数据分析设计合集12篇

时间:2023-07-09 08:23:54

数据分析设计

数据分析设计篇1

[教材分析及处理]

本节课是在学生上节学习了Excel2000数据编辑和计算的基础上,提高学生运用Excel2000知识解决实际问题的能力上的授课内容。

由于我校地处农村乡镇,学生水平参差不齐,基础不牢固,故我们在进行课堂教学时要降低难度,教师以指引等手段引导学生设计问题、思考问题、解决问题,以达到我们完成教学的目的。

本节课内容实践性强、难度不算大,但涉及知识面较广,所以借助于“校园卡拉OK大赛”评分表为实际问题分析对象,从排序、筛选到分类汇总三种操作入手,层层跟进,让学生体验如何利用技术方法实现分析数据的目的。最后的巩固练习通过二个实例,引导学生培养分析统计数据的能力。

[教学目标]

知识与技能:

1、 了解电子表格是进行数据分析的工具

2、 掌握排序、筛选和分类汇总等分析方法的特点与意义

3、 能运用排序、筛选和分类汇总等方法进行简单的数据分析

过程与方法:本节课通过对学生生活中的实际问题的需求分析,学生掌握排序、筛选、分类汇总等数据分析的分析的基本方法,以及利用这些方法所能实现的分析目标,培养学生观察问题、思考问题的能力和数据分析能力。

情感态度与价值观:体验利用数据分析手段分析数据的过程,感受数据背后所蕴涵的丰富信息,培养学生对数据的情感和从数据中探求信息的意识。

[重点、难点与疑点]

本节的重点是排序、筛选和分类汇总等基本分析方法的运用,难点是如何利用这些分析方法实现数据分析的目的,疑点是这些方法所能实现的分析目标。

[教法设计]

本节课教学重点在于如何运用EXCEL知识解决实际问题,所以教学过程中使用了分组讨论法、作品展示激励法等多种教学方法以激发学生完成课堂教学任务。

[学法设计]

学生思维活跃,有强烈的求知欲望,在教学过程中,力争抓住这一特点,并强化其好胜心理。授课过程中,让学生亲自体验信息处理的过程,自主学习与合作讨论相结合,加强合作意识的培养。

[教学过程和教学模式]

根据本节课的知识特点、学生已有的知识水平和教学目标的确定,我选用了自主学习的教学模式,主要采用学生分组合作研讨,自身动手实践的方法。课前准备为大屏幕投影,待处理的电子表格和教学短片。

[教学过程设计]

提出问题------分组解决实际问题-----成果展示与评价------课堂小结 ――知识拓展。

[教学过程]

1、 提出问题,激发兴趣

*屏幕展示卡拉OK比赛现场花絮,把学生的注意力吸引到课堂上来,激发他们亲自实践的欲望。

*场景及解说:为庆祝“五四”青年节,学校举办了一场校园歌曲卡拉OK大赛,赛后德育处的李主任找到我让我帮他一个忙。“帮他分析出每名选手的总名次、级部名次 ,评出最佳校园歌手、年级优秀歌手 ;每个年级的选手得分情况 ;哪个年级的成绩好,评出优胜年级 。 根据李主任提供的数据,我们同学们给他解决一下这几个问题好不好?要想处理好这几个问题,我们必须学会如下知识点:排序、筛选、分类汇总。导入新课。

*打开待处理的数据表(屏幕广播),

*提出本节课的任务(屏幕广播):

任务1按“得分”排序,得出每名选手的总名次,评出最佳校园歌手(排序、自动填充)

任务2、按“年级”和“得分”排序得出每名选手的出级部名次,评出年级优秀歌手(排序、自动填充)

任务3 利用筛选功能显示分析每个年级的选手得分情况(自动筛选)

任务4 试分析哪个年级的成绩好,评出优胜年级(分类汇总)

2、自主学习,合作研讨

首先将学生成四个小组,以小组为单位阅读、实践和研讨本节课的知识要点。要求借助计算机进行实践并在小组内思考、探究完成学案。(教师巡视指导)

(本环节的设计目的是:知识点较简单,学生自主学习与合作学习相结合,加强交流意识、合作意识的培养)

3、强化应用--------学生尝试解决问题

(1)、排序方法:请参考学案,注意根据需要选择不同的排序方式以及自动填充名次序列的方法

(2)、筛选方法:请参考学案,注意筛选只是将不满足条件的信息暂时隐藏,不等于删除操作,筛选对文件信息没有破坏作用。学生可自己尝试如何恢复显示所有信息。

(3)、分类汇总:操作思路:先分类(排序)再统计(求和、平均值、计数等)操作过程参考学案,值得注意的是,在分类汇总前,必须先按分类项目对表格数据进行排序,否则,将不会得到正确的结果。

要求:在完成上述任务后,以小组为单位报告。

得出基本操作步骤,学生相互协作自主合作完成上述问题,教师巡视指导。

4、成果展示与评价

(1)每组各选出一名同学在大屏幕上展示作业

(2)全班交流:各组间互帮互助,解决(1)中出现的实际问题并交流操作

(本环节的设计目的是拉近小组间的差距,防止某一个小组的工作出现停顿情况,而且通过小组间的操作心得交流,各组可以有针对性地调整本组的操作计划,提高学习效率。)

(3)教师点评。

A、教师从学生在操作技巧上的表现进行评价:例如数据处理结果正确?方法是否得当?问题出在哪里?如何补救?

B、教师从学生在操作过程中的表现上进行评价: 例如考虑问题的角度是否恰当?思考问题的方式是否新颖独特?有无独到的见解?有无值得大家学习的精神和勇气?

(本环节的设计目的是:展示作品,激励学生的成就感。)

5、课堂小结

同学们,你们今天运用自己的知识成功帮助李主任解决了难题,我为你们骄傲。通过今天的学习,你们掌握了一些信息处理的知识,希望对你们以后的学习或工作中有所帮助。

(本环节的设计目的是:让学生抓住课堂内容的主干。)

[巩固与提高(课后作业)]

(1)分析某次运动会初一级部运动员成绩,为学校挑选各项目的运动员,并做出公平合理的评价。

(2)分析我国部分城市月平均气温表,按年平均气温排序,分析哪些城市年平均气温最高或最低;并找出月平均气温最高或最低的城市,试用你学过的地理知识解释其原因。

数据分析设计篇2

报表情况概述

(一)报表的定义理解。报表,就是将内容信息(一般是数据、文字、图片等)以某种形式组织起来,并将组织结果呈现出来的文件。只要是做数据的呈现,无论数据存在于文本文件内、Excel文件或者是在数据库之内,只要可以将它呈现出来,打印输出格式化的数据信息,就是一份报表。报表作为一种信息组织和分析的有利手段,在各行各业都应用广泛,是信息浏览、分析、打印的有利工具,也是企业信息系统重要组成部分之一。

(二)报表的分类。按格式可以分为静态格式和动态格式。静态格式报表是由政府等管理组织制定的,格式固定而且复杂,格式与数据来源在开发时就已经固定,在使用时不需要改动,通过开发环境的自带报表组件、应用程序、第三方控件实现,比如财务报表等。动态格式报表数据量较大,数据和格式需要经常变动,用户需要自由定义,所以要有变通性和通用性,比如统计报表等。

(三)报表的构成。无论是静态的还是动态的报表都是由表头区、标题区、表体区及表尾区四个区域组成的。

(四)报表的内容。报表的内容包括两个方面,一个是静态不变的框架结构,即表头区、标题区、及表尾区,这些结构在一段时间内是不会改变的。另外一个是动态的数据,指将数据库内容,经过计算、查询及综合动态的操作,写入到表格中的相应位置。

数据统计分析报表的重要性

向企业的领导和决策部门提供高质量的、准确的、及时的数据统计分析报表是企业数据管理部门的职能。提供高水平的数据统计分析报表是数据经过深加工的最终产品,是统计数据、分析研究的有机结合,为企业领导和决策部门提供优质的服务,是他们分析经济运行态势,制定宏观决策和长远规划必不可少的重要依据。在计算机辅助技术迅速发展,世界市场动态多变,竞争日益激烈的世界经济环境下,企业的生存环境发生着巨大的变化,各种新概念新模式不断涌现,企业开始朝着全球化、敏捷化、智能化、信息化和个性化的方向发展。

传统数据统计分析报表中存在的问题

常规的数据统计分析报表主要通过纸质报表、Excel报表及专门定制的软件来呈现。而纸质的报表是最为常见的,大多企业的生产自动化的程度不高,计算机的应用不够广泛,工作人员接受创新事物的能力差等原因,所以大多的企业采用的是纸质的报表,数据的统计部门,根据需求手绘制定报表的格式,下发到其他的部门或者是生产的车间内,由部门的负责人或者是车间的管理人员按照要求填写所要的数据或者其他的指标性文字,再返回到数据统计部门。

Excel报表是在纸质报表上的一大进步,简化了纸质报表的很多程序。统计部门可以根据数据的要求在计算机上绘制电子表格,定义要求。通过网络下发到各部门和车间。数据的计算工作可以通过在计算机上引入公式完成。但是这种报表的统计分析工作还得通过统计人员手动汇总计算,统计分析形成最终的报表。

还有就是专门定制的软件,这样的软件并不是通用于所有的部门的,他们有着许多使用的局限性,例如制造企业的管理和设计软件能实现各生产部门的数据统计分析、形成制造业通用的报表,而不能灵活的完成其他形式的报表。

数据统计分析报表系统的设计

数据统计分析报表的设计最关键的环节就是报表的模板和报表的输出,下面就Excel报表模板及利用DDE通信、ACCESS数据库、OLE几种报表的输出方式探讨了数据统计分析报表系统的设计。

