建筑抗震设计论文合集12篇

时间:2023-03-23 15:26:12

建筑抗震设计论文

建筑抗震设计论文篇1

建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑

设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。

一、建筑体型设计问题

建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。

二、建筑平面布置设计问题

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。

三、建筑竖向布置设计问题

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。

四、建筑上应满足的设计限值控制问题

根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。

五、屋顶建筑的抗震设计问题

在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。

六、结束语

总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑

抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。

参考文献:

[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。

建筑抗震设计论文篇2

建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。

一、建筑体型设计问题

建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。

二、建筑平面布置设计问题

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。

三、建筑竖向布置设计问题

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。

四、建筑上应满足的设计限值控制问题

根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。

五、屋顶建筑的抗震设计问题

在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。超级秘书网

六、结束语

总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑

抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。

参考文献:

[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。

建筑抗震设计论文篇3

地震是一种破坏力较强的自然灾害,主要损害建筑结构,进而导致承重构件或地基失去作用。现阶段,人们还不能深入的认识到地震的损坏机理,直接影响了抗震计算的精确性。概念设计是一种指导总体方案开展的方法,良好的概念设计不仅给日后建筑工程结构计算及工程造价等奠定基础,同时还实现了抗震设计的目的,具有较广的应用意义,必须及时进行分析。

1.建筑抗震设计

目前随着经济的发展,抗震结构设计已经呈现出新的发展趋势,可利用基于性能结构抗震现场理论、材料抗震模糊可靠度等方法进行建筑抗震设计。但是建筑地震灾害依然在反复发作,虽然很多建筑设计师已经认识到以上技术的局限性,但是由于建筑结构还会受到地形、规划、工程造价、施工技术等多方面因素影响,导致“概念设计”开始被人们重视起来,并加大了对其的研究。概念设计不仅完善了建筑结构,同时综合全面的分析了地震所产生的影响,掌握了地质活动破坏机制,并可以综合全面的了解抗震设计规范与准则,在长期实践中还可以不断提升建筑结构的抗震水平。

2.建筑结构抗震概念设计遵循的原则

2.1建筑选址并确定地基稳定条件

合理的规划选址已经成为建筑设计成功的基础,对建筑结构抗震设计整体质量具有很大影响。实际操作中要求规避地震不利地段,尽量选择安全稳定的建筑场地,如果受各方面因素影响,导致实际操作中无法避开不利地段,必须结合实际情况采取针对性的措施,提高地基稳定性与安全性。现有基础设计规范中明确指出,结构单元中个别应地质因素而采用天然地基或桩基的做法不可取,尤其是不允许在地震高发段建设建筑物。地震作用力较强,一般会引起承载力降低或出现基土液化,进而影响了地基稳定性,容易出现建筑开裂、倾斜和倒塌等问题。同时受地震影响所产生的滑坡、泥石流等情况也与建筑选址密切联系,保证建筑基础稳定已经成为提高抗震力的核心条件。

2.2选择有利于建筑的立面或平面

为了避免地震发生时产生应力集中、扭曲或塑性变形等问题,要求建筑平、立面必须合理设置,一般要求建筑物的平、立面布置对称,同时质量和刚度均匀,尽量避免楼盖错层。实际操作中可从两反面操作,一方面,不设抗震逢,对建筑物进行结构抗震分析,了解局部应力和变形集中及扭转等的影响,并采取加强措施进行处理。另一方面,设置抗震缝,将建筑物划分为很多结构单元,可结合抗震设防强度、材料种类、结构型号及单位布置,并留有足够的宽度,要求伸缩缝与沉降缝满足防震缝要求。控制好建筑刚度与质量变化,各个楼层不能错层,条件允许时可在每层设置防震缝,可根据建筑结构实际情况设置。一般体型结构复杂的建筑必须给其设置计算模型,并展开抗震分析。

2.3选择科学合理的抗震结构体系

抗震结构体系要求从建筑重要程度、房屋高度、地基基础、技术、经济及使用等多方面进行判断。通常选择建筑结构体系时,必须满足以下条件:(1)具有详细的计算简图,并有恰当的传递地震途径;(2)具有较强的强度、耗能及变形能力;(3)设置多道地震防线,避免部分结构或构件对整体构件造成影响;(4)控制好强度与刚度,避免局部形成薄弱部位或者应力或塑性变形集中;(5)控制好结构在两主轴之间的动力特性。设计构件连接时,要求满足以下条件:(1)构件节点强度不能低于连接构件强度;(2)装配结构连接整体性必须得到保证;(3)预埋件锚固强度不能低于连接构件强度。选择抗震结构构件时,要求满足以下要求:(1)砌体结构必须结合施工要求,合理设置混凝土圈梁与构造柱,提高结构抗震水平;(2)设置钢结构构件时,要求控制好其尺寸,避免出现局部或整体构件失稳;(3)混凝土结构构件必须合理选择尺寸,配置好箍筋与纵向钢筋,避免剪切在弯曲前破坏,同时要求混凝土压溃先于钢筋屈服、钢筋锚固粘接在构件破坏前损坏。

