时间:2023-06-27 09:33:15
引言:寻求写作上的突破?我们特意为您精选了4篇大跨度结构建筑工程实例范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

中图分类号:TU2文献标识码: A
随着社会经济的快速发展及我国人均生活水平的提高,为满足人们对生活空间的追求,需要扩大我国建筑行业的规模并提高发展速度。大跨度钢结构的研发迅速被应用到房屋结构的建筑中。我国大陆板块结构复杂,处于地震多发地带,每年因地震产生的损失不计其数,更极大的威胁着人民的人身安全。因此,房屋建造时,房屋建筑的抗震性能要引起足够重视。
一、设计、研究大跨度钢结构房屋抗震性能
首先,要在大跨度房屋的结构设计上添加抗震性能因素,然后在进一步实现大跨度钢结构房屋建筑的抗震性能的设计,并制定相应的性能优化目标。设计大跨度钢结构房屋的抗震功能,必须要非常了解设计的方案,具体问题具体对待,不允许套用同一个方案解决不同的问题。要针对具体问题撰写并分析相应的方案,找出每个钢结构建筑的结构特殊性,制定出与之符合的易于操作和实现的抗震性能优化目标,同时,为满足预期优化的目标有必要采取应对措施。实际情况下建筑设计要复杂的多,会受到很多因素影响,这些因素会大大影响钢结构建筑房屋的抗震效果。影响因素是:场地条件,抗震设防类别,设防烈度,结构设计的特殊性,建筑开支,恢复难易程度,震后损失等。根据大跨度钢结构建筑的抗震效果,可以把结构的抗震效果分为五个水准。
同时,通过树立不同的建筑结构抗震性能的目标,可把抗震性能的目标分为四个等级。结构抗震性能设计应分析结构方案不符合抗震概念设计的情况、选用适宜的结构抗震性能目标,并分析论证结构设计与结构抗震性能目标的符合性。结构抗震性能目标分为A、B、C、D 四个等级。
性能水平1:完好、无损坏
性能水平2:基本完好、轻微损坏;
性能水平3:轻度损坏
性能水平4:中度损坏
性能水平5:比较严重损坏
二、设计大跨度钢结构建筑房屋的延性性能
1 大跨度钢结构房屋设计延性性能的重要意义
随着建筑行业的发展,现在建筑的普遍高要求,高强度建筑材料的发展及应用,这些都促使钢结构建筑的跨度越做越大,设计高效的延性性能对建筑的抗震效果非常重要,甚至是大跨度钢结构建筑抗震性能的中流砥柱,它直接影响到房屋的抗震效果。如果设计的大跨度钢结构建筑的延性性能较好,在使用后期其部件和结构会比较牢固,弹性较强,能承受一定的变形,使用寿命延长。
2 大跨度钢结构建筑房屋延性性能的应用原理
传统延性性能的分析方法两种假设是线性假定和平面假定,但现在已不在使用传统的方法,因其有缺陷。缺陷是大跨度钢结构建筑在达到屈服载荷承受极限时,变形程度很大,表现出来的是几何的非线性性质,而不是传统的线性性质。该情况出现的原因是当钢结构建筑房屋达到屈服载荷时,钢结构处于最大载荷阶段,同时,房屋建筑材料的性能也在随之转变,其弹性力度逐渐减弱,向塑性性能转变。因此,建筑材料的性能由传统的线性性质向几何的非线性性质转变。所以传统的结构分析方法已不在适用。
在大跨度建设下的钢结构的设计过程中必须要对钢结构的延性性能进行控制,主要的设计思路表现为:1)在对钢结构的延性性能进行设计时,其中关键性的性能参数有:破坏变形、屈服变形、破坏荷载、屈服荷载等;破坏荷载指的是结构响应的过程中,构件的加载曲线中最大的荷载;屈服荷载指的是结构响应的全过程中,构件加载曲线出现转折时的荷载,在结构的设计过程中,破坏荷载就是最大荷载,而其中的破坏变形指的是破坏荷载所对应的构件的形变,屈服变形指的是屈服荷载所对应的构件的形变;2)在钢结构的延性设计中,设计的重点是要得到相关的延性性能的参数,以此来确定出合理的屈服变形值、屈服荷载值,保证在钢结构的运行过程中是在安全的设计荷载下使用,同时要对承载力系数进行合理的确定,保证钢结构在运行的过程中有一定的承载力储备;3)在钢结构的延性设计中还有一个重要的设计指标就是变形比例系数,其能保证钢结构在运行的过程中有足够的变形能力储备。