(一)利用Excel制定报表模板。通过运用Excel的制表功能,制定出不同的报表模板,不管是检定结果还是鉴定证书等样式的报表,每个报表的模板可以按照不同的数据需求,制定不同的结构,有报表格式、表头、表尾、框架等固定的部分。在制表的过程中由于计算机的智能会自动完成一些简单的合并、对齐、字号、字体等工作。但是对于某些非常复杂的表格编程,上述的自动化程序不起太大的作用,这时我们可以在制表之前就对表格的格式及公式定义做一些设定。这样,不仅减轻了编程与维护的工作量,还提高工作的效率。

(二)利用DDE通信来实现报表输出。Excel是办公必备的软件,也是人们最常用的表格、计算及统计的软件,它不仅查询、浏览的功能强大,而且其中内置的运算函数十分丰富,使用非常便捷。Excel在报表中应用,应用人员得心应手。动态数据交换是Windows平台中能够彼此进行交换数据与发送指令,是完整的通信协议之一。DDE方式的应用,使计算机中的各种程序通过动态数据交换的方式和MCGS来进行数据交换,是实现利用计算机中的资源对MCGS的功能进行扩充的方式,通过动态数据交换使程序读取MCGS数据库的数据,再依据要求把所读取的数据在Excel中显示出来,完成报表的输出。

(三)利用ACCESS数据库来实现报表输出。报表的制作通常是通过报表设计器或利用第三方的Activex的报表控件来实现。但是这两种方法都存在着这样那样不足:报表设计器只适用于制作一些不带有表格的报表,同时它必须与vB所提供的设计器进行结合使用,异常的麻烦;而利用第三方的Activex的报表控件来实现的,虽然相对简便,可以通过套用应用于多种的报表格式中,但是实用性较差,在实际应用中某些功能难以满足实际项目的要求。然而利用ACCESS数据库能解决上述的问题,利用MCGS数据库的访问功能,把采集到的现场数据输Access的数据库中,然后通过MCGS内部函数来调用已有程序,把Access数据库中的数据输入到的Excel的报表中,从而实现报表输出。

数据分析设计篇3

中图分类号:F407 文献标识码: A

一、前言

采用计算机操作可以将机电结构数据进行简单的导入,这就是机电结构分层系统设计的目的,本文重点对机电结构设计的意义以及形式进行了详细的分析,目的是提高机电结构设计的质量,供相关的设计人员参考。

二、机电数据结构分层系统设计意义

机电数据结构分层制作系统设计的目的就是将产品技术资料光盘进行电子化转换后,把提取的有用信息放入机电数据样表,然后通过其自动转换成可导入信息管理系统的机电数据结构分层文件。机电数据结构分层文件是信息管理系统中重要的输入数据,是编制采购计划及实现预防性维护的依据,其制作质量是否准确、规范直接关系到企业的配件库存及产品维护的成本。未开发软件之前,机电数据结构分层是通过人工来完成的,费时费力,特别是对于一些结构复杂且配件数量比较多的机电产品人工分层显得尤为烦琐,极易出现漏分及父子关系关联的错误,这严重影响数据的正确性,且无法保证时限性。机电数据结构分层制作系统实现了数据结构分层工作的自动化,从根本上解决数据分层工作中的大量人力耗费问题,可为企业信息化管理系统提供了准确、规范的数据信息,实现产品结构分层信息的共享及更新的便捷化,真正达到了配件的计划与控制。

三、机电数据结构分层制作系统实现的技术

2、采用了多线程编程技术。数据结构分层功能模块通过采用多线程编程技术,提高应用程序响应度,使处理器效率更高,且占用较少的系统资源。

3、桌面编程技术。当前桌面应用开发技术还是首推Delphi。Delphi是一个以面向对象程序设计为中心的应用程序开发工具,具有基于窗体和面向对象的方法、高速的编译器及强大而成熟的组件技术等特性,因此该软件是基于Delphi7.0环境开发而成。

四、数据的传输技术及实现

ADO是Microsoft为数据访问范例OLEDB而设计,是一个便于使用的应用程序接口。ADO通过OLEDB提供访问和操作数据库服务器端的数据,特点是速度快、内存支出少和磁盘遗迹小…。ADO在关键的应用方案中使用最少的网络流量,并且在前端和数据源之间使用最少的层数,所有这些为程序运行提供了轻质量、高性能的接口。Delphi提供了ADO数据库编程技术,由于ADO内置在微软的操作系统中,因此开发数据库应用程序避免了BDE的配置和安装,减少了的难度。

开发和一个基于Client/Server方式的应用程序,需要在服务器端安装后台数据库软件,并且建立或导入自开发程序所需要的数据库、账号和角色等。有两种方法可以实现,一种是在程序开发完成时,备份最终使用的数据库,连的程序一同提交给使用者,在用户的服务器端安装数据库系统后,根据实际情况手工导入所需的数据库。另一种方法是在开发的程序中编写代码实现数据库安装和初始化,提交给用户的只是的程序,用户在服务器端安装数据库系统后,在客户端运行应用程序,完成程序所需数据库的建立和初始化。显然,后一种方法更加灵活可靠,自动化程度高。本文讲述如何在Delphi7.0开发环境下使用ADO技术,编程实现SQLServer2000数据库服务器的连接和程序所需数据库的初始化。这是数据结构技术最为核心的内容。

1、机电数据结构分层制作系统设计思路

Delphi是一个高效的可视化数据库管理信息系开发工具。利用Delphi 控制EXCEL数据层、格式复杂的报表等与EXCEL 相关的工作,通情况下,对一些不常用到的 操作,只需利其自身函数强大的处理功能进行操作即可,而对一些经常用到且有规律可循的操作,则可以利用Delphi快速应用程序开发工具编写程序控制EXCEL格式的文件,更好地提高工作效率。由于分层系统使用的后台数据库是SQLServer ,SQLServer而 对源表格式的要求比较高,因此在往系统中导入准备分层的机电数据表时,应先将整个表的格式设置为文本格式,并且在制作完成时,进一步核查是否与模板要求相符,将格式不符的进行更正。

2、机电数据结构分层文件中分层编号的数字表达形式能够非常直观地了解该产品与组件、组件与零部件之间的关联关系,产品部分配件关联见表1。

分层文件中组件的多少及分层的级数反映了产品机构及装配的复杂程度。对于属于价值高、重要、可重复使用、可用于同类其他产品的重要零部件,定为跟踪件,其分层号与产品前均标识字母Z,同产品一样作为资产进行全寿命跟踪管理,其他零部件分层号前标识字母B,这是为下一步关接生成而特殊设定的,每个配件所要求反映的技术参数列事先根据系统要求设定。

五、系统界面配置及软件流程

1、系统界面配置

系统界面配置该软件界面配置 比较人性化,实现了分层的个性化设置、页面高清显示颜色的设置、分层完成后关机设置等。 “系统―设置―初始化数据库”,可以通过此路径删除导入的所有机电数据表,也可以在此界面进行删除。每次使用之前,要进行初始化数据库操作。

机电数据表有 5形式的模板,分别为无ZO主 组 件―― ―无直属件和有直属件,有ZO 组件―― ―无直属件和有直属件,对于多台设备分层情况,像刮板输送机,转载机和破碎机和液压支架就属于多台设备的情况,根据软件要求规范成一种特殊形式的模板。规范后的机电数据表导入后台数据库,进行自动分层。整个分层过程清晰明了,对数据的每次处,都会显示到“处理日志”中。分层结束后,显示分层完成,并将结果显示到页面中。将系统完成的结构分层文件与人工分层完成的结构分层文件通过VLOOKUP进行核对后,其结果准确无误。对于处理同等数据量的机电数据表,效率由原来的1周,提高到 完成。

2、系统软件流程

系统软件的编程是基于下面的流程框图来编制

的,设备结构分层的实现主要有以下几个步骤:一是读取规范好的 表中的数据。将表中 数据节点、一级 主组件数据节点及基础数据父子数据表存入数据库临时表中,以便对数据进行更深一步操作 。二是进行两次判断,首先判断 主组件节点是否为空,如果是显示分层结果,如果不是查询是否有子节点;再次进行判断,如果否再读取主组件节点,如果是生成父子数据,该步是本程序中的一个重点。经过不断循环,完整实现数据横向及纵向多层分层结构。三是从数据库中读出数据,把分层结果写入EXCEL表中。由于程序执行是按主组件与子组件的图号件号来进行关联,一旦数据表中前后相同组件的图号件号不一致,该程序将会关联错误,导致错误的分层结果,因此要充分发挥该系统的作用,必须在数据源头把关,并正确选择模板。

数据分析设计篇4

3.3 MATLAB在数据采集中的应用

数据采集工具箱集成于MATLAB中,所以在进行数据采集的同时,可以对采集的数据进行实时分析,或者存储后再进行处理,或者针对数据分析的需要对测试条件的设立进行不断的更新。应用数据采集工具箱提供的命令和函数可以控制任何类型的数据采集。例如,在硬件设备运行时,可以获取事件信息,评估采集状态,定义触发器和回访状态,预览数据以及进行实时分析,可以设置和显示所有的硬件特性以满足用户的技术指标。

4系统设计方案

声音信号的采集与分析处理在工程应用中是经常需要解决的问题,如何实时采集声音信号并对其分析处理,从而找出声音信号的特征在科学研究中是一项非常有意义的工作。

声卡是多媒体计算机系统中最基本、最常用的硬件之一,其技术发展已经成熟,它具有AD/DA转换功能,现已被广泛应用于声音信号采集和虚拟仪器系统的设计。MATLAB则是一种功能强大、计算效率高、交互性好的数学计算和可视化计算机高级语言,它将数值分析、信号采集与处理和图形显示有机地融为一体,形成了一个极其方便、用户界面友好的操作环境。本文所设计的声音信号采集与分析系统就是充分利用了声卡的AD/DA转换功能和MATLAB强大的数据处理功能,同时,该系统还是建立在MATLAB软件的图形界面实现的,因而使系统具有良好的交互性。

基于计算机声卡的数据采集系统有以下特点:

(1)价格低廉。在数据采集时,所要采用的是模数转换芯片,对于某些应用场合,可以利用计算机上所附带的声卡实现数据采集任务。

(2)灵活性强。用户不仅可以进行实时监视和控制操作,还可以把数据保存到硬盘,供以后分析使用。在CPU足够快的条件下,还可以实时处理数据,动态显示波形的频谱、功率谱。另外在一台计算机上,可以插若干块声卡,组成多通道数据采集系统。

(3)频率范围较窄,不能测直流。由于受声卡的硬件限制,要得到较好的波形,输入信号的频率最好在100Hz~15kHz范围内。

总之,运用廉价的声卡,构成一个较高的采样精度,中等采样频率,且具有很大灵活性的数据采集系统,对于一些应用领域是一种很好的选择。

4.1 系统结构设计

MATLAB提供了一个数据采集工具箱(Data Acquisition Toolbox),在该数据采集工具箱中,有一整套的命令和函数,可用来直接控制与PC机兼容的数据采集设备进行数据采集,因此,利用MATLAB的这一工具箱便可进行声音信号的采集。然后在MATLAB中直接调用频谱分析函数、功率谱分析函数或数值分析函数等,就可以将采集到的声音信号分别进行频谱、功率谱分析等多种谱分析。因此,在MATLAB中可以很容易地实现信号采集与分析处理工作。

图4-1系统实现的总体框图

从系统框图上看,整个系统结构简单,而且数据的后续分析方便,不需要再进行数据转移,而直接在MATLAB软件中完成分析处理工作。在该系统中,从硬件上来讲,只需必要的信号预处理电路和一台普通的多媒体计算机(或笔记本电脑)即可;从软件上来讲,则只需使用本文中所编制的程序,便可从声卡获取数据并保存为文件,然后再可根据实际需要进行数据分析处理。

4.2 系统功能设计

本系统由数据采集和数据分析两大部分组成,数据采集部分是实现信号采集功能,根据用户选择的采样频率和预设的采样样本数从声卡获得用户需要的数据。数据分析部分主要实现以下功能:(1)从信号采集部分获取数据,或者从数据文件读取数据;(2)实现将采集到的声音信号数据进行频谱分析,画出频谱图以图形方式很直观地反映出信号特征;(3)保存数据,包括保存所有数据和部分数据的功能,同时保存对应的频谱数据;(4)显示声音信号数据的时域图和频谱图;(5)其他功能。根据不同的需要,还可以进行修改,以选择合适的实验方案。

4.3 系统设计实现

声音信号采集功能的实现是由MATLAB控制计算机声卡将传感器得到的模拟信号转换为数字信号并存储在计算机中;而信号分析功能是将采集得到的数据进行时、频域分析和各项数值分析等。整个系统设计主要包括系统的硬件配置、编制程序实现数据采集、编制程序实现数据分析及系统的界面设计四部分。

4.3.1 声音信号采集的硬件配置

将声卡插入计算机的PCI插槽,安装好相应的驱动程序后,将声音传感器设备与声卡的模拟输入端连接起来,这就构建了声音采集的硬件设备,需要注意的是对声音传感器的选择,应选择音频专用电缆或屏蔽电缆以减小噪声信号的引入,最好能选择单向性声音传感器。在MATLAB的信号采集工具箱中有专门为声卡生成一个操作对象的函数,初始化该操作对象即能建立MATLAB与声卡的通信,并为已创建的声卡设备对象增加数据采集通道和触发方式。若缺省设置则系统采用一个数据通道、手动触发方式启动工作。进行数据采集时,根据所配置的声卡的工作特性和信号分析的设计要求,可设置相应的参数来控制声卡在数据采集时的行为,如采样频率、采样时间、预计模拟信号的输入/输出范围、采样的出发方式,采样点数据的存储等。另外需要注意的一点是采样频率是由声卡的物理特性决定的,实际应用中可以根据情况选择一个声卡支持的采样频率.MATLAB支持电平触发、事件触发和手动触发三种方式来启动数据采集工作。声音信号采集硬件配置的具体实现过程:

sound=analoginput(‘winsound’);% ‘winsound’为声卡的驱动程序

channel=addchannel(sound,1);% 添加通道为单声道

set(sound, ‘SampleRate’,44100);% 设置采样频率为44100Hz

set(sound, ‘SamplesPerTrigger’,22050);% 设置采样时间为0.5s

set(sound, ‘TriggerType’, ‘manual’);% 设置触发方式为手工触发

...% 其它的相关设置

4.3.2 数据采集

启动设备对象,控制声卡开始采集数据,采集过程中可以向声卡发送控制命令,如暂停采集、退出采集等。采集到的数据被暂时存放在计算机的内存中,理论上可采集的最大数据量是由计算机的内存量所决定的。同时, MATLAB能够记录采集设备的硬件属性、采集的启动时刻、采集时间、采样频率及采样通道等信息,如果采集过程中出现了错误,则出错的时刻、错误产生的来源等信息也都会被记录下来供后续工作参考。需要注意的是,执行完一次数据采集工作后应删除设备对象,将内存中的数据存储在硬盘上之后释放数据存储所占用的内存空间,以备下一次采集能有足够的内存空间存储新的数据,声音信号采集的实现程序为:

start(sound);% 启动设备对象

try

time=0;data=0;

[data,time]=getdata(sound);% 获取采样数据

catch

time=0;data=0;disp(‘A timeout occurred’);

end

stop(sound);% 停止设备对象

delete(sound);% 删除设备对象

4.3.3 数据分析

在设计该部分时,不仅要求实现能从数据采集部分直接获取数据,还需实现能从文件中读取以前所保持好的数据。之后,用户可以根据实际研究的需要,在MATLAB中调用频谱分析函数(periodogram等)、功率谱分析函数(psd等)或数值分析函数(fminbnd等),就可以将采集到的声音信号分别进行频谱、功率谱分析等多种谱分析,并且可方便地将分析结果以图形的形式显示出来,如图4-2所示。在研究蛋壳破损自动检测过程中,通过对所采集的蛋壳声音信号进行频谱分析,找出区分损壳蛋与好壳蛋的特征变量,从而实现蛋壳破损的自动检测。对所采集的声音信号进行频谱分析的程序为:

...% 获取采样数据

Px=abs(fft(data,512)) 2/512;% 对所采集的数据进行傅立叶变换

px=Px(1:256);

s=60+10*log10(px);

...% 其它功能

图4-2 声音信号的采集与频谱分析

4.3.4 系统界面设计

利用MATLAB软件中GUI模块进行设计,在MATLAB中可以方便地设计出基于对话框的图形用户界面,它提供了诸如编辑框、按钮、滚动条等图形对象,通过对这些图形对象的有机组合,再对相应的图形对象编写程序,就可以设计出界面友好、操作方便的系统软件。图4-2所示为声音信号采集与频谱分析系统的运行界面,还可再根据实际需要进行扩展。

建立基于声卡和MATLAB的信号采集与分析系统,能够实现信号采集、设备控制、数据分析以及结果显示等功能。实践证明该系统具有精度高、实时性好、性价比高、人机界面友好、升级修改简单等优点。在进行项目研究过程中,常常需要进行多次实验,采集大量的数据,并且要求对数据能实时地进行分析处理,该系统能很好地满足这种研究需要。此外,这一系统还可以扩展应用到其他相关的领域中,如在语音识别工作中可以用该系统采集语音信号并且加入语音处理的相关分析等。因此,该系统不仅具有良好的实用性,还可为其他的相关研究提供理论和应用基础。

语音信号分析处理系统一般由声电传感器(麦克风) 、数据采集卡、处理器(计算机) 、软件系统等几部分组成。商品数据采集卡(A/ D 板) 都包含了完整的数据采集电路和计算机接口电路,并同时提供驱动程序,产品和种类繁多,性能价格各异,价格一般都比较贵。PC 机的声卡本身就是一个廉价同时又非常优秀的语音信号采集系统,它采用直接内存读取方式传输数据,极大地降低了CPU 的占用率;不仅如此,声卡16 位的A/ D 转换精度比普通16 位A/ D 卡要高,能够满足语音信号采集分析要求。

5 应用设计

一、 对声卡产生的模拟输入对象(AI) 进行操作

声卡是MATLAB数据采集工具箱所支持的一种硬件,用声卡完成一个简单的数据采集过程,麦克风就成了数据采集系统中的传感器.

1)创建设备对象,这里创建的是一个声卡AI设备对象,硬件设备标示符为2.

ai=analoginput(‘winsound’,2);

2)给设备对象添加通道,这里添加1个通道.

addchannel(ai,1);

3)设定设备属性值,控制数据采集.

freq=8 000; \采样频率8 000 Hz

set(AI,SampleRate.freq)

duration=2; \采样时间2 s

set(AI,SamplesPerTrigger,duration*freq);

4)数据采集及结果处理.在这里首先将所采集到的数据进行快速傅立叶变换,然后转化成分贝,并显示结果的实数部分.

start(ai);

data=getdata(ai);

fftdata= abs(fft(data));

mag =20*logl0(fftdata);

mag= mag(1:end/2);

5)清除内存中的设备对象.

delete(ai);

clear ai;

图5-1 采样过程中没有对麦克风讲话

图5-2 采样过程中对麦克风讲话

结果分析:图5-1是在采样过程中打开麦克风,但是没有对麦克风讲话的结果(对不同品牌、质量的声卡,结果可能有所不同),图5-2是在采样的过程中对麦克风讲话的结果.可以看出,讲话与否(传感器感受端的变化)改变了所采集到的数据的结果.