2.4计算校核的必要性

目前计算机辅助设计系统已经广泛应用到结构设计中,而且应用范围较广,实际分析中,可应用计算机相关软件完成设计与校核。软件是辅佐校核的工具,实际操作中为了提高校核效果,必须由具有丰富经验的结构设计技术人员分析,同时掌握软件的适用范围、条件、计算模型等,深入理解设计规范,而且要端正自己对待工作的态度,只有如此,才能反复进行验证,进而将精确校核的计算结果成功应用到工程项目建设中。

3.正确处理主体结构与非承重结构的关系

主体结构与非承重结构关系的处理已经成为抗震设计的基础,具有减少地震损失及避免附加震害的作用。附属结果构件要求必须与主体结构或锚固稳定连接,避免实际操作中出现设备损害或砸到人员等问题出现。设置围护墙与隔墙时,必须综合考核结构抗震所产生的不利影响,避免设置不恰当损害主体结构。例如,厂房柱间或框架填充不完整时,就会损坏柱子。此外,吊挂件、装饰贴面与幕墙均要与主体合理连接,避免地震时造成人员伤害。

4.控制好材料与施工质量

材料选择与施工质量控制对抗震结构设计具有很大作用,不仅提高了施工质量,还保证了其他工序的顺利开展。目前抗震结构设计中已经对材料与施工质量提出了要求,必须在设计文件中明确,具体操作如下:(1)黏土砖等级要求不低于MU10,同时控制好砌筑砂浆强度与等级,不呢低于M5;(2)混凝土抗震与强度等级均使用一级框架梁、柱与节点,要求不能低于C30,芯柱、基础与圈梁不应低于C30,其他构件不能低于C20;(3)混凝土小型砌块强度控制在MU7.5,要求砌筑砂浆强度在M7.5以上;(4)控制好钢筋强度,要求纵向钢筋使用Ⅱ、Ⅲ级变形钢筋,箍筋为Ⅰ、Ⅱ热轧钢筋,构造柱与芯柱使用Ⅰ、Ⅱ级钢筋。进行钢筋混凝土结构施工时,由于实际设计中缺少规定的钢筋型号,使用其他规格型号的替代时,不能使用屈服强度较高的钢筋替代原始钢筋。实际替换中可结合截面实际屈服强度合理换算,并要求替代后构建曲面屈服强度不能超过原截面屈服强度。此种操作的主要目的是减少了薄弱部位转移,避免了混凝土脆性损坏,如剪切破坏或混凝土压碎等问题。

5.结语

建筑结构抗震设计时一项较系统的工程,改变以计算为中心的传统设计、评估与校核,实现了设计者多年经验与设计规范的结合,避免了盲目开展计算工作,对抗震设计创造了独特的发展空间,并真实展现了结构的实时情况,进而科学合理的进行抗震设计。

作者:柴梅卿 单位:国家林业局西北林业调查规划设计院

参考文献

[1]张松林.浅谈建筑结构抗震概念设计的进展[J].江苏建筑,2015,(04).

[2]黄传刚.浅谈房屋建筑中结构抗震概念设计的运用分析[J].科技创业家,2014,(07).

建筑抗震设计论文篇4

2超高层建筑结构抗侧刚度设计与控制

为了提高超高层建筑的抗震性,其足够的结构侧向刚度必不可少。足够的结构侧向刚度不仅可以保障建筑物的安全性、抗震性,还可在一定程度上有效抵抗建筑结构构件的不利受力情况及极限承载力下的安全稳定性。设计超高层建筑的结构抗震侧向刚度,应重点从其结构体系和刚度需求进行。

2.1结构设计。结构初步设计根据建筑高度和抗震烈度确定高度级别和防火级别。超高层结构设计首先满足规范要求的高宽比限值和平面凹凸尺寸比值限值,其次控制扭转不规则发生:在考虑偶然偏心影响的规定水平地震力作用下,扭转位移比不大于1.4;最大层间位移角不大于规范限值的0.4倍时,扭转位移比不大于1.6;混凝土结构扭转周期比不大于0.9,混合结构及复杂结构扭转周期比大于0.85。最后设计过程中严格控制偏心、楼板不连续、刚度突变、尺寸突变、承载力突变、刚度突变等现象。满足结构设计规范的同时,还应考虑建筑师的设计意图和功能需求,同时满足设备专业设计要求。结构平面的规整程度直接影响着抗震设计的强弱,尽量采用筒体结构,以使得承受倾覆弯矩的结构构件呈现为轴压状态,且其中的竖向构件应最大程度的安置在建筑结构的外侧。各竖向构件和连接构件的受力合理、传力明确,降低剪力滞后效应,杜绝抗震薄弱层产生。

2.2结构侧向刚度控制。超高层建筑的抗震性能设计主要与结构侧向刚度的最大层间位移角和最小剪力限制相关。对于层间位移角限值,其是衡量建筑抗震性的刚度指标之一,地震作用应使得建筑主体结构具有基本的弹性,保证结构的竖向和水平构件的开裂不会过大。同时,因超高层建筑的底部楼层、伸臂加强层等特殊区域的弯曲变形难以起主导作用,所以应采取剪切层间位移或有害层间位移对其变形进行详细的分析与判断。对于最小地震剪力,其最重要的两个影响因素是建筑结构的刚度和质量,当超高层建筑难以达到最小地震剪力要求时,设计人员应该结合具体情况适度的增加设计内力,提高其抗震能力和稳定性,然而,当不能满足最小地震剪力时,还需通过重新设计或调整建筑结构的具体布置或提高刚度来提高建筑物在地震作用下的安全性,而非单纯增高地震力的调整系数。