三、设计大跨度钢结构房屋的抗震预制性能
1 大跨度钢结构的构件拼接建筑结构
将钢结构构件拼接建筑结构应用在大跨度钢结构房屋中,会大大增加大跨度钢结构房屋的抗震效果。由于钢结构构件的拼接增加了房屋建筑塑性铰的数量,这样就大大提高了大跨度钢结构房屋抗震性能。钢结构构件拼接建筑结构的优点有两点:一是使钢结构房屋的抗震性能提高,二是当突发地震时,其较强的抗压、抗拉、抗剪性能可有效减缓房屋倒塌的过程,延长坍塌时间,大大提高了钢结构建筑房屋的抗震性能。
2 大跨度钢结构建筑房屋的支撑布置结构
现在,钢结构的诸多优点促使其在钢结构高层建筑中应用广泛。由于高层建筑钢结构的高度问题,为保证高层建筑的稳定性,必须有强有力的支撑。这种支撑不仅需要竖直方向的支撑,还需要水平方向的加强层。水平的加强层的加设能够大幅度提高钢结构建筑整体的刚度,其具体作用是有效控制楼层的顶点位移及楼与楼之间的位移设置。另外,水平加强层的加设不但能使钢结构房屋整体的刚度增强,而且能确保房屋建筑施工中钢的使用量减少,以节约成本。可见,大跨度钢结构建筑支撑布置结构的重要性之大。
3 大跨度钢结构房屋的轻型门式刚架结构
大跨度钢结构房屋的轻型门式刚架结构分为两种,分别为变截面门式刚架和等截面门式刚架。其结构主体的组成部分是变截面门式刚架或等截面门式刚架。钢结构房屋一般采用铰接或刚接的柱脚设计。轻型门式刚架结构优点非常多,比如重量较轻、安装便捷、易于施工、施工速度较快、经济实惠等。综合以上优点,使用轻型门式刚架结构的群体也越来越大,其常常应用在大跨度钢结构房屋建筑中。
4大跨度钢结构房屋的巨型梁设置结构
在建筑行业中,巨型梁的设置是钢结构房屋的抗震性能的关键,它是设计巨型钢结构抗震性能的重要因素,它的应用与否,是保证大跨度钢结构房屋抗震性能能否实现的关键。虽然巨型梁的设置很重要,但并不是数量越多越好,建筑结构的不同所需要的巨型梁数量也不一样。通过实验可知,巨型梁位置的稍微改变都会引起对钢结构房屋整体结构强烈的反映。因此,在应用中,巨型梁的设置应该引起我们足够的重视。
四、案例分析
1工程简介
渭南市体育中心体育馆包括比赛区和训练区,其平面结构是220mx120m, 建筑总高度是34m, 钢屋盖投影面积约22000扩。总体钢结构由钢屋盖、16.3m及19.3m两个钢夹层组成,混凝土部分分为5, 7,12m三个楼层。比赛区钢屋盖采用大跨度钢结构,运用空腹网壳受力体系, 网壳矢高5-10m,矢跨比12/0-1/10,最大跨度99m,网壳采用箱形截面450、250*14*14,材质采用Q345B钢。图1是其剖面图。
2荷载条件
2. 1重力荷载
钢结构构件自重通过程序自动计算,钢材容重y=78.5kN/m3。屋面恒载是0. 8kN/m2,活载是0.5 kN/m2。
2.2风荷载
基本风压:50年重现期的基本风压值是0.61kN/m2,是正常使用极限的验算,100年重现期的基本风压值是0. 67kN/m2,是承载能力极限状态的验算。
本工程的风荷载是按《渭南市体育中心体育馆风荷载试验研究报告》进行计算,50年重现期最大风压值为-3. 03 kN/m2。
2. 3温度荷载
混凝土结构考虑±15℃温差,钢结构考虑±30℃温差。
2.4地震作用
