般高层建筑物的沉降观测按一定的时间段为一观测周期(如:次/30天)或按建筑物的加荷情况每升高一层(或数层)为一观测周期,无论采取何种方式都必须按施测方案中规定的观测周期准时进行。

3、观测点的要求

为了能够反映出建构筑物的准确沉降情况,沉降观测点要埋设在最能反映沉降特征且便于观测的位置。一般要求建筑物上设置的沉降观测点纵横向要对称,且相邻点之间间距以15——30米为宜,均匀地分布在建筑物的周围。通常情况下,建筑物设计图纸上有专门的沉降观测点布置图。

再就是,埋设的沉降观测点要符合各施工阶段的观测要求,特别要考虑到装修装饰阶段因墙或柱饰面施工而破坏或掩盖住观测点,不能连续观测而失去观测意义。

4、沉降观测的自始至终要遵循“五定”原则

所谓“五定”,即通常所说的沉降观测依据的基准点、工作基点和被观测物上的沉降观测点,点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时的环境条件基本一致;观测路线、镜位、程序和方法要固定。以上措施在客观上尽量减少观测误差的不定性,使所测的结果具有统一的趋向性,保证各次复测结果与首次观测的结果可比性更一致,使所观测的沉降量更真实。

5、施测要求

仪器、设备的操作方法与观测程序要熟悉、正确。在首次观测前要对所用仪器的各项指标进行检测校正,必要时经计量单位予以鉴定。连续使用3——6个月重新对所用仪器、设备进行检校。

在观测过程中,操作人员要相互配合,工作协调一致,认真仔细,做到步步有校核。

6、沉降观测精度的要求

根据建筑物的特性和建设、设计单位的要求选择沉降观测精度的等级。再未有特除要求情况下,一般性的高层建构筑物施工过程中,采用二等水准测量的观测方法就能满足沉降观测的要求。我们在河北省交通培训中心工程施工过程中就采用二等水测量的观测方法。

各项观测指标要求如下:

(1)往返较差、附和或环线闭合差:h=∑a-∑b≤l√n—,表示测站数。(或h=∑a-∑b≤1.0√L—,L表示观测路线距离)

(2)前后视距:≤30m

(3)前后视距差:≤1.0m

(4)前后视距累积差≤3.0m

(5)沉降观测点相对于后视点的高差容差:≤1.0mm

(6)水准仪的精度不低于N2级别

7、沉降观测成果整理及计算要求

原始数据要真实可靠,记录计算要符合施工测量规范的要求,依据正确,严谨有序,步步校核,结果有效的原则进行成果整理及计算。

二、具体施测程序及步骤

1、建立水准控制网

根据工程的特点布局、现场的环境条件制订测量施测方案,由建设单位提供的水准控制点(或城市精密导线点)根据工程的测量施测方案和布网原则的要求建立水准控制网。要求:

(1)一般高层建筑物周围要布置三个以上水准点,水准点的间距不大于100米。

(2)在场区内任何地方架设仪器至少后视到两个水准点,并且场区内各水准点构成闭合图形,以便闭合检校。

(3)各水准点要设在建筑物开挖、地面沉降和震动区范围之外,水准点的埋深要符合二等水准测量的要求(大于1.5米)

根据工程特点,建立合理的水准控制网,与基准点联测,平差计算出各水准点的高程。

2、建立固定的观测路线

由场区水准控制网,依据沉降观测点的埋设要求或图纸设计的沉降观测点布点图,确定沉降观测点的位置。在控制点与沉降观测点之间建立固定的观测路线,并在架设仪器站点与转点处作好标记桩,保证各次观测均沿统一路线。

3、沉降观测

根据编制的工程施测方案及确定的观测周期,首次观测应在观测点安稳固后及时进行。一般高层建筑物有一或数层地下结构,首次观测应自基础开始,在基础的纵横轴线上(基础局边)按设计好的位置埋设沉降观测点(临时的),等临时观测点稳固好,进行首次观测。