3超高层建筑的性能化抗震设计

超高层建筑的抗震性能设计,国内主要根据“三个水准,两个阶段”,即“小震不坏、中震可修、大震不倒”。超高层建筑来说,其建筑工程复杂、高度极高、面积大、成本高,一旦受到地震损害,其损失程度会更高,因此,必须充分考虑各方理论、实际情况和专家意见,兼顾经济、安全原则,定量化的展开超高层建筑的性能化抗震设计。同时,相关文件虽针对超高层建筑结构的性能化设计制定了较具体且系统的指导理念,涉及宏观与微观两个层面。但是,由于结构构件会受到损坏,且损坏与整体形变情况的分析计算都需进行专业的弹塑性静力或动力时程计算,而目前我国尚未形成相关的定量化的评价体系,因此,设计人员应在积极参考ATC-40和FEMA273/274等规范。此外,对于弯曲变形为主导的建筑结构,在大震作用后应尤其注重构件承载力的复核。

4超高层建筑多道设防抗震设计

除了上述注意事项外,针对超高层建筑进行抗震性设计时,还因注重设计多道的抗震防线。多道抗震防线是指一个由一些相对独立的自成抗侧力体系的部分共同组成的抗震结构系统,各部分相互协同、相互配合,一同工作。当遭遇地震时,若第一道防线的抗侧移构件受到损害,其后的第二道和第三道防线的抗侧力构件即会进行内力的重新调整和分布,以抵御余震,保护建筑物。目前,我国超高层建筑主要依靠内筒和外框的协同工作来达到提供抗侧刚度的目的,包含两种受力状态:首先,建筑的内外结构通过楼板和伸臂析架来协调作用,进而使得外部结构承受了较多的倾覆弯矩和较少的剪力,而内筒则承受了较大的剪力和一些倾覆弯矩,广州东塔就是此受力方式的典型;其次,以交叉网格筒或巨型支撑框架为代表的建筑外部结构,其十分强大,依靠楼板的面内刚度,外部结构即可同时承受较大的倾覆弯矩和剪力,如广州西塔。

建筑抗震设计论文篇5

建筑的抗震设计以及抗震性能的高低与人民群众的生命财产安全有着直接联系,而建筑抗震设计又是以建筑设计为基础的。这是由于建筑结构是基于建筑设计的,当建筑设计完成后建筑结构就难以改变。因此建筑设计师在建筑设计前期就应该充分考虑到建筑抗震设计的需求。

二、基于建筑抗震设计的建筑设计措施

(一)建筑结构设计的对称原则

我国出台的建筑抗震设计规范中指出,我国建筑抗震的设计目标是小震不坏,中震可修,大震不倒。对于建筑师和结构工程设计师来说,在进行建筑工程设计师应该秉持着简单、规则的建筑结构原则。一般方形、圆形、为主。建筑的竖向形态的变化要规则,一般可以选择矩形、梯形等变化均匀的形状。对称结构建筑在地震地面平动作用下一般只会出现平移震动,建筑内部构件出现测位移量,内部构件受力均衡;而非对称结构的建筑则会由于刚心和质心不重合,在地面平动的过程中也会出现扭转振动。如建筑内部的构建离刚心较远就会由于超出变形极限而出现损坏,进而导致结构一侧失效而倒塌。

(二)注重建筑构件与连接点处质量

在建筑工程设计和施工过程中建筑构件的合理配置以及连接点处的质量与建筑施工安全质量存在直接的联系。并且在新型建筑材料问世的同时建筑物的外部设计大都汇采用新型建筑材料,例如大理石、瓷砖等。而建筑室内装饰也会使用到吊顶等技术。这些室内以及立面装饰本身存在抗震性能的问题,并且其与建筑主体的牢固连接也是抗震设计的关键。近几年有部分国外高层建筑在发生地震时下起了“玻璃雨”,建筑的玻璃幕墙由于地震导致破损。这是由于当前所使用的玻璃幕墙还无法适应地震中产生变形和扭转。因此建筑如要采用玻璃幕墙则必须保证玻璃幕墙的强度与变形能力。在其与建筑主体连接处要设计为能够在水平向实现变位能力的构造,从而在地震时玻璃幕墙能够与建筑物地震变形脱离,减少玻璃幕墙的损坏。另外,在建筑设计中内隔墙、玻璃隔断等结构件的设计中也要充分考虑其与建筑主体连接点的牢固性,保证其抗震性能。

(三)关注建筑顶部抗震

在高层或超高层的建筑设计过程中,建筑的顶部抗震设计是十分关键的。当前高层或超高层建筑的屋顶普遍存在过高和过重的问题。屋顶过高或过重会导致建筑变形加重,进而强化了地震的破坏作用。对于屋顶建筑以及下层建筑物的安全性能有着极大的负面影响。如建筑的屋顶与下层建筑的重心没有位于同一条直线上,那么建筑屋顶的抗侧力墙也会与下层建筑的抗侧力墙出现分离,当地震出现时则会加剧损坏。因此在高层或超高层建筑设计中应该使用新型高强度轻质的建筑材料,尽可能保证屋顶的重心与下层建筑的重心位于通一条直线。当建筑屋顶的较高时要保证其抗震定性,缓解地震带来的变形作用。