根据《建筑抗震设计规范》(GB 50011-2001),本工程所在地区抗震设防烈度为7度,地震分组为第一组,基本加速度值为0.1g。根据《建筑工程抗震设防分类标准》( GB50223-2004)第6. 03条,本工程抗震设防类别为乙类,抗震构造措施按8度。根据场地安全性评价报告,地震的最大地震影响系数amax=0. 105(竖向),0. 140(水平),特征周期Tg=0. 40s(竖向),0. 50s(水平)。计算结构时,在建筑结构的两个主轴方向要分别考虑竖向地震影响,并进行抗震验算。地震影响按安全评估报告取值。
3延性设计
所用的软件是Midas7. 8. 0。
3.1材料选取
对材料的要求:钢材强屈比大于1.2,钢材的屈服台阶要明显,且伸长率要大于20%,因此选用Q345 B钢,
3. 2变形要求
对大跨度屋盖结构在重力荷载代表值、多遇竖向地震作用共同作用下组合挠度值不超过L1 /400。场馆中部:(挠度)/D(跨度)=143/99000=1/692 < L1 /400满足要求。
总结
随着建筑业的发展,钢结构得到越来越广泛的应用,特别是大跨度钢结构建筑房屋的数量越来越多,因此,要严格提高大跨度钢结构建筑的结构形式并严格要求其相关技术要求。同时,我国处于地震极其活跃的大陆板块,近几年发生的地震带来的损失巨大,根据这一实际情况,我们应该着重提高房屋的抗震性能,对大跨度钢结构建筑的抗震性引起足够的重视,改进钢结构建筑的结构形式,并尽可能提高其延性性能,增加房屋建筑的可靠性、稳定性,做到把地震带来的灾难损失最小化。
参考文献
中图分类号 T323 文献标识码 A 文章编号 1673-9671-(2012)112-0178-02
钢结构管桁架技术已经在国外流行多年,我国建筑业在经历着快速发展的同时,对建筑的屋盖体系逐步重视。在这个基础上,钢结构管桁架技术得到了深入的研究发展和运用。下面我们就对这种设计结构进行探究。
1 管桁架结构的初步认识
随着技术的发展,钢管结构在当今建筑的使用范围上,已经从大型建筑工程范围上扩展到了工业建筑以及民用建筑范围上。例如上海、长春的体育场,成都的机场航站楼、哈尔滨的滑雪场、扬州体育馆、上海洋子港大桥、广州国际会议展览中心以及北京奥运会老山自行车馆等等,在屋盖体系上都选择了钢结构空间管桁架的设计结构。
管桁架依据杆架布置的不同以及受力特征的不同,一般分为平面、空间两种管桁结构。顾名思义,平面管桁结构就是上、下弦以及腹杆全部处于同一平面。这种结构的外部刚度较差。空间管桁结构的上、下弦同腹杆通常处在三角形截面上,这种结构的跨度大,稳定性高,外观通常也比较富有美感。在外支撑不能布置的时候,采用稳定性高的三角形桁架来构建一个跨度大的空间。这种结构方式减少了支撑够件的数量,所以比较经济。
对于管桁架的连接件杆件截面的种类,一般常用的为圆形、正方以及长方形,选择不同图形的截面相应的桁架类型也有所不同:如果连接件截面是圆形,就选择C-C型桁架;如果连接件截面是正方形,就选择R-R型桁架;如果连接件截面是长方形,就选择R-C型桁架。
弦杆的类型决定了桁架的外形,基本上可以分为直线型桁架和曲线型桁架两种。这其中,曲线型桁架可以更好的体现建筑的美观程度,也被最常用于施工过程中。为了在最小的成本支出下获得最佳的建筑效果,在曲线型管桁结构设计过程中,杆件仍然使用直杆形式,将折线近似来替代曲线。
钢管桁架结构的外形优美,经济成本低,受力较其它材料合理,正是这些相对的优势使得钢结构管桁架在建筑中得到了最普遍的使用。大量的建筑工程实践可以证明,钢管结构的运用一方面满足了建筑的基本原则,另一方面也满足了建筑的基本要求,并且与最新的设计理念吻合。
2 空间管桁架结构的发展现状