二、 直接利用MATLAB数据采集箱中提供的函数命令进行采集

一般的采样过程是对声卡产生的模拟输入对象(AI) 进行操作的,由于计算机配置和模拟通道的运用使得数据采集过程显得烦琐难以理解,有时还不易获得采样数据。实验过程发现一种更为简单实用的方法可以进行数据采集。在阐述之前,首先介绍一下MATLAB数据采集箱中的几条有关命令:

wavrecord : wavrecord 利用Windows 音频输入设备记录声音,其调用形式为:wavrecord (n ,fs ,ch) 。利用Windows音频输入设备记录n个音频采样, 频率为fs Hz ,通道数为ch。采样值返回到一个大小为n*ch 的矩阵中。缺省时,fs = 11025 ,ch = 1。

waveplay: waveplay 利用Windows音频输出设备播放声音,其调用形为:waveplay(y ,fs) 。以采样频率fs向Windows 音频设备发送向量信号。标准的音频采样率有:8000、11025、22050 和44100Hz。

wavread :wavread 用于读取Microsoft 的扩展名为“.wav”的声音文件。其调用形式为: y = wavread (file) 。其作用是从字符串file 所指的文件路径读取wave 文件,将读取的采样数据送到y 中。Y的取值范围: [ -1 ,1 ] 。

sound:音频信号是以向量的形式表示声音采样的。sound 函数用于将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。

应用上述所讲到的MATLAB数据采集箱提供的函数进行一次简单的语音信号的采集实验。记录5 秒钟的8 位音频语音信号并回放之, 采样频率设为11025Hz。

﹥﹥fs = 11025 ; \ 设置采样频率

﹥﹥y1 = wavrecord (5*fs ,fs ,‘uint8’) ; \ 进行无语音采集

﹥﹥plot (y1) ;

﹥﹥y2 =wavrecord (5*fs ,fs ,‘uint8’) ; \ 开始采集8位语音信号,时间为5s

﹥﹥plot (y2) ;

﹥﹥wavplay(y2 ,fs) ; \ 回放所采集的语音

﹥﹥sound (y2 ,fs) ;

﹥﹥y1 =fft (y2) ; \ 做信号的fft 变换

﹥﹥plot (y2) ;

图5-3 无声音信号输入波形

图5-4 有声音信号输入波形

图5-5 声音信号傅里叶变换

图形分析:用户可以变换采样频率及采样时间,也可以不同的频率回放语音。感受不同函数在相同的频率下回放的语音信号是否一致。此例进行的是实时回放,若要事后回放则可用wavread 函数。从程序语言及实现上可看出此方法简便了许多,而且实验结果与传统方法得到的实验结果完全一致。图5-3为在采样过程中打开麦克风,但是没有对麦克风讲话的结果(对不同品牌、质量的声卡,结果可能不同) ,从图上可以看到除开始采样的极短一段时间内有个信号接收过程产生阶跃外,其余时间内波形都在很小的范围内平稳的波动。图5-4是采样过程中对麦克风讲话的结果,可以看出,讲话(传感器端接收到信号)改变了采集的数据的结果。从图5-4中看出波形发生了很大的变化,波形随声音信号的高低强弱而发生变化,可知计算机已经通过麦克风接收到了语音信号,说明信号采集工作成功。图5-5为对采集到的信号进行的快速傅立叶变换所得到的图形。

上面介绍的基于声卡和MATLAB的语音数据采集系统,具有实现简单、性价比和灵活度高的特点。经实例分析证明,利用该系统可实现在线连续采集语音信号并进行分析和处理。

应用前文所述的MATLAB 数据采集工具箱提供的命令函数和系统环境为Windows98 的计算机上的板载声卡进行简单数据采集。记录5s的16 bit音频语音信号并回放, 采样频率设为11025 Hz。

fs=11025

%设置采样频率

y1=wavrecord( 5*fs, fs, ‘unit16’)

%进行无语音采集

plot( y1)

%画出所采集到的信号的波形

y2=wavrecord( 5*fs, fs, ‘unit16’)

%进行语音采集

wavplay( y1, fs)

sound( y2, fs)

%回放所采集的语音

数据分析设计篇5

一、数据库的设计任务、特点及方法

1.数据库的设计任务

数据库的设计,是做到对用户信息需求、处理需求及支撑环境的满足,做到对数据模式及典型应用程序的设计。信息需求是指用户对数据及数据结构的需要,处理需求是指用户经常需要对数据进行处理。信息需求是内容性结构要求,是静态需求的一种,而处理需求是对数据库的处理需求,是动态需求的一种。在数据库设计时,操作系统及硬件设备既是数据库的软件及硬件基础,同时也是设计的制约因素。数据库在设计时,会产生两项成果:一是数据模式;二是数据库为基础的典型应用程序。

对于应用程序来说,其是在应用过程中发展而来的,比如在一些检索类的数据系统中,需要在设计时做到对检索程序的编写。由此可见,数据库的设计是数据模式的体现,并能够对数据进行快速、方便、有效的处理。

2.数据库的设计特点

数据库的设计,是技术与管理相互融合的过程,在数据设计时,对于技术与管理界面,也就是俗称的“干件”来说非常关键。因为数据库设计的特点之一就是将软件、硬件及干件的有效结合。而数据库的另外一个特点便是将数据库与应用系统结合起来。对于结构设计与行为设计来说,这两者紧密联系、相互促进、相辅相成。结构设计与行为设计示意图如图1所示。

图1 结构设计与行为设计示意图

3.数据设计的相关方法

在对数据库进行设计时,一般方法为手工试凑法和规范设计法。规范设计法是在手工设计方法的基础上采用过程迭代和逐步求精所得到的结果,具有较高的质量,比较常用的方法有新奥尔良方法、S.B.Yao方法I.R.Palmer方法和计算机辅助设计方法等,如:ORACLE公司的ORACLE Designer2000、SYBASE公司的Power Designer、Rational 公司的Rational Rose,CA 公司的Erwin和Bpwin等辅助工具建模工具都可以使用。笔者推荐应用较为广泛的新奥尔良法,这种方法将数据库设计分为四个阶段来进行,其分别为:需求分析、概念设计、物理设计及逻辑设计。后来在发展中,有人将其改变为五个阶段,后经过不断的优化与改进,添加了一些辅助设计,并在设计时采用一步连着一步的过程来完成。对于E-R模型数据库设计法、3NF设计法,都是一些较为抽象与理论的语法规范设计法,是对数据库不同阶段的满足。

二、数据库有效设计的相关步骤

1.用户的需求分析

在对数据库进行设计时,首先要解决的是对用户的需求进行分析,需求分析是数据库设计的基础,同时也是最麻烦及耗费时间的一个过程。需求分析的准确性将直接决定着数据库在未来构建时的质量及构建速度。需求分析的失误,可能会造成整个数据库设计的失败,具有极为重要的意义。

用户的需求包括:

软件需求、易维护性、易扩充性、易升级性、可读性、空间占用效率及潜在延伸需求;关键及重要数据的一致性、冗余性、访问的时效、可靠性等等。

针对数据库设计过程中的侧重点,是要在数据库设计的过程里去感受、对比、总结以及分析的。一个优秀的系统与数据库的设计密不可分,所以数据库工作者对数据库的设计要有较为深入的认识以及灵活多变的设计技巧,很大程度上取决于数据库设计者的经验和专业水平。

2.概念结构的设计

数据库及数据库应用系统的开发整个过程的完成需要设计到六个步骤,这六个步骤分别为:用户的需求分析、概念结构设计、逻辑结构设计、物理结构设计、数据库的实施及数据库的维护这六大部分。而概念结构设计,即概念模式的设计,是整个系统中用户所关注的信息结构,因此其在构建时,需要独立于计算机数据模型之外,并不受到其它数据系统所干扰,同时能够方便用户与数据库的交流。另外还需要在应用需求分析中所得到的数据流图来对数据运行轨迹进行动态展示。这一过程仅是对应用需求的反映,并不涉及到数据之间的内在联系。

3.逻辑结构的设计

对逻辑结构设计时,需将概念结构设计中的数据库概念模式进行转化,将其变为DBMS逻辑数据模型。逻辑设计的主要目的是做到对客户要求数据安全性及完整性的有效满足,并能够在逻辑上做到对数据运行过程的有效支持。另外,数据库逻辑设计并不仅仅是对数据模型进行转换,而是对数据模型中所涉及到的一些技术问题进行处理与解决。

4.物理结构的设计

在对数据库物理结构进行设计时,需要以数据库逻辑模式及概念模式主基础。运用DBMS与计算机所提供的功能及限制,在做到对数据库文件物理储存结构、存取路径、存储空间分配、记录格式的有效设计。虽然这种物理结构设计不是直接面向用户,但就整个系统的运行来说,还是会产生较大的影响,因此在设计时需要做到足够的重视。

5.数据库的有效实施

在数据库的实施阶段,设计人员运用DBMS提供的数据语言及其宿主语言。根据逻辑设计和物理设计的结果建立数据库、编制与调试应用程序、组织数据入库及进行试运行。

6.数据库的运行及维护

数据库在通过试运行之后便可以投入到正常的使用与运行当中。但是在数据库的运行及使用过程中,必须对数据库进行定期的评价、调试以及做到对数据库的修改与维护。

三、数据库在未来的发展及应用趋势

1.数据库在我国的发展现状及趋势

目前就一些实际现状来说,很多基础设施,比如有线通信设施及交通设施,都没能做到在技术上的跟进及对数据库的应用,因此在未来发展过程中,数据库在此方面应用将会有巨大的优势及广阔的前景。现在,随着电子商务的快速发展,计算机技术已经得到信息产业部及相关企业用户的高度重视,并将成为未来信息产业发展的一个重大方向,会在各个行业及领域中得到应用。

2.数据库在未来的应用趋势

数据库的未来发展方向是能够轻松处理你所需要的有线信息系统上复杂的数据类型,并能方便地进行远程控制和应用升级。当然,数据库应用与发展还依赖于应用软件的推广,Sybase公司已经为开发人员准备了适合不同行业的应用模板,以提高他们开发移动式电子商务应用的速度。作为电子商务的一个重要组成部分,数据库的应用与发展已经得到我国行业主管部门、技术与解决方案供应商和用户的高度重视,正在成为信息产业的重要发展方向,并将不断渗透到各个领域。

四、总结

如何做好对数据库的有效设计,关键在于对设计方法及步骤的有效掌握。笔者通过对数据库设计及应用实践和多方调研,对数据库设计时各个步骤目标、方法及相关事项进行了研究。认为在对数据库进行设计时,首先要对用户需求进行深入的了解,尤其是用户需要的侧重点,重点及关键重要数据,并充分挖掘用户的潜在延伸需求;其次再进行数据库的概念结构设计及逻辑结构设计,这是数据库设计的关键要素;再次要充分融入以往的设计经验和成功案例。随着信息技术及数据库设计技术的快速发展,相信未来在电子商务及其它领域,数据库能够得到有效的利用及发展。

参考文献

[1]师胜利,董瑞卿,杨彦锡.时态数据库在电子商务中的应用[J].计算机与信息技术[J].2008(03).