(四)建筑竖向布置

建筑竖向布置主要体现在建筑物的高度结构质量以及刚度的设计中,特别是在高层或超高层建筑中建筑的竖向布置对于建筑抗震设计来说更加重要。建筑楼层的使用功能差异导致建筑物楼层分布的质量和刚度均不一致,例如楼层包括游泳池、会议室、健身房等。楼层的功能需求导致楼层上下之间的刚度差异过大。高层建筑中刚度最差的楼层的抗震性能最为薄弱,在出现地震时即为变形严重的薄弱层。在建筑设计中由于楼层功能不同导致的墙体不连续,柱子不对称等极大的限制了抗震性能。因此在建筑抗震设计中应该尽量保证竖向的刚度分布靠近,尤其是在结构上刚度转换层更加要着重注意。

建筑抗震设计论文篇6

(2)局部抗震设计。局部抗震设计主要包括以下几个方面:其一,在详细的分析了地震的破坏机理之后,发现地震纵波的传播速度比地震横波快,地震纵波在建筑结构的主体部位以及连接构件之间形成了一个相对容易被破坏的环节,当地震横波抵达后会直接作用在工业与民用建筑结构主体,导致工业与民用建筑出现倒塌的问题,通过对工业与民用建筑发生的地震资料进行分析,工业与民用建筑的后砌墙结构和楼板很容易出现损坏与坍塌的问题,因此,应该充分的考虑建筑主体结构与连接构件之间的质量,科学的设计截面形式以及接触面积,同时深入探讨和设计后砌墙和模板之间的连接状况,有效的提高工业与民用建筑结构设计的抗震能力;其二,科学的选择建设场地,工业与民用建筑场地对建筑的抗震性能具有直接的关系,全面的分析工业与民用建筑场地的岩土工程、工程地质遗迹地形地貌等环境条件,确定最为合理、科学的场地条件,尽可能的降低建筑上部结构对建筑接触的影响,以此降低在地震作用下对建筑结构的损坏程度,因此,在选择建筑场地时,应该尽可能的避免选择软弱粘土区、采空区、非岩质陡坡区等,如果需要在软土地基中上建筑工业与民用建筑,应该采取合理的地基处理基础有效的提高地基的整体性与刚性,以此保证工业与民用建筑在地震作用下具备较强的抗震能力;其三,提高施工质量,根据近几年较大地震的相关资料显示,影响工业与民用建筑抗震能力的原因与施工质量具有直接的关系,因此,为了保证人们的生命和财产安全,工业与民用建筑的抗震设计人员以及施工人员,应该以国家、社会以及人们的生命财产安全为出发点进行抗震设计和施工,以此保证工业与民用建筑具备足够的抗争能力。

2强化工业与民用建筑结构抗震设计的有效措施

(1)选择合适的抗震结构形式。目前,我国工业与民用建筑的结构形式相对较多,主要包括钢筋混凝土结构、砖混结构、钢结结构等形式,各种建筑结构形式的抗震性能存在一定的差异。因此,为了提高工业与民用建筑的抗震性能,应该根据建筑现场的具体状况,选择具有较强承载能力、变形能力、柔性以及抗争能力的抗震结构形式,防止工业与民用建筑在地震作用下受到破坏。

(2)选择合适的建筑场地。全面的熟悉和了解我国相关的抗震减灾法,尤其是对于可能发生自然灾害的地区的工业与民用建筑工程来说,更应该重视工业与民用建筑的抗震性能,通过评价工业与民用建筑的抗震性能符合国家的相关标准之后,设置相应的抗震标准。通常状况下,抗震设防主要分为甲、乙、丙、丁四种,对于容易发生地震灾害的工业与民用建筑,在选择建筑场地时,应该选择能够降低或者消除地震影响的地理位置,尽量避免在容易影响工业与民用建筑工程安全的区域建造工业与民用建筑,特别是软弱地基,在地震的作用下很容易出现液化现象,降低工业与民用建筑地基的抗震能力,导致工业与民用建筑出现倾斜甚至倒塌的问题。

建筑抗震设计论文篇7

性能设计提出小震不坏,中震可修,大震不倒的设计宗旨。与常规抗震设计的区别在于,第一,它的设计目标主要针对小地震,中型地震还有大型地震。而且还通过对全国65个城镇的地震所发生的概率,从而再对地震的强烈程度进行衡量,确保房屋建筑不发生破坏,达到可修,不倒的目标,通过对这些要求的论述可以看出,这些大多数都是针对建筑在宏观性能方面的控制。第二,为了实际施工中的效果有有据可依,最终选用了分两个阶段的简化分析方法,第一个步骤是对结构的构建进行验算,主要是对它的承载力进行计算。对这个计算,具体是选用了在地震比较小的情况下,按照相应的弹性反映理论,通过计算得到在小震作用下的标准值,以及相应的地震作用下的内力以及形变效应。通过可靠的分析,从而得到构件承载力的具体结果。随后将概念设计有关的内力进行调整,从而放大抗震的结构构造,这种措施可以有效满足对第二水准以及第三水准在地震宏观性能方面的控制要求。第二个阶段,就是要对构件结构的弹塑性以及其中的变形进行验算,同时还要对地震在倒塌状况下的结构,或者是有特殊要求的一些建筑结构,一定要对它的薄弱部位进行加固,以此来适应在大震发生时不会倒塌,或者是发生位移的情况,。