现代很多大型的建筑均采用钢结构进行构造的,而且伴随着建筑业的不断深化与发展,建筑理念也发生了翻天覆地的变化与创新,在钢结构的应用和实践上,出现了许多类似跨度大、空间形状相对复杂多变的钢结构的建筑。这些新型钢结构建筑的设计,同时也对钢构件的优化与创新提供了基础。近些年我国出现的,比较著名的类似于水立方、国家大剧院以及中央电视台新办公楼等等大型的体育场馆、文化场馆、展览馆等无一例的使用了大跨度、复杂空间钢结构,来充当建筑自身的屋盖结构体系。
如今,建筑水平的科技含金量已经成为了衡量一个国家建筑水平的标准,其中,空间结构技术发展的好坏决定了建筑水平的科技含量。我国的建筑业从未停止过对于大跨度空间结构研究方面的脚步,相应的施工技术也有了质的飞跃。
大跨度空间管桁架在国家重要的场馆建设时,发挥了不可替代的作用。但是,由于在跨度、桁架截面以及规格上的不同,造成建筑相互间壁厚对接、K型节点等方面上或多或少的存在些差异。
3 空间管桁架结构问题的解决
3.1 主管不等壁厚对接问题及办法
大跨度变截面的主管对接口处,是不等壁厚对接问题主常出现的位置。设计单位往往要求所有的主管对接口,在工厂内实行打内坡口并且要求加折板已充当衬垫。但是,大量的内坡口构件应用到施工中会导致工期的延长、难度的增大。而且,由于国内的无缝管制造技术还与国外有一定的差距,必须要采用卷管制作的方法,这就造成了直缝钢管的圆度差异问题。
按照相关的规定,直缝钢管的外径偏差率不能大于或小于0.75%,弯曲度偏差不能大于3.0mm/m。焊接两个构件时,焊件的宽度与厚度不等同,其中,如果焊件的厚度在一侧上存在着4mm以上的差距,那么就要分别在宽度、厚度方向,沿着一侧或者两侧做成斜角,这个斜角的坡度应该控制在小于或等于1:2.5的范围内。此外,可以通过沿着焊件焊接的缝隙的垂直方向添加插筋板,还可以在焊缝位置加上箍圈对焊接构件进行固定。
3.2 K型搭接节点处不可视焊接问题及办法
搭接节点在节点构造上一共可分为间隙、部分搭接以及完全搭接,这些不同结构的节点在设计与施工的过程中,如何搭接就成了最为关键的问题,也会增加内隐藏焊缝的几率。而相关规定并未对这方面的问题有具体的规定。
通常情况下,主管与腹杆的直径比要控制在大于等于0.2、小于等于1的范围内,腹杆之间的搭接量要控制在大于等于25%的范围内。在节点的选择上,要多选择间隙节点替代部分搭接节点,因为间隙节点比部分搭接节点更容易被组装。对于部分搭接节点的隐藏部分一般是不焊接的,只有出现腹杆与主管之间的不平衡系数大于1.5的情况,那么部分搭接节点就必须要进行焊接。搭接节点的选择,要注意搭接管与被搭接管至少要将25%的宽度叠合在一起,最佳的选择是有一般的宽度叠合。另外,对于部分搭接的K型节点,如果主管垂直方向的内力与腹管内力之间存在低于五分之一的差距,那么被搭接杆件的趾部是不需要进行焊接的。
除此之外,搭接节点构件中,圆管外层直径同构件壁的厚度之间的比值不能大于100。K型节点构件的搭接率应该被控制在大于等于25%、小于等于100%的范围内。如果腹杆出现厚度不同的情况,那么在焊接时,要在厚壁管上方搭薄壁管。综上所述,空间管桁架设计时,不只需要考虑杆件以及杆件节点承受力,节点的构造也是很重要的环节,节点的结构设计可以有效地将各个构件联系起来,对于整个建筑设计起到承上启下的关键作用。
3.3 空间管桁架施工的步骤
“先点焊,后全焊”是管桁架施工的主要程序,在桁架施工中如果有搭接节点存在,就一定要事先明确需要焊接的搭接部位,这也侧面要求施工过程中要对各个构件安装的先后进行有效确认,以防因为构件安装顺序的颠倒导致建筑安全隐患。空间管桁架的安装步骤通常是:主管先行安装,接着安装只管,每安装一个只管后,对直管趾部进行焊接,最后进行支管与支管间的焊缝焊接。