首次观测的沉降观测点高程值是以后各次观测用以比较的基础,其精度要求非常高,施测时一般用N2或N3级精密水准仪。并且要求每个观测点首次高程应在同期观测两次后决定。

随着结构每升高一层,临时观测点移上一层并进行观测直到十0.00再按规定埋设永久观测点(为便于观测可将永久观测点设于十500mm)。然后每施工一层就复测一次,直至竣工。

4、将各次观测记录整理检查无误后,进行平差计算,求出各次每个观测点的高程值。从而确定出沉降量。

某个观测点的每周期沉降量:c=Hh,I—Hn,I-1.

N表示某个观测点,I表示观测周期数(I=1,2,3……)且H1=H0

累计沉降量:C=∑c(n),n表示观测点号。

5、统计表汇总

(1)、根据各观测周期平差计算的沉降量,列统计表,进行汇总。

(2)、绘制各观测点的下沉曲线

首先建立下沉曲线坐标,横坐标为时间坐标,纵坐标上半部为荷载值,下半部为各沉降观测周期的沉降量。

将统计表中各观测点对应的观测周期所测得沉降量画于坐标中,并将相应的荷载值也画于坐标中,连线,就得到对应于荷载值的沉降曲线。

(3)根据沉降量统计表和沉降曲线图,我们可以预测建筑物的沉降趋势,将建筑物的沉降情况及时的反馈到有关主管部门,正确地指导施工。特别座在沉陷性较大的地基上重要建筑物的不均匀沉降的观测显得更为重要。

利用沉降曲线还可计算出因地基不均匀沉降引起的建筑物倾斜度:q=│Cm-Cn│/Lmn,Cm,Cn分别为m,n点的总沉降量,Lmn为m,n点的距离。

对沉降观测的成果分析,我们还可以找出同一地区类似结构形式建筑物影响其沉降的主要因素,指导施工单位编好施工组织设计正确指导施工大有裨益,同样也为勘察设计单位提供宝贵的一手资料,设计出更完善的施工图纸。

6.观测中的注意事项:

(1)严格按测量规范的要求施测。

(2)前后视观测最好用同一水平尺。

(3)各次观测必须按照固定的观测路线进行。

(4)观测时要避免阳光直射,且各观测环境基本一致。

(5)成像清晰、稳定时再读数。

(6)随时观测,随时检核计算,观测时要—气阿成。

(7)在雨季前后要联测,检查水准点的标高是否有变动。

(8)将各次所观测沉降情况及时反馈有关部门,当建筑物每天(24h)连续沉降量超过1mm时应停止施工,会同有关部门采取应急措施。

三、探讨的两个问题

(1)确定建筑物沉降观测精度的合理性。由于现行规范对施工单位施工过程的沉降观测要求不明朗,这对施工单位在建筑物沉降观测精度选择随意性较大,但是精度的高低直接关系到沉降观测成败。对沉降观测精度选择既不能太高也不能太低,要合理适宜,适合工程特性的需要。既不造成无谓的浪费也要保证观测结果的准确性。这样,本人认为一般高层及重要的建(构)筑物在首次观测过程中适用精密仪器的设备(高级水准仪、铟合金尺等)在±0.00以上部分按二等以上水准测量方法,采用放大率倍数较大的S2或S3水准仪进行观测,也可以测出较理想的结果。

(2)在沉降观测过程中,沉降量与时问关系曲线不是单边下行光滑曲线,而是起伏状现象。这就分析原因,进行修正。

①第二次观测出现回升,而以后各次观测又逐渐下降。可能是首次观测精过低,若回升超过5mm时,第一次观测作废,若回升5mm内,第二次与第一次调整标高一致。

②曲线在某点突然回升。

原因:水准点或观测点被碰动所致且水准点碰动后标高低于碰前标高,观测点碰后高于碰前。

处理措施:取相邻另一观测点的相同期间沉降量作为被碰观测点之沉降量。

友情链接