1.2常规设计和性能设计方法的比较分析

对于常规的抗震设计而言,它的设计目标是小震不坏,中震可修,大震不倒,具体而言就是在小地震的情况下有相关的性能指标,而在大型地震下有一定的位移要求,剩下的就是宏观方面的指标,在建筑的使用功能上,具体的分为了甲乙丙丁四种级别,在这四种级别的建筑当中,对防倒塌的要求不尽相同,其余的基本都是一样的,而针对性能的抗震设计,它是按照使用的功能来划分的,并且在这个领域提出了很多的预期性能目标,其内容不仅涉及了建筑的结构,同时还包括非结构的,还有一些设施的具体指标。而在具体的实施方法上,常规的抗震设计是按照指令性和处方的形式进行规划和设计的,根据不同的建筑结构概念而进行设计,比如小型地震下的弹性设计,在经验方面的内力调整内容,以及对构造的放大处理等,这些都是为了达到预期的宏观设计而落实的具体措施。而针对性能方面的抗震设计,除了满足最基本的要求以外,还要提出一些满足预期具体要求的有利论证来作为依据。这方面的内容主要包括建筑结构的体系,依据比较细致的分析内容,还有对完成抗震指标的具体试验措施等。还要有对这些内容的专业评价等。通过这几个方面的对比分析不难发现,针对于建筑的抗震在性能要求方面的设计方法的提出,成为了当前的发展趋势,而且在目前来看,在对高层建筑的结构设计当中,其可行性是非常好的。如果想要在所有的建筑结构中进行推广,还需要对其进行更深一步的探讨,还有相关设计人员自己的理解与掌握。

2高层结构的抗震性能优化

在地震水准不同的情况下,对高层的建筑结构在性能水准,还有性能目标方面的要求也不同,具体而言,它的抗震结构性能可以分为下面几个标准。第一,高层结构在发生地震之后,最好是完好无损伤,同时在一般的情况下,是不需要进行修理就可以继续使用的,而且建筑还要可以进行正常的安全出入以及使用。第二,如果地震发生后,其结构发生了非常明显的损坏,而且大多数的构件都发生了中等的损坏,从而进入屈服状态,在有比较明显的裂缝下,大部分的构件都有很严重的损坏程度,但是其整体的结构并不会发生倒塌,同时也没有局部倒塌的情况,建筑中的人员会有一定程度的伤害,但是对他们的生命安全却没有太大的威胁。

3结构抗震优化计算及试验要求

3.1建筑结构的模型设计分析

对高层建筑结构,尤其是在性能设计方面的计算要特别严格,不仅要对构件的承载力,还有变形进行计算,还要考虑构件在屈服之后其性能发生的变化。对这些方面的正确计算,对分析建筑的抗震性能,还有结构的实际所受应力情况都能够直观表现出来。但是这些计算都是要在合理的力学模型上来计算,而且结果不能脱离实际,否则没有任何参考价值的,在对结构抗震性能在弹性方面的计算,还有非线性方面的计算中,一定要分析结构的整体模型状况,还有构件以及节点的各种数据参数,必须保证其正确合理。如果建筑结构中拥有水平转换的构件,同时在区分这些问题的时候,还要对楼层的层数和层高进行计算。在涉及到剪力墙的计算方面,一定要关注对非线性的计算和分析,这对计算出模型的相关参数方面至关重要。如果建筑设计中选用了滑动的支座结构,必须对支座两侧的结构,以及它们之间的相互作用关系进行考虑,否则会对整体的计算模型产生严重的影响。

3.2结构抗震试验的设计要求

在进行高层建筑结构抗震方面的设计时候,在某些方面没有设计理念,缺乏一些相关的依据时,进行相关的模型试验很有必要。比如说选用的混凝土要有很高的含钢率,用这种材料来建设梁柱和剪力墙,在对拥有型钢的异形截面构件,或者是一些新型的构件进行使用的时候,对这些构件必须要进行相关的模型试验。在使用杆件比较多的铸铁点,还有多级的转换层,以及让楼梁侧面的楼板发生开洞,使楼梁本身和梁柱的节点地方不和楼板产生直接有相连接的关系时,对这些新设计结构的部件必须进行模型试验。

建筑抗震设计论文篇8

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

一、高层建筑发展概况

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

二、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

(二)抗震设计的理论

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、高层建筑结构抗震设计

(一)抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

(二)高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

(三)高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除1 款外的建筑结构,宜采用振型分解反应谱方法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

参考文献

建筑抗震设计论文篇9

一、我国高层建筑发展的历史回顾

我国高层建筑在设计计算及施工技术各方面迅速发展的阶段是在上个世纪80年代,当时各大、中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

二、从理论上分析高层建筑的抗震设计

高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件。它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数即地震系数。

2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、高层建筑结构抗震设计的理念、方法和措施

1.高层建筑的抗震设计理念

高层建筑的抗震要能做到:当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2010)对各类建筑结构的抗震计算应采用的方法作了以下规定:⑴高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。⑵除1款外的建筑结构,宜采用振型分解反应谱方法。⑶特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3. 高层建筑结构的抗震措施