3.4 如何进行相贯口补块
一个建筑工程的施工中,从设计到施工整个过程不可能完美,或多或少都会出现一些不足或者误差,特别是在施工过程中人为的失误会加大这些误差出现的几率。这些失误往往会造成相贯口出现缝隙过大问题,需要及时有效地进行查缺补漏。
1)如果桁架同主弦管相贯口间隙长度大于8mm,那么解决方法之一就是彻底替换相贯口,方法之二就是对相贯口周围部分结构进行切割,切割的要求是长椭圆形,长度要大于或者是等于500mm,针对切割的部分进行替换,在替换中应该打坡口焊接。
2)支管相贯口间隙过大,要对支管相贯口的局部构件补块,补块要求是长椭圆形,长度要大于或者是等于300mm,对于焊接的要求同样是坡口焊接。
4 总结
钢结构在建筑领域的作用日趋重要,因为钢结构的自身重量较小而且强度较高,可塑性和柔韧性都较其它材料强,加之钢结构无法比拟的抗震性能,是之成为公认的具有良好性能的结构。钢结构也被应用到了空间结构体系中,尤其是跨度较大,标高较高的大型场馆,空间钢结构管桁架设计做为其屋盖结构发挥着很多的优点,满足了场馆大跨度的要求,而且符合建筑设计的美观实用、经济安全的基本原则。这一设计结构在未来会被更多地运用到实际建筑中去。
1 BIM技术基本特征
BIM技术是Building Information Modeling技术的简称,该技术通过数字化3D技术对建筑工程中涉及的多种信息进行全面的整合,实现了工程数据模型的构建。该技术综合了建筑工程管理全过程中设计、施工、运营、维护等诸多环节的相关内容,将传统的建筑工程设计与管理的纸质文件转化为数字化文件,并以3D可视化的形式加以展示,提升了工程设计与管理人员提取与处理建筑工程信息的准确性与效率性。
1.1 参数化3D模型
BIM技术建模过程中应用的数据信息直接来源于建筑设计参数,通过参数化建模的形式直接将方案设计信息转化为3D模型,以此实现了建筑设计方案2D向3D的转换。参数化的3D模型完全与设计方案向契合,同时在设计过程中能够通过参数的调整直接进行建筑结构智能化设计,保证建筑设计整体的合理性。
1.2 可视化技术
BIM技术的应用其主要特点在于设计方案与施工管理过程的可视化,以往的2D设计与施工管理方案转变为3D可视化模型,设计与施工人员能够通过直接的观察,实现设计与施工管理判断识别,进而完成相应工作的管理与优化。现阶段,建筑工程的体量不断增大,施工工艺应用也相对复杂,仅仅依据传统的方案数据往往难以从整体上对设计与施工工作进行把控,应用BIM技术在实现方案可视化的基础上,结合工期管理、造价管理等诸多因素对建筑工程进行全方位管理工作。
1.3 统一化的信息标准
当前,数字化信息技术在建筑工程领域中的覆盖范围不断扩大,随之而来的是不同软件平台或管理系统内部信息标准的衔接问题。当前,建筑设计与施工管理工作中应用的BIM软件执行的是IFC标准,也是众多信息处理软件的执行标准,因此BIM软件在使用过程中能够更好的实现信息录入与数据输出,统一化的信息标准有效提升了设计与施工管理方案使用的便捷性。
2 BIM技术在钢结构工程设计制造中的应用
2.1 高度直观的可视设计
在应用BIM技术进行建筑设计的过程中,3D模型能够有效实现建筑设计理解度的提升,能够方便的进行设计方案共享交流,数字化的信息载体有效提升了方案处理效率。同时,高度直观的设计结果为设计人员进行结构调整优化提供了更为便捷的途径。
2.2 高度统一的关联设计