数据分析设计篇6

1 前言

随着文史资料研究的逐步深入,构建文史数据库成为了提高文史资料研究质量的重要手段。通过对数据库的设计过程进行了解后发现,数据库的设计与实现步骤主要为需求分析阶段、概念结构设计阶段、逻辑结构设计阶段和物理实施阶段。要想保证文史数据库设计取得积极效果,就要明确设计思路,同时在数据模型的建立上下功夫。在确定设计思路过程中,应合理确定数据模型、概念模型和现实需求。在数据模型建立过程中,应严格规范化要求,提高数据模型建立质量。

2 文史数据库的设计与实现的步骤分析

通过了解发现,文史数据库的设计与实现主要分为以下几大步骤:

2.1 需求分析阶段

在文史数据库设计之前,需要明确文史数据库需要具备哪些功能,需要研究文史数据库的特点及文史数据库与其他数据库的区别,保证文史数据库的设计能够满足实际需要,提高文史数据库的设计效果。

2.2 概念结构设计阶段

在明确了文史数据库的需求以后,需要进行数据库结构的简单构建,其中重要的一环是划分数据库的基本结构,并建立数据库的基本的概念,保证结构层次能够满足实际需要。

2.3 逻辑结构设计阶段

逻辑结构设计是文史数据库设计的重要阶段,是保证文史数据库功能实现的关键阶段,在这一过程中,需要构建适合数据库需要的数学模型,并提高数据模型的运算效果,保证数据库的功能得以实现。

2.4 物理实施阶段

所谓物理实施阶段主要是利用数据库设计原理,将物理元件连接和组装在一起,实现数据库的功能,在文史数据库设计与实现过程中,物理实施需要连接硬件系统,并将数学模型落实到系统中。

3 文史数据库的设计与实现的思路分析

数据库系统:需要机器中的某种数据库管理系统支持,物理存储逻辑结构;数据模型:逻辑结构设计关系模型;概念模型:(e-r模型)现实需求。

e-r模型中的术语:实体、属性、实体型、实体集、键、联系。实体名(属性1,属性2,……,属性n) 图形描述规则:(1)“矩形”框用于表示实体集;(2)“椭圆形”框用于表示实体集中实体的公共属性;(3)“菱形”框用于表示实体集之间的联系。实体之间的联系有三种类型:(1:1)、(1:n)、(n:m)。

数据模型:关系、属性、关键字(候选关键字,主关键字,外部键)、关系模式 关系名(属性1,属性2,属性3,……属性n)。关系完整性约束:用户自定义完整性、实体完整性、参照完整性。

e-r模型和数据模型的对应关系:实体名(属性1,属性2,……,属性n)关系模型:关系名(属性1,属性2,……,属性n)。

4 文史数据库的设计与实现的数据模型建立分析

数据模型构成: 数据结构:数据库的框架。二维表格(关系模型) 数据完整性:用约束保证数据正确。 数据操作:插入,删除、修改。

关系数据模型的规范化要求:(1)一个关系是一个二维表格。每个关系只包含一个实体的信息。(2)关系中每一分量不可再分,是最基本的数据单位。(3)每一列是一个属性,有唯一的属性名。属性在表中的顺序无关紧要。每一列的数据分量是同属性的。(4)二维表格中每一行(除属性名行)是一个元组,表中不能有重复的元组(元组是唯一的),用关键字(主关键字和候选关键字)来保证元组的唯一性。每一行由一个实体的诸多属性构成,且各行的顺序可以是任意的。

基于文史数据库的特点,在文史数据库设计过程中,应对数据模型建立引起足够的重视,应从数据模型建立入手,全面提高文史数据库的构建效果。

5 结语

通过本文的分析可知,在文史数据库的设计与实现过程中,要想保证数据库的设计与实现取得积极效果,就要对数据库的设计

骤、数据库的思路确定和数据库模型建立等方面有足够的了解。同时,还要认真分析文史数据库的特点,明确文史数据库与其他数据库的区别,保证文史数据库在构建过程中能够满足实效性要求,达到提高文史数据库构建质量的目的。由此可见,在文史数据库设计与实现过程中,我们要明确设计步骤,把握设计原则,提高设计质量,满足实际要求,使文史数据库的设计能够取得积极效果。

参考文献:

[1]季伟,刘永辉,刘剑,崔卫.实现三网融合的ftth工程设计[j].光通信技术,2010年05期.

[2]刘亚荣,杨春,李新,蒋存波.基于gpon的高校ftth设计方案[j].光通信技术,2011年02期.

[3]张杰,郑振鹏,乐孜纯,付明磊.一种融合型光网络单元的设计与实现[j].光通信技术,2012年01期.

数据分析设计篇7

引言

与传统数据数量手段比较,大数据技术具有数据类型复杂、处理迅速、实效性强等优点,在智能交通领域运用大数据技术,可以采集海量的数据,这些数据内包含许多不可估量的价值,通过挖掘和分析能够快速得到所需的数据信息[1]。针对上述情况,本文提出基于大数据技术智能交通台数据平台各功能层设计情况,并提出其在交通数据诊断、路网延迟指数等方面的应用。

1智能交通数据平台功能需求

随着智能交通管控平台违法数据、道路信息增长速度日益加快,过去的关系型数据库在数据保存、处理等方面的性能已无法满足庞大的数据需求。关系型数据库在对智能交通转向场景的规律展开分析时,难以从多个维度数据类型间创建良好的相关性联系。大数据技术的应用就是为将这些结构或者半结构化的智能交通数据实施整合处理,因此,依托大数据技术设计的智能交通数据分析平台具有的处理功能如下:①过车数据:处在行使状态的车辆从卡口、电子警察等智能视频采集点通过时,能够准确记录该车辆的车牌号、颜色、车型等结构化的数据信息。②车辆违规行驶数据:前段配置的采集设备能从各路口采集车辆是否闯红灯、压线、违法掉头或停车等数据。同时,利用智能的视频采集点或固定源能够实时采集车辆行驶速度、车头间距等车流量信息。③运用大数据技术设计的智能交通数据分析平台能够与信号控制系统实现对接,及时获取信号控制系统的相位控制等信息。同时,智能交通数据分析平台还具备监控和智能交通管控平台,能够提供过车信息数据、路网信息、违法数据等。

2大数据背景下智能交通数据平台架构

2.1设计整体架构

智能交通数据分析平台是采用先进的计算机信息技术、通信技术、传感技术、人工智能等有效整合用于交通运输信息的管理和控制中,注重人、车与道路之间的协调,组成一种有利于改善环境、节约能源、保护安全的综合运输系统。智能交通数据分析平台运用层次化结构模型展开设计,并根据大数据建设要求,整个平台包含数据感知、资源层、应用层三个层次,数据感知层主要任务就是采集交通信息,资源层旨在管理交通领域的数据;应用层旨在负责实时调度智能交通资源。本次设计的智能交通数据平台系统能满足采集、存储、调度及处理数据等方面的需求,具体架构如图1所示。

2.2各模块层设计

2.2.1资源层从智能交通数据存储方面分析,运用数据仓库与挖掘技术实现大数据的存储和分析。其中,数据仓库技术能够满足智能交通数据平台处理海量数据的要求,该技术依托预设的存储模式,把交通领域中的异构数据根据数据结构数据实施提取、调用、处理等操作。同时,根据预设的仓储模型把数据存放在数据仓库内,借助数据仓库技术设计的智能交通数据平台下数据存储及挖掘架构见图2。

2.2.2应用层设计利用SOA实现智能交通数据平台系统应用层的设计,该层主要包含三个子模块:①应用实现模块:该模块旨在完成数据的调度,借助逻辑编程及时实现相应的功能;②应用流程模块:大数据调度流程依托专业的BPEL工具调度各种资源;③特殊调度模块:该模块的主要任务是把自定义调度流程转换成BPEL流程。依托SOA服务设计的应用层。

2.2.3数据表现层智能交通数据平台系统中的表现层是使用者直接参与的界面,用户可依托浏览器、平板、手机等终端设备浏览各种智能交通信息数据。该层主要任务是确保用户与整个系统的交互性,因此,配备简洁的外观、界面框架、各单元控件等。

3智能交通数据分析平台系统的应用

3.1智能交通数据共享及数据诊断

智能交通数据平台系统各功能的实现离不开各模块之间的信息整合与共享,因此,实现各模块信息融合的主要方式就是创建信息共享平台,这个平台能支持相关子模块功能提取所需的数据资源及信息共享服务。此外,一个完整的智能交通系统还必须配置智能交通信息中心、管理中心、智能交通基础设备等,它能满足城市交通信息规范化发展要求,包含各类信息性质、功能及传送方法,组成相应的信息流机制,对共享的数据进行存储和管理操作。依托大数据技术的相关功能,这些共享数据可以由日益变化的智能交通各数据信息提取出来,实现各地区、不同领域的数据库实施综合处理,将历史数据迁移至大数据平台下,还要保持数据的完整性及各种数据之间的关系可以理解。同时,可依据各模块不同需求及相关关系为客户提供各种数据信息服务,组织内部存储各类数据直接输出来,其他子系统保存相关数据从信息共享平台提供一系列的查询功能。此外,大数据平台可以及时统计并输出道路网络的拥堵、事故情况,并能归纳为利于用户决策的有用信息,例如:利用大数据分析,某个路口闯红灯数量明显少于平时,出现异常数据可以设置报警规则,提醒出现异常信息[2]。维护者对现场道路智能交通设施实施排查操作,判定是否存在设备故障。利用大数据技术直观展现道路不均指数,提供最佳的信号机配时/相位方案,便于决策人员制定科学的决策。