建筑抗震设计论文篇10

目前,我国的建筑行业发展得越来越快,而人们对建筑工程的质量也有了越来越高的要求。要想在建筑工程项目的建设过程中科学合理地进行结构抗震设计,必须要将结构设计这一基础工作做好,施工单位必须要重点解决抗震设计方案能否使人们的抗震需要得到充分的满足这一问题。本文对建筑抗震设计与结构工程设计之间的关系进行了简单的阐述,并且分析了其中比较关键的几个问题,希望能够使我国建筑行业的抗震水平得以有效提升。

1 抗震结构设计理论的基本概念及注意事项

1.1建筑结构工程中抗震设计的基本概念

建筑结构工程中的抗震设计理论是在长期的工程实践中积累总结而来的,是一种防御地震灾害,将地震灾害所产生的破坏降到最低点的一种设计思路和概念。也就是说建筑结构工程中的抗震设计的目的是提高建筑结构整体抗震能力,确保建筑物在地震灾害来临时能够有效地抵御灾害。当然地震发生时的剧烈程度我们是无法预知的,我们能做的是运用抗震设计理论知识,结合建筑空间结构工程的实际情况,从分析抗震材料选择等方面入手,提高建筑结构整体抗震能力。

1.2 建筑结构工程抗震设计注意事项

1.2.1 建筑物建筑场地的选择。在建筑结构工程抗震设计阶段,建筑场地的选择是抗震设计过程中必须要注意的关键技术性问题,抗震设计人员在设计时应深入到建筑场地,对建筑场地的地质情况和水文情况进行勘察,收集记录数据,认真研讨在该建筑场地建筑房屋对抗震设计的影响因素,比如建筑场地处于地震频发地段或者建筑场地的地基为软弱地基等,所以在建筑场地选择时应尽量避开这些地段,如果无法避开,就需要充分地运用建筑抗震设计理论知识,对建筑地基和结构进行强化和优化设计,保证建筑整体结构的稳固性,进而提升建筑的抗震能力。同时,根据建筑物地域性分布及结构特征选择不同的建筑材料和抗震设计方案,如果建筑场地处在地震高发区,建筑房屋的抗震防烈度要求高,这就需要对建筑结构的柔性和延展性进行考虑。

1.2.2 建筑结构体系的选择。在建筑结构体系选择时要对建筑结构的特征进行综合考虑分析,在设计过程中要对建筑结构中的任何一个构件都要进行抗震能力的分析及试验,避免因某个微小的房屋构件未达到抗震设计要求,一旦地震发生,会因一个微小的建筑构件影响整个建筑的抗震能力。因此在建筑结构体系选择时,首要工作是对建筑结构中的各个构件承重能力、构件均匀沉重分布情况及构件的抗震能量传输进行分析和计算。

1.2.3建筑结构中的抗震设计另外一个需要注意的问题是建筑平面布置问题,在建筑结构抗震设计时,除了抗震设计达到有关要求外,还需要注意建筑平面布置的规则性,做到既能满足抗震要求又能满足城镇建设规划要求。

2 建筑结构抗震设计方法研究

2.1根据建筑结构性能进行抗震设计

根据建筑结构性能进行抗震设计同传统的建筑结构抗震设计有着本质上的区别。针对建筑结构性能的抗震设计主要是通过对建筑场地地质情况,建筑结构情况和抗震材料采集数据,并分析计算后所产生的更具科学性的抗震设计新思路,新方案。这样综合性考虑建筑结构抗震设计的方式,使得设计作品更加地贴合抗震功能性的要求,对确保建筑抗震能力,降低地震灾害对建筑物体的破坏程度有着积极的影响。

具体而言,根据建筑结构性能进行抗震设计时都会有一个终极目标,设计者在设计过程中会对以往建筑物体在地震灾害破坏之后的破坏程度大小进行定性定量分类,然后建立完善的地震灾害数据库,根据数据库的信息数据对建筑结构进行抗震设计。为了能够确保建筑结构抗震能力的有效发挥,目前在建筑结构性能抗震设计中还会通过模拟地震的方式对地震对不同性能的建筑结构破坏进行安全评估,更具安全评估结果,分析抗震设计方案中存在的一些问题,然后及时对设计不足之处进行优化改进。使建筑结构工程抗震设计达到最优化,以便抗震设计方案应用到工程实践中能发挥其真正的抗震作用。

2.2 根据建筑场地和建筑规划进行抗震设计

通常情况下,地震在同一区域造成的破坏程度具有差异性,即同一区域的建筑房屋在地震灾害的破坏下,有的建筑物破坏程度不是很严重,而有些建筑物破坏程度极为严重,造成这一问题的主要原因除了同建筑物体自己的建筑质量有关外,还同建筑场地和建筑规划有着必然的联系; 如建筑物体在建设过程中建筑场地刚好处于地震震中外,地震的破坏能力最强,使得这一区域的建筑物体受破坏程度最为严重。所以在建筑结构工程抗震设计时要针对各个区域以往发生地震震级的大小及地震发生的区域进行设计,规划条件允许的情况下尽可能在选择建筑场地时候避开地震频发区域。

2.3根据建筑结构类型进行抗震设计

目前建成的房屋建筑中,大部分为钢筋混凝土框架结构。以框架结构为例,抗震设计过程中需要对框架构件的截面尺寸和配筋率进行合理设置。合理的布置设置构造柱和防震缝。对于建筑结构的薄弱位置应加强构造措施,提高建筑结构的整体抗震能力。