BIM的3D设计结果其基础是设计方案的数据支撑,相应的模型与数据是一一对应的,这种高度统一的关联设计保证了设计方案与实际成果的一致性,同时也有效实现了设计方案调整优化过程的统一性,避免了人为操作失误对设计结果的不利影响。
2.3 高效精确的自动统计
建筑工程设计阶段形成的信息对于工程整体质量与成本造价等要点环节有着直接的影响。借助BIM技术,设计人员能够将工程设计的全部信息录入系统形成工程数据库,借助自动统计功能实现数据的全面收集整理,从而实现全过程施工质量与成本造价控制,获得理想的设计结果。
2.4 高效严谨的协同设计
BIM技术的应用是对建筑工程全过程的优化整合,通过数据信息可视化的形式为建筑设计与施工提供了协同工作的有效途径。在建筑设计过程中,设计人员能够通过BIM技术提供的共享途径,不同部位的设计人员能够进行配合工作,有效避免了因信息传递不畅导致的设计偏差,维持设计方案的一致性。
2.5 快速及时的计算模拟
BIM技术应用优于传统建设设计方法的要点在于信息处理效率的提升,通过BIM软件内置的统计、计算、分析等系列功能模块,能够保证设计分析结果的准确性,实现设计流程的标准化控制,对设计方案与思路进行控制,同时对设计结果进行及时的评估。
3 工程实例分析
3.1 工程概况
某钢结构建筑工程占地面积5680O,总建筑面积118725O,总建筑高度为95.28m。该建筑顶端钢结构由钢桁架及连系梁构件组成,钢结构连接体系部分总高度25.5m,最大跨度55m,最小跨度是25m。该钢结构共有75个水平、斜向杆件安装连接构成。下图1为该建筑钢结构示意图。
3.2 BIM设计分析
本建筑工程钢结构部分设计使用ANSYS有限元分析软件进行建模分析,结合TERLA进行BIM三维放样,从而实现可视化工程设计。
(1)连体钢结构施工虚拟仿真技术
根据本工程实际设计参数通过BIM软件建立计算模型,导出CAD文件,形成TEKLA模型,结合该模型进行本建筑钢结构的整体分析,对施工节点进行细化,确定构件尺寸,对施工方案进行优化处理。
同时,应用BIM技术对TEKLA模型进行模拟施工,对构件提升、安装等施工工序进行模拟施工,通过可视化功能实现制造安装虚拟仿真,对体积碰撞等情况进行预估,为精确定位与顺利安装制定标准化流程。下图2为连体钢结构提升部分设计尺寸。
(2)复杂节点设计分析
作为钢结构体系中重要的载荷部位,梁柱连接点的应力较为集中,设计过程中应以此部位为设计重点。本建筑钢结构体系节点位置的构建类型主要包括梁、柱、斜撑、侧向连接杆等类型,具体设计尺寸为:钢梁截面700mm×300mm,柱和斜撑截面500mm×400mm,节点部位钢板设计为加强板厚度60mm。
根据结构节点应力特性与制作安装施工流程进行节点位置的设计,其基本要点为:(1)桁架平面内部载荷设计标准应强于平面外部设计标准:(2)主桁架载荷设计标准应强于次桁架设计标准;(3)桁架单元载荷设计标准应强于联系杆件设计标准;(4)钢结构体系中的各构件设计应保证结构体系中得整体协调性与稳定。
同时,为了保证各节点施工质量,节点部位在钢结构制作车间内用大型机械制做成整体节点,由于构件截面比较大,在制作过程中需要对每个杆件进行精准定位后安装,本工程采用TEKLA进行深化设计,优化节点设
计,达到精确放样,从而保证了节点制作、安装质量。
4 结语
综上所述,作为建筑工程领域中应用较为广泛的BIM技术,在实际使用过程中因其突出的参数3D化、模型可视化以及信息标准化在建筑工程实际使用中收到了理想的效果,成为了行业工作者们关注与研究应用的热点内容之一。BIM技术在钢结构工程设计制造中的应用,有效提升了设计与施工管理的科学性,为提升建筑工程质量,保证建筑实际使用性能打下了良好的基础。