3.2道路网延迟指数分析

依托大数据技术对各个路口/路段历史流量进行统计,进一步分析路网的延迟指数。智能交通延迟指数求解方法是实际通过旅行时间与自由流通旅行时间相减,若所得数值为负数,则设定为0,表明并未发生延迟,并把这些数据映射至[0,10]数据区间之内。如果智能交通延迟指数较大,说明这个地点的拥堵情况更严重。左侧向使用者展现设定日期、特点等交通延迟指数改变情况,来回移动水平滚动条,能够及时查看不同时间段的延迟数据。左侧展现路口、道路等级、行政区划等各维度下相对应点的延迟指数和排名情况。通过综合分析道路延迟指数,能够为决策人员提供新建道路规划等决策提供支持。

3.3道路路口组织优化设计

数据分析设计篇8

本文介绍了matlab及其数据采集工具箱,利用声卡的a/d、d/a技术和matlab的方便编程及可视化功能,提出了一种基于声卡的数据采集与分析方案,该方案具有实现简单、性价比和灵活度高的优点。用matlab语言编制了相应软件,实现了该系统。该软件有着简洁的人机交互工作界面,操作方便,并且可以根据用户的需求进行功能扩充。最后给出了应用该系统采集数据的应用实例。

1绪论

1.1课题背景

数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。数据采集,又称数据获取,就是将系统需要管理的所有对象的原始数据收集、归类、整理、录入到系统当中去。数据采集是计算机管理系统使用前的一个数据初始化过程。数据采集技术广泛引用在各个领域。比如摄像头,麦克风,都是数据采集工具。

数据采集(dataacquisition)是将被测对象(外部世界、现场)的各种参量(可以是物理量,也可以是化学量、生物量等)通过各种传感元件作适当转换后,再经信号调理、采样、量化、编码、传输等步骤,最后送到控制器进行数据处理或存储记录的过程。wWw.133229.cOM

被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据测量是数据采集的基础。数据测量方法有接触式和非接触式,检测元件多种多样。不论哪种方法和元件,都以不影响被测对象状态和测量环境为前提,以保证数据的正确性。数据采集含义很广,包括对连续物理量的采集。在计算机辅助制图、测图、设计中,对图形或图像数字化过程也可称为数据采集,此时被采集的是几何量数据。

在智能仪器、信号处理以及工业自动控制等领域,都存在着数据的测量与控制问题,常常需要对外部的温度、压力、流量、位移等模拟量进行采集。数据采集技术是一种流行且实用的电子技术。它广泛应用于信号检测、信号处理、仪器仪表等领域。近年来,随着数字化技术的不断发展,数据采集技术也呈现出速度更高、通道更多、数据量更大的发展态势。

数据采集系统是一种应用极为广泛的模拟量测量设备,其基本任务是把信号送入计算机或相应的信号处理系统,根据不同的需要进行相应的计算和处理。它将模拟量采集、转换成数字量后,再经过计算机处理得出所需的数据。同时,还可以用计算机将得到的数据进行储存、显示和打印,以实现对某些物理量的监视,其中一部分数据还将被用作生产过程中的反馈控制量。

数据采集系统是计算机测控系统中非常重要的环节,目前,有各种数据采集卡或采集系统可供选择,以满足生产和科研试验等各方面的不同需要,但由于数据源以及用户需求的多样性,有时并不能满足要求。特别是在某些应用中,需要同时高速采集多个通道的数据,而且为了分析比较各通道信号间的相互关系,常常要求所有通道的采集必须同步。现有的数据采集系统能够满足上述要求的比较少,且价格十分昂贵,体积较大,分量较重,使用十分不方便。

一般模拟量是通过各种数据采集卡进行数据采集。目前常用的是具有isa总线、pci总线等接口形式的a/d采集卡,虽然数据传输率很高,但是还存在整个系统笨重,缺乏灵活性,不能实现即插即用,不适合小型、便携设备采用等缺点。另外这些类型的采集卡在计算机上安装比较麻烦,而且由于受计算机插槽数量、地址、中断资源的限制不可能挂接很多设备。因此,工程师们往往需要花费大量的时间和资源用于系统搭建。

随着现代工业技术的迅猛发展,生产规模的不断壮大,生产过程和制作工艺的日趋复杂,对自动测试和各种信息集成的要求也就越来越高。数据采集系统的好坏将直接影响自动测试系统的可靠性和稳定性,为了满足不同的测试需求,以及减少对资源的浪费,在系统的设计上应该尽量满足通用性和可扩展性。在高度发展的当今社会中,科学技术的突飞猛进和生产过程的高度自动化已成为人所共知的必然趋势,而它们的共同要求是必须建立在有着不断发展与提高的信息工业基础上。人们只有从外界获取大量准确、可靠的信息经过一系列的科学分析、处理、加工与判断,进而认识和掌握自然界与科学技术中的各种现象与其相关的变化规律,并通过相应的系统和方法实现科学实验研究与生产过程的高度自动化。换言之,生产过程的自动化面临的第一个问题就是必须根据从各种传感器得到的数据来检测、监视现场,以保证现场设备的正常工作。所以对现场进行数据采集是重要的前期基础工作,然后再对现场数据进行传输和相应的处理工作,以满足不同的需要。

数据采集卡是中低端数据采集系统设计的必选产品。基于isa、pci的插卡式数据采集设备存在以下缺陷:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。而现代工业生产和科学研究的发展要求数据采集卡具有更好的数据采集、处理能力,传统的cpu已经不能满足这一要求。针对以上要求,本文将论述一种基于pc机的声卡技术,它安装容易,成本较低。只需利用计算机本身的软硬件资源,而不需添加其他任何设备即可构成数据采集与分析系统,使用matiab语言编制简洁的图形用户界面,该界面操作方便,并且可以根据用户的需求进行功能扩充。

数据分析在整个科研工作中是个重要的必不可少的环节,它的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极其广泛的应用范围。数据分析系统工作的质量和速度如何,对整个科研工作的影响也是很大的。因此研究一种质量性能高的通用数据采集平台具有很大的意义。

在近几十年来ic技术和计算机技术的高速发展,为数据采集与分析提供了非常良好与可靠的科学技术基础,也提出了更高的要求和强有力的推动。如今面临着先进的计算机技术和信息技术与落后的信息采集与分析技术的现实差距,那将大大影响科学技术的高度发展和生产过程的高度自动化。所以,近几十年来世界各国都大量投入进行信息采集与分析的工作,尤其是在经济发达的美、英、德、法日等国与我国,都对这一技术高度重视。

1.2国内外研究动态

数据采集是获取信息的基本手段,数据采集技术作为信息科学的一个重要分支,与传感器、信号测量与处理、微型计算机等技术为基础而形成的一门综合应用技术,它研究信息数据的采集、存储、处理及控制等作业,具有很强的实用性。随着科学技术的发展,数据采集系统得到了越来越广泛得应用,同时人们对数据采集系统的各项技术指标,如:采样率、线性度、精度、输入范围、控制方法以及抗干扰能力等提出了越来越高的要求,特别是精度和采样率更是使用者和设计者所共同关注的重要问题,于是,高速及超高速数据采集系统应运而生并且得到了快速发展。今天,数据采集技术己经在雷达、通信、水声、振动工程、无损监测、智能仪器、工业自动控制以及生物医学工程等众多领域得到广泛的应用并且收到了良好的效果。高速数据采集系统在国防、航天、边缘科学研究中及国民经济的各个领域的成功的应用,进一步引起了各方的关注,推动了它的研制和发展。随着科学技术的发展,数据采集系统得到了越来越广泛的应用。目前,国外很多公司与厂商都投入巨资进行数据采集系统的研制开发与生产销售,其中比较著名的有neff,ni、hp,tek等。

从数据采集系统产品来看,各大公司提供的系列产品都包括了完成数据采集的诸如信号放大、滤波、多路开关、模数转换和接口等各种模块。现有的高速数据采集器件和开发的产品中,目前还没有完全实现高速、高分辨率。在雷达、通信、谱分析、瞬态分析、电视等应用领域,为满足实时检测和高速采集的日益更新的需要,实现数据采集的高速、高分辨率已成为数据采集系统的一个发展方向。现有的高速adc器件和产品价格都比较昂贵,有些高速、高分辨率的器件本身还存在着不稳定性,因此,在数据采集系统向高速、高分辨率发展的同时,开发和研制的器件和产品应不断地提高可靠性,降低成本,提高性价比,以便使之得到更广泛的应用。在国内,由于历史、技术等原因,我们的产品普遍存在:通用性差、用途单一、测点少、测量距离小、环境适应性差等缺点,远没有形成系列化、模块化、标准化的通用产品,根本无法满足国内用户不断增长的需要,也远远不能与国外产品抗衡,正因此使得价格高昂的国外产品占有了相当大的市场份额。

1.3数据采集系统的现状及发展

数据采集与分析一直是生产实践研究与应用领域的一个热点和难点。随着微电子制造工艺水平的飞速提高及数据分析理论的进一步完善与成熟,目前国内外对数据采集系统的高性能方面的研究上取得了很大的成就。就a/d转换的精度、速度和通道数来说,采样通道从单通道发展到双通道、多通道,采样频率、分辨率、精度逐步提高,为分析功能的加强提供了前提条件。而在数据分析的微处理器上,最初的数据采集系统以8位单片机为核心,随着微电子技术的不断发展,新兴单片机的不断问世,十六位、三十二位单片机也为数据采集系统研制厂家所采用,近年来采用具有dsp功能的数据采集系统也己投入市场。同时,通用pc机的cpu用于数据处理也较为常见。总之,伴随着高性能微处理器的采用和用户技术要求的不断提高,数据采集系统的功能也越来越完善。数据采集系统的发展主要体现在以下几个趋势:

首先,在专业测控方面,基于pc计算机的数据采集系统越来越成熟和智能化。在过去的二十年中,开放式架构pc机的处理能力平均每十八个月就增强一倍。为了充分利用处理器速度的发展,现代开放式测量平台结合了高速总线接口,如pci和pxi/compactpci,以便获得性能的进一步提升。计算机的性能提升和由此引起的基于计算机的测量技术的创新,正在持续不断地模糊着传统仪器和基于计算机的测量仪器之间的界线。

其次,在通用测控方面,采用嵌入式微处理器的方案也由早期的采用a/d器件和标准单片机组成应用系统发展到在单芯片上实现完整的数据采集与分析,即目前极为热门的soc(systemonchip)。通常在一块芯片上会集成一个,可以采样多路模拟信号的a/d转换子系统和一个硬cpu核(比如增强型80_52内核),而且其cpu的运算处理速度和性能也较早期的标准cpu内核提高了数倍,而且有着极低的功耗。这种单芯片解决方案降低了系统的成本和设计的复杂性。

此外,为了解决soc方案中数据处理性能的不足,采用dsp作为数据采集系统的cpu的研究与应用目前也逐渐引起业内重视。但是这类产品目前仅仅处于发展的初级阶段,在精度、速度或其它性能指标上并不能很好的满足要求。因此,国内外以dsp作为数据采集系统的采样控制和分析运算的研究与应用正在展开。

近年来随着芯片技术、计算机技术和网络技术的发展,数据采集技术取得了许多新的技术成果,市场上推出了繁多的新产品。高速数据采集技术的发展一方面是提高采集速率,另一方面不断向两端延伸。一端是输入的信号调理,另一端是采集后的数字化信号的实时处理与事后处理。20世纪90年代末,随着数字技术快速发展,数据采集技术已向着并行、高速、大量存储、实时分析处理、集成化等方向发展。

(1)采样方式

①过采样(oversampling)。采样方式中最早是过采样,根据采样定理,采样频率fs必须高于被采信号最高频率fch的两倍,才不致产生频率混叠现象。例如信号最高频率为10khz,采样频率必须高于20khz。

②欠采样(undersampling)。在通信和动态数据的采集中,发展了一种欠采样技术,即采样频率fs可以低于信号频率fch,但信号的频带宽度不得大于0.5fs,利用采样信号产生的高次谐波,将采样后的信号移至第二或者更高的奈奎斯特区。例如采样频率fs为10khz,可对频带fch落于11~14khz的信号(频带宽度为3khz,低于0.5fs=5khz)进行欠采样。于是在采样频率2次谐波两边产生的采样后的信号频带为f2ch=2fs±fch=20khz±(11~14khz)=31~34khz,或9~6khz

③等效时间采样(equivalenttimesampling)。主要是对于重复的周期波形进行等效时间采样。例如美国泰克公司的tds784d数字存储示波器,其实际的采样频率为1gs/s(1ghz),对于重复的周期信号,采取周期微差法,可以达到250gs/s(250ghz)的等效时间采样。例如对于1ghz的方波,进行周期微差法采样,每个周期的采样只有微小的时差,将若干个周期中的样点集中排列,即可测出方波上升沿和下降沿的波形。对于单次瞬态信号,这种方法是无效的。

④变速率变分辨率采样。

(2)采集方式的发展

①扫描式采集(scanningacquisition):时分制、多通道巡回采集。

②并行式采集(parallelacquisition):多个通道同步并行采集,每个通道采用一个独立的a/d转换器,通道采集速率只取决于a/d的转换速率,与通道数无关。

③交替采集(internativeacquisition):一个通道由多个a/d转换器交替采集,使每个通道采样速率等于多个a/d的转换速率之和,可以高于单个a/d的转换速率。

(3)采集数据的实时分析与处理软件

目前国外的测试仪器或系统生产厂家,在生产硬件的同时,推出其相应的支持软件或软件开发平台,如为产品开发者提供的软件工具;为系统集成者提供系统应用软件的集成的环境;为终端用户提供编写自己的用户应用程序的手段。

1.4本文主要内容和章节安排

本文完成了一种基于matlab的数据采集系统的方案的设计,实现了在matlab环境下利用声卡和matlab数据采集工具箱进行的数据采集与分析。

全文的结构安排如下:

第一章绪论,说明了研究背景、意义、国内外现状,以及系统的发展现状。

第二章主要介绍了系统结构特点及性能

第三章主要介绍了声卡、matlab软件及其工具箱的使用

第四章主要讨论了系统结构功能设计与实现,以及数据采集与分析的具体过程

第五章主要对数据采集进行了举例

2数据采集系统结构特点

2.1系统组成结构

数据采集系统主要由两部分组成:采集子系统和计算机子系统,即下位机智能数据采集系统和上位机hmi(humanmachineinterface)系统。采集子系统实现将客观世界被测对象信号采集和转换为能被计算机处理的数字信号的功能等;计算机子系统实现对采集数据的控制、存储和处理等功能,计算机起着对采集数据的存储和处理、统计分析、提供人机接口与其他计算机的数据通信和交换的功能。

数据采集系统涉及多学科,所研究的对象是物理或生物等各种非电或电信号。根据各种非电或电信号的特征,利用相应的归一化技术,将其转换为可真实反映事物特征的电信号后,经a/d转换器转换为计算机可识别的有限长二进制数字编码,以此作为研究自然科学和实现工业实时控制的重要依据,实现对宏观和微观自然科学的量化认识,典型的数据采集系统组成如图2-1所示。

图2-1典型数据采集系统的组成

而一般的外置式数据采集系统结构如图2-2所示。模拟信号由传感器采得经过信号调理模块送入数据采集硬件设备。在数据采集设备中完成a/d转换,包括采样、量化、编码,转化成数字信号后送入与之相连的pc机中。根据不同的要求,在pc机上利用matlab以及二次编程实现数据的实时分析与处理。用户可以通过人机交互界面修改、设定各项参数来控制数据采集硬件设备的工作状态,同时可以得到数据的采集与分析结果,从而实现数据采集与分析的自动化。

图2-2一般的外置式数据采集系统结构

利用声卡在windows环境下开发数据采集系统时,由于受编程语言的限制,其数据分析与处理的功能非常有限。例如,为了对所采集的数据进行功率谱分析,则需要用户以vb或c语言来编写功率谱分析的子程序,这显然增加了开发的难度,并且也极不利于分析功能的进一步扩展。

而利用声卡作为a/d转换工具,经过衰减和取样电路得到的模拟信号送至声卡的线路输入端linein,并利用matlab中提供的数据采集工具箱,可满足控制声卡进行数据采集的要求。用户通过调用matlab命令,可对采集的数据进行分析和处理。

整个系统可分为数据采集和数据分析两大部分,以友好的图形界面与用户进行交互沟通。数据采集部分实现数据采集功能,根据用户选择的采样频率和预设的采样时间,从声卡获得用户需要的数据;数据分析部分对采集到的数据进行频谱分析。全部数据的时域和频域波形以图形方式直观地呈现于用户面前。此外,还提供保存数据以及回放数据的功能。

图2-3给出了基于matlab的数据采集系统的简图,主要部件数据采集工具箱提供了硬件驱动程序和matlab环境之间“对话”所需的硬件驱动程序适配器、数据采集引擎和m-文件函数.

图2-3基于matlab的数据采集系统简图

硬件驱动程序适配器在硬件驱动程序和数据采集引擎之间交换属性数值、数据和事件;数据采集引擎用来存储各个设备对象,以及每个设备对象的属性值;对采集到的数据进行存储并且使不同事件同步;m-文件用来创建设备对象、采集或输出数据、配置属性值和检测数据采集状态和数据采集设备。

2.2系统的特点和性能指标

现代数据采集系统发展到今天,一般来说具有如下主要特点:

(1)现代采集系统一般都由计算机控制,使得数据采集的质量和效率等大为提高,也节省了硬件投资。

(2)软件在数据采集系统中的作用越来越大,增加了系统设计的灵活性。

(3)数据采集与数据处理相互结合的日益紧密,形成数据采集与处理系统,可实现从数据采集、处理到控制的全部工作。

(4)数据采集过程一般都具有“实时”特性,实时的标准是能满足实际需要;对于通用采集系统一般希望有尽可能高的速度,以满足更多的应用环境。

(5)随着电子技术的发展,电路集成度的提高,数据采集系统的体积越来越小,可靠性越来越高,甚至出现了单片数据采集系统。

(6)总线在数据采集系统中有着广泛的应用,总线技术它对数据采集系统结构的发展起着重要作用。

评价一个数据采集系统的性能有很多指标,但是一般采用以下几个比较常用的指标进行评价。

(1)系统分辨率

系统分辨率是指数据采集系统可以分辨的输入信号的最小变化量。通常可以用如下几种方法表示系统分辨率:

使用系统所采用的a/d转换器的位数表示系统分辨率;

使用最低有效位值(lsb)占系统满度值的百分比表示系统分辨率;

使用系统可分辨的实际电压数值表示系统分辨率;

使用满度值可以分的级数表示系统分辨率。

(2)系统精度

系统精度是指当系统工作在额定采集速率下,整个数据采集系统所能达到的转换精度。a/d转换器的精度是系统精度的极限值。实际上,系统精度往往达不到a/d转换器的精度。因为系统精度取决于系统的各个环节(子系统)的精度,如前置放大器、滤波器、模拟多路开关等。只有当这些子系统的精度都明显优于a/d转换器的精度时,系统精度才有可能达到a/d转换器的精度。系统精度是系统的实际输出值与理论输出值之差,它是系统各种误差的总和,通常表示为满度值的百分数。

(3)采集速率

采集速率又称为系统通过速率或吞吐率,是指在满足系统精度指标的前提下,系统对输入的模拟信号在单位时间内所能完成的采集次数,或者说是系统每个通道、每秒钟可采集的有效数据的数量。这里说的“采集”包括对被测物理量进行采样、量化、编码、传输和存储的全部过程。