结束语:

尽管现在已经具备先进的技术能够较为准确地对地震进行预测,然而地震仍然会给人们带来巨大的经济损失,并且严重威胁到人们的生命安全。为了能够有效降低地震带来的破坏作用,在建筑结构设计中必须要采取有效的措施进行科学合理的抗震设计。本文对建筑抗震设计与建筑结构设计之间的联系进行了分析和介绍,并且提出了在建筑抗震设计中结构设计具有基础性的作用,在结构设计中必须要有效地融合结构设计与建筑抗震设计这两者之间的关系,从而有效地促进我国建筑行业的不断发展。

参考文献

[1]周云,徐彤. 基础隔震结构的能量设计方法[J]. 地震工程与工程振动, 2011.

[2]赵艳. 关于改进我国抗震设计反应谱的探讨[J]. 地震工程与工程振动,2

建筑抗震设计论文篇11

关键词:建筑结构;抗震设计;关键问题;具体举措

【中图分类号】TU318【文献标识码】A【文章编号】2236-1879(2017)20-0217-01

引言:随着我国经济快速发展,一栋栋高楼大厦拔地而起,但与此同时,在我国是地震多发国家的背景下,建筑抗震等安全因素成为设计需要考虑的因素之一,现阶段,我国的建筑抗震水平较高,但因地震导致房屋倒塌的情况时有发生,为了能更好的提高建筑抗震水平,在建筑抗震设计方面更加合理,作为中学生了解建筑结构的抗震设计中关键问题、具体的抗震设计举措是很有必要的。建筑结构抗震设计关键问题

(一)场地的科学选择。

建筑场地的科学选择,直接关系到建筑结构抗震设计的水平与质量。因此,有关的工程设计人员需要对于建筑物建设的场地进行全面的考察工作,选择具有土质松软、地质元素分布不均衡的区域来进行地段的选择,避免地震发生时产生出地裂或者是地表错动问题。

(二)建筑结构的合理化抗震设计。

建筑结构的合理化设计也对于提升建筑抗震设计的质量与水平发挥着重要的作用。比如:使用高强度的建筑材料使得建筑物的结构框架具有完整性的构造。而高质量设计图纸的应用,可以使得建筑物的各个部位进行更加合理、科学的布局,最终形成强有力的抗震效果。

(三)建筑平面布置的规则性。

进行满足有关抗震设计要求的施工,可以极大提高建筑的抗震水平与能力。比如:综合的考虑到各个方面的因素,应用现代的网络信息技术进行对称性的结构设计,将会对于建筑的抗震实际效果进行科学的提升。同时,我们需要清楚的了解到各种科学的设计需要真正的落实到施工实践中,使得设计的成果真正转变为实际的应用成果[1]。

一、建筑结构抗震设计的具体举措

(一)基础隔震措施。

所谓的基础隔震指的是应用各种各样的减震装置来完成有关建筑物的结构抗震设计。具体来讲,将有效的抗震、隔震的装置应用到建筑物自身的部位中,从而达到保护建筑物,使其具有良好抗震、隔震效果的一种方式。但是,这种方式不适用于高大的建筑物中。原因在于,在高大建筑物中应用抗震装置会导致建筑物产生出自振周期问题,无法达到应有的抗震效果。在我国的生活中常见的抗震装置有橡胶垫装置、混合隔震装置等。对于这些装置应用摩擦移动或者是粘弹性隔震的方式就可以进行有效的防震,保障建筑物具有良好的防震要求[2]。

(二)特殊材料在地基隔震中的应用。

应用特殊的材料全面保障建筑物的地基具有良好的防震性能,也是一个重要的防震举措。具体来讲,应用高效的沥青原料与粘土、砂子等进行混合性的应用,可以提高建筑物整体的质量与水平,保障建筑物的安全。目前这种方法已经在建筑物的防震设计中进行了一定程度的应用,并且取得了不错的应用效果[3]。

(三)建筑结构悬挂隔震。

所谓的建筑结构悬挂隔震指的是在进行建筑物结构设计工作中,应用悬挂的方式来对于建筑物大部分结构或者是整体的结构进行有效减震处理,使得地震发生时地震灾害的破壞力量对于悬挂的建筑结构没有非常大的影响,最终减轻地震对建筑的破坏程度,避免重大的人员伤亡与财产损失。比如:在一些大型钢结构建筑中应用悬挂的方式来进行有关的设计,使得有关的子框架通过锁链或者是吊杆方式的应用悬挂在主框架上。这种设计方式应用的意义在于地震发生之后,地震一部分破坏力量会传导在这些锁链或者是吊杆上,降低了地震对于建筑物地基以及墙面的影响,提高了建筑物地基抗震的实际效果[4]。

(四)建筑层间的隔震。

对于建筑物层间进行有效的隔震是一种操作简单、工序简单的应用方式。但是,这种方式与其它方面的隔震使用举措比较起来只能对于地震破坏力量的10%到30%进行有效的预防,无法从根本上形成强有力的抗震效果。因此,这种方式需要与其它模式的抗震举措进行综合性的应用,形成对于建筑物的有力保护,全面提高其应对地震破坏力量的能力。