中图分类号TU5 文献标识码A 文章编号 1674-6708(2013)82-0147-02
我国建筑业的蓬勃发展,带动了钢结构事业的不断前进,各种钢结构的理论建筑设计不断科学化、体系化。钢结构的部件的质量也有了很大程度的提高。对于大跨度管桁架设计上,钢结构的应用使得整个工程的质量与外观有了本质的提升。本文旨在通过对大跨度钢结构管桁架的设计与安装,进行简要的讨论,以此来达到对钢结构空间管桁架体系的认识。
1 管桁架的初步认识
管桁架依据杆架布置的不同以及受力特征的不同,一般分为平面、空间两种管桁结构。顾名思义,平面管桁结构就是上、下弦以及腹杆全部处于同一平面。这种结构的外部刚度较差。空间管桁结构的上、下弦同腹杆通常处在三角形截面上,这种结构的跨度大,稳定性高,外观通常也比较富有美感。在外支撑不能布置的时候,采用稳定性高的三角形桁架来构建一个跨度大的空间。这种结构方式减少了支撑够件的数量,所以比较经济。
2 工程概况及施工安装浅析
2.1工程概况
坐落于“人间天堂”——苏州的苏州科技学院,为新校区建设篮球馆。该篮球馆工程采用大跨度钢结构管桁架进行施工,整个篮球馆呈正方形,建筑设计边长为79.2m,最高处为22.22m。共有10榀纵向主桁架以及12榀横向次桁架。这当中有7榀单榀主桁架, 2榀单片次桁架,最重主桁架重21.6t。
2.2工程技术特点
1)该篮球馆工程的屋顶桁架设计中,共有7榀长约61.6m的整体大跨度主桁架,桁架的跨度较大,单榀桁架的自身重量较大,标高较高,对于施工来说,如何在有限的施工场地对桁架进行组合安装,对设计及施工人员来说是一个不小的挑战;
2)该篮球馆工程的桁架与桁架间、桁架与支撑结构节点间都是选用的高精度的管材相贯节点,这就要求桁架的起吊与节点的焊接保证精密、牢靠。在各个构件的加工与安装的过程中保质保量;
3)大的桁架在运输过程中需要被分解成小桁架片,安装前要将这些小桁架片进行从新组合,在重新组合的过程中,要注意桁架的原有形态,保持高水平度的总拼胎架。
针对大跨度管桁架的施工安装,主要从吊装的有关细节进行分析。
2.3管桁架的吊装方法
国内目前对于大跨度钢结构管桁架的吊装主要有整体吊装、分段吊装、以及高空散拼等方法。该篮球馆工程比较复杂,一方面桁架自身重量大、吊装的高度高,整个屋顶又是大跨度,另一方面现场地质地坪承载力有限,所以经过综合考量,最终选择的管桁架吊装方法是:在地面铺设胎架,在胎架上进行管桁架总拼,用双机台吊将管桁架整体吊装,最后进行次桁架等其余各个组件的拼装。
2.4吊装前的准备工作
2.4.1管桁架的拼装
该篮球馆工程所选用管桁架长度长,高度高,在运输时,将61.6m的单榀管桁架细化成几个小的部分,在篮球馆内进行总体拼接。所以,现场胎架焊接平台的搭设是准备工作的第一步。选择一处面积大、承载力高,面积约140m2的平整土地作为地坪,将已经搭接好的平台放在这块地坪上。使用水平检测器确保平台的水平度,以此来保证管桁架拼装时的完整准确度。这一准备工作的注意事项是在对过长的管桁架进行分段时,要对每一小段的管桁架的两端管口进行有效的加固,这样做的目的是预防管桁架由于被分段而在运输途中受到磨损或者变形,影响施工进度。并且,在各个小段的管口处要增添导向板,为管桁架的再次拼装提供方便。
2.4.2管桁架的焊接工作
由于主桁架在运输时被分成了6小段,所以在组装时要大量用到焊接工作,并且对接缝都采用一级焊缝,这对于焊接工作的精度具有严格的高标准的要求。要在焊接前对焊接方式方法进行设计,并且对焊接工人的水平技艺严格把关。同时,在对管桁架进行焊接的时候,要特别注意:首先,所进行的焊接工作必须要制定完善的报告,并且要有第三方评审意见。对于焊接过程中的焊接质量,要实行严格的检查制度,对焊接的位置、顺序等质量问题要严格把关;其次,一切有关焊接的材料要实现零污损,焊接工地的环境不能太潮湿,温差不能太大,不应该在雨雪天气中进行焊接作业。在焊接过程中,要预热焊接地点,并且随时加热保证一次成型;第三,焊接的顺序要严格按照先主管、后腹管,一管一焊不重复、不遗漏的要求,在每完成一项焊接后要及时对焊接完成情况进行细致的检查。最后,由于管桁架是二次拼装,要在管桁架焊接完毕后,单独对拼装口进行细致的磨光,将管桁架的整体磨损率降到最低。
2.4.3预埋件的复验工作
吊装前的准备工作最后一项就是预埋件复验。所有预埋螺栓都要被仔细认真的复验并记录,保证该工程的轴线偏差在±5mm的范围内,标高的偏差应该控制在±3mm的范围内。
2.5管桁架的吊装工作
管桁架的整体安装工作已经完成,下面开始进行管桁架的吊装工作。该体育管留给吊装的空间不是很大,这就增加了吊装工作的难度。根据实际情况,要动用2台130吨的吊车。首先要将管桁架进行安全固定,再用经纬仪对管桁架进行初步调直,为了保证调直位置要对调直后的管桁架用缆风绳进行固定。接着按同样的方法进行下一榀桁架的吊装。两榀主桁架吊装完毕后,开始次桁架及其它安装构件的吊装。两榀桁架组合完毕要及时检测组合后的垂直度。
对于抬吊过程中,两台吊车能否协同作战、密切配合对于吊装工作的完成具有决定性的作用。首先,要在施工前对于吊车司机进行良好的沟通难过,确认各种现场施工的起吊信号,明确起吊路线,确保司机按照交底内容进行操作,遵守信号员的命令手势,服从信号员的统一指挥。其次,在正式实施起吊工作前,要对起吊工具进行系统全面的检查,排除一切不稳定因素,保证不影响起吊工作的顺利进行。第三,对于拉拽的钢丝绳要万无一失。在整个吊装过程要保证钢丝绳的垂直绷紧。在起吊前,要在桁架升高半米时制动悬空,随后观察钢丝绳和桁架是否出现问题,出现问题则及时落地,没问题则继续起吊。第四,在吊车起吊过程中,要对起吊的速度、路线进行严格的控制,保证速度的均匀性,严格按照标线进行起到,偏离标线要随时调整。具体做法就是要在行进过程中,每前进升高1m就要检查1次。
对于管桁架垂直度的把握,要采取多管其下的方式方法。吊车每安全送达一榀管桁架后,就要立刻对该管桁架进行垂线测量,当预埋件与桁架轴线相互重合,那么才可以进行脚螺母的旋紧。之后,每形成一个桁架体系,就要从控制点到柱脚梁上对高程进行转变,并再次检查该体系的轴线是否与预埋件轴线重合。
管桁架安装的准确度和安装质量,要从两个方面进行有效的确保,一方面是平面位置相对轴线的精确度,另一方面是立面的相对标高的精度。所有精度的确认必须都要实行书面记录,这样可以为整个管桁架安装过程中产生的误差进行调整提供依据。
经过科学周密的设计与稳定的施工,最终历史90天,该体育馆的管桁架安装顺利完成,为苏州科技学院的体育教学提供了保证。
3结论
建筑的基本原则就是经济安全、美观实用,美观性与实用性在当今的建筑法则中,被重点突出出来,这就要求建筑的设计到施工技术都要与时俱进、不断创新。施工技术的创新发展不仅仅停留在施工建筑的方式方法手段上,而且体现在整个建筑施工过程中,要融合钢构件的最新制造方法、计算机结构设计的动态把握手法等等新式的技术,使得建筑业更好地实现从传统观念向国际化、科技化、机械化领域转变。由此可见,科技的创新、施工技术的发展对于一个建筑的生存发展起到关键的作用。而钢结构管桁架这个新式的建筑手法,在大跨度结构建筑的应用上,被越来越多的企业所认可。
参考文献
[1]王小波.钢结构施工过程健康监测技术研究与应用[D].杭州:浙江大学,2010.