(五)建筑结构的加固隔震。

为了全面提高建筑物结构的抗震能力,我们需要采取各种的方式对于建筑物进行必要的加固处理,提升建筑物的质量。具体来讲,第一,在建筑物竣工之后,有关的工程施工技术人员可以应用阻尼的方式对于建筑物进行全面的加固,最终使得建筑结构的抗震效果得到加强。第二,为了提高高层建筑的抗震效果,我们可以应用消能减震装置来提高其抗震的能力,使得高层建筑也可以在地震发生时具有对地震破坏力的抵御能力,避免重大的财产损失与人员伤亡。比如:消能减震装置在建筑物隔震夹层中进行应用,可以极大提高建筑物结构的抗震效果[5]。

二、结论:

通过上述几个方面,对于建筑物结构抗震若干问题进行科学的研究与探讨,有利于建筑物施工的企业应用众多的具体方法全面提高建筑物结构抗震的质量与水平,保障建筑物在地震发生时具有强有力抵御地震的能力,减少人员的伤亡与财产上的损失。如今总体的设计理念与方式比较先进,但也需要与时俱进,不断提高建筑抗震等级,为人们的生命和财产安全提高保障。

参考文献 

[1] 古力铭. 关于建筑结构抗震设计若干问题的讨论[J]. 四川水泥,2015,06:60. 

[2] 曹振. 关于建筑结构抗震设计若干问题的讨论[J]. 门窗,2015,06:126. 

[3] 邱子龙. 关于建筑结构抗震设计若干问题的讨论[J]. 建材与装饰,2016,08:76-77. 

建筑抗震设计论文篇12

中图分类号:[TU208.3] 文献标识码:A 文章编号:

一 建筑结构抗震的理论分析

1 建筑结构抗震规范简介

建筑结构抗震规范是由各国建筑抗震经验总结而来,具有权威性。建筑结构抗震规范是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。

2 抗震设计的理论

(1)拟静力理论:拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论:反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(2)动力理论:动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二 高层建筑结构抗震设计

1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且强柱弱梁,强脊弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2 高层建筑结构的抗震设计方法

① 阻尼器的使用

目前,运用于高层建筑的结构调谐振动控制装置有多种:调谐质量阻尼器 、调谐液体阻尼器、质量泵、摆式质量阻尼器、液体—质量控制器等。其中,调谐液体阻尼器是一种被动耗能减振装置,近年来进行了大量的研究和应用。调谐液体阻尼器利用固定水箱中的液体在晃动过程中产生的动侧力来提供减振作用。其具有构造简单,安装容易,自动激活性能好,不需要启动装置等优点,可兼作供水水箱使用。

② 柔性结构的运用

在高层建筑抗震当中,即由传统的以“硬抗”为主的抗震体系转变为以“柔抗”为主的结构减震控制体系。建筑采用动力平衡的建筑结构体系防震减震效果会更好,这样可以以柔克刚、刚柔相济,有效的释放地震冲击力。

③ 高延性构件的运用

目前,我国的高层建筑很多采用延性结构体系来抗震设防,即适当控制结构的刚度,容许结构构件在地震时进入塑性状态,具有较大的延性,以此消耗地震能量,减小地震反应,减轻地震给高层建筑带来的破坏与损失。如果一座高层建筑物具有较大的延性,即使承载能力较低,它所能吸收的能量也会较大,虽然较早出现损坏,但能经受住较大的变形,避免倒塌;而仅有较高强度而无塑性变形能力的脆性结构,吸收能量的能力弱,一旦遭遇超过设计水平的地震时,很容易因脆性破坏而突然倒塌。所以,延性结构的运用这种体系,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。

④ 设置多道抗震防线

高层建筑结构需要设置多道抗震防线。建筑物应设置多道抗震防线,当第一道防线的构件在强烈地震作用下遭到破坏后,后备的第二道乃至第三道防线能抵挡后续的地震动的冲击,使建筑物免于倒塌。

3高层建筑结构抗震设计

(1)选择场地地基

选择场地地基首先要根据实际工程需要,并且还要考虑地震活动情况。分析天然地基时的抗震承载力要根据不同的场地来进行,另外,分析地震所造成的危害度也要根据不同场地来进行。如果有必要,可采用规范的地基来进行处理。对避让距离的确定可根据地震强度、断裂的地质历史、场地土的厚度来进行,进而有利于对场地范围内的地震断裂的确定。必须确保避开对建筑不利的地段来进行场地地基的选择,如果如法避开,可以利用合适的抗震措施来进行。

(2)合理匹配建筑结构刚度、承载力和延性设计

建筑结构的抗力较高时能够在一定程度上降低总体延性的要求。因此,要综合考虑整个结构的承载力和构造等因素来对结构的抗震能力进行衡量。当发生地震时,建筑物将会受到地震作用,其大小与动力特性有着很大的关系。但是,结构的抗侧力刚度的提高一般都需要提高工程造价,因此,使结构中的所有构件都具有较高的延性是提高建筑物的抗震性能最理想的措施,虽然这个理想措施很难在实际中实现。工程实践比较经济可行的方法就是有选择的提高结构中的重要构件以及关键杆件的延性。因此,合理匹配建筑结构刚度、承载力和延性设计在高层建筑结构抗震设计中是非常重要的。

参考文献

[1] 朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

友情链接