(4)动态范围

动态范围是指某个确定的物理量的变化范围。信号的动态范围是指信号的最大幅度和最小幅度之比的分贝数。

2.3系统常见的几种结构形式

(1)多通道共享采样/保持器和a/d转换器数据采集系统

这种系统构成如下图所示,这种结构形式采用分时转换工作的方式,多路被测信号共用一个采样/保持器和一个a/d转换器。当采样保持器的输出已充分逼近输入信号(按给定精度)时,在控制命令的作用下,采样保持器由采样状态进入保持状态,a/d转换器开始进行转换,转换完毕后输出数字信号。在转换期间,多路开关将下一路信号切换到采样/保持器的输入端,系统不断重复以上的操作,可以实现对多通道模拟信号的数据采集。采样方式可以按顺序或随机进行。

多通道共享采样保持器和ad转换器数据采集系统图

这种采集系统结构形式最简单,所用芯片数量少,适用于信号变化率不高、对采样信号不要求同步的场合。如果被测信号变化速率较慢,可以不用采样保持器,直接进行a/d转换。如果信号很弱而干扰噪声强,需要在系统电路中增加信号放大电路和滤波环节。

(2)多通道同步数据采集系统

多通道同步型数据采集系统图

其结构如上图所示,也属于分时转换系统。

多路模拟输入信号共用一个a/d转换器,但是每个通道各有一个采样/保持器,在同一采样指令控制下对各路信号同步进行信号采样,得到各路信号在同一时刻的瞬时值。模拟开关分时将各路采样/保持器切换到a/d转换器上,进行模数转换。这些同步数据可以描述各路信号的相位关系,所以这种结构被称为同步型数据采集系统。

由于各路信号必须串行的在共用的a/d转换器中进行转换和计算,若采样信号回路过多时,这种采集结构的速度仍然较慢。

(3)多通道并行数据采集系统

多通道并行数据采集系统框图如上图所示。这种结构形式中,每个通道都有自己的采样保持器和a/d转换器,经过a/d转换的数据经过接口电路送到计算机中。相对于前两种数据采集系统,这种结构形式的数据采集速度最快,但所用的硬件电路复杂,成本较高。

通用型模拟量数据采集模块则属于这一类的数据采集子系统。数据采集模块是属于单片机的智能器件,在整个数据采集系统中,每个模块可以认为是实时、并行地工作,每个模块仅完成几路信号的检测和采集,实时响应性能优。

(4)分布式数据采集系统

以上介绍的三种结构形式中,系统各部件之间的空间距离很近,逻辑上耦合程度紧密,都可以称之为数据采集系统。这种系统的优点是:结构简单,容易实现,能满足中小规模的集中数据采集的要求。在市面上均有成熟产品可供选用。系统的体积和设备量小,造价低。

由于工作原理、结构形式和性能设计等原因,这类系统也存在不少缺点:

因为系统结构不灵活,不易扩展,所以不适合大规模的数据采集应用场合。抗干扰能力差,尤其对于被测对象物理位置分散、传感器输出的微弱信号需要长距离传输时,所受的干扰不容忽视的。可靠性差。系统结构中某一部件出现故障会导致整个系统工作崩溃。由于各部件之间紧密耦合,导致系统的可扩展性和灵活性差。分布式数据采集系统是数据采集技术、计算机技术和通信技术综合和发展的产物,基于“分散采集、集中管理”的思想设计的系统结构形式,由若干个“数据采集点”和上位机以及通信接口组成。分布式数据采集系统结构如下图所示:

分布式数据采集系统图

处于分散部位的数据采集点相当于小型的集中数据采集系统,位于被测对象的附近,可独立完成数据采集和预处理任务,并将采集的数据转换为数字信号的形式传送给上位机,采用数据传输的方法可以克服模拟信号传输的固有缺陷。分布式数据采集系统的主要特点是:

(1)系统适应能力强。因为可以通过选用适当数量的数据采集点来构成相应规模的系统,所以无论是大规模的系统,还是中小规模的系统,分布式结构都能够适应。

(2)系统可靠性高。由于采用了多个数据采集点,若某个数据采集点出现故障,只会影响某项数据的采集,而不会对系统的其他部分造成任何影响。

(3)系统实时相应性好。由于系统各个数据采集点之间是真正“并行”工作的,所以系统的实时相应性较好。

(4)另外,这种数据采集系统是用数字信号传输代替模拟信号传输,有利于克服常模干扰和共模干扰。因此,这种系统特别适合于在恶劣的环境下工作。目前对于大规模的数据采集场合一般都采用分布式结构,根据不同的数据采集工作原理、结构形式和性能特点,在本系统中采用集中式的数据采集器件作为数据采集终端,采用上下位的连接方式,最终组成整个数据采集系统。

3matlab软件

3.1matlab简介

matlab是美国mathworks公司开发的一种功能极其强大的高技术计算机语言和内容极其丰富的软件库,它适合于工程各领域的分析设计与复杂计算的软件,该软件包括基本部分和专业扩展两大部分.扩展部分称为工具箱,用于解决某一方面的专业问题.它以矩阵和向量的运算以及运算结果的可视化为基础,把广泛应用于各个学科领域的数值分析、矩阵计算、函数生成、信号处理、图形及图像处理、建模与仿真等诸多强大功能集成在一个便于用户使用的交互式环境中,为使用者提供了一个高效的编程工具及丰富的算法资源。对于信号处理和图像处理等数字处理领域,matlab更是得天独厚,它丰富的m文件和强大的绘图可视功能为使用者带来了极大的方便,被广泛的应用于信号与图像处理、控制系统设计、通信、系统仿真等诸多领域,尤其对初学者可起到事半功倍之效。

matlab是一种解释语言,所有的程序和指令都必须在matlab解释器中读入后才能运行,因而极大地限制了代码执行速度。matlab强大的计算功能只能在其平台上才能使用,也就是说,必需在安装了其解释器的机器上才能使用matlab的m文件,这样就给工程应用带来了很大不便。对于一般用户来讲,matlab只能作为离线的计算和分析工具,而不能作为实时的工程工具。幸运的是,开发matlab的mathworks公司为广大的应用者提供了应用程序接口(api,applicationprograminterface)和编译器(compiler)。利用matlab和c语言交互,也可以开发基于matlab的数据采集系统。如果配上数据采集线路,该系统就可以作为一个虚拟仪器来使用。

3.2数据采集工具箱及声卡简介

matlab自带的数据采集工具箱(dataacquisitiontoolbox,daq)能更容易地将实验测得的数据进行分析和可视化操作。数据采集设备包括:多媒体声卡、美国国家仪器e系列和1200系列接口板、hewlett-packard-vxie1432-系列接口板及其他各种数据采集硬件设备。数据采集硬件设备的内部特性对matlab的接口完全透明,无论是使用一个或几个硬件设备,数据采集工具箱都会向所有硬件设备提供单一和统一的接口。通过调用matlab命令和函数可对与计算机兼容的数据采集硬件设备进行访问并对其属性进行可视化监控。

数据采集工具箱是一种建立在matlab环境下的m函数文件和mex动态链接库文件的集合,包含3大区域的组件:m文件函数、数据采集引擎及硬件驱动适配器。它具有如下特点:是一种通过使用与pc机兼容的、即插即用的数据采集设备在matlab环境中的架构;支持模拟信号的输入输出以及数字信号的输入、输出,子系统还包括同步模拟输入输出的转换;支持声卡;事件驱动采集。

在matlab数据采集工具箱里集成了数据采集的m文件格式的函数和mex文件格式的动态链接库。其主要特征如下:

(1)提供了将实时测量数据从数据采集硬件采集到matlab中的框架。

(2)支持模拟量输入(ai)、模拟量输出(a0)以及数字量i/0子系统,包括模拟量i/o实时变换。

数据分析设计篇9

中图分类号: TN311.1?34 文献标识码: A 文章编号: 1004?373X(2013)10?0049?03

目前,大量应用行试验的Kam500机载测试系统,采集记录的飞行试验数据格式为标准PCM数据[1]。PCM格式数据由重复出现的长帧组成,每个长帧的长度是固定的,每个长帧包含若干个短帧。在网络化测试系统中网络数据包以EthernetⅡ协议广播。采集记录的飞行试验数据为网络数据包格式。每个网络数据包的大小都可以不同,并且每个网络数据包中的参数个数也可以不同。根据记录器的不同,记录的网络数据包结构可以是PCAP格式或者IRIG106?10格式[2]。

以太网作为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1 518 B。用户数据报协议(User Data Protocol,UDP)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去。UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。它的通信效率高,但它的可靠性不如TCP协议高。TCP是面向连接的通信协议,通过三次握手建立连接,通信完成时要拆除链接,只能用于点对点的通信。它是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。该协议将包排序并进行错误检查,数据包中包括序号确认,对未按照顺序收到的包可以被排序,而损坏的包可以被重传。以上的机制有效地保证数据传输的正确性[3]。本文是在以Kam500作为前端数据采集系统,经由网络交换机对Kam500采集的飞行数据进行打包发送到数据记录器,记录器以PCAP格式对采集的网络数据包进行记录。

2 软件的设计思路及结构框图

2.1 软件设计关键技术

因网络数据包在网络链路中传输可能出现时间滞后,数据顺序打乱甚至丢包等问题。为了解决在数据解析当中,解析数据在时间上是顺序,经过多次软件调试试验,选择定长时间5 s为时间窗,对采集到的数据进行分析排序输出,保证了因网络延迟导致的采集数据点回跳的问题。对于第N个时间窗出现N-1个时间窗的时间点参数,本程序进行了剔除。在网络数据包解析过程中,采用了内存映射技术,通过内存映射建立了原始网络数据包到内存的映射,然后读取原始数据进行提取分析处理。该方法因减少I/O操作时间,有效的提高了处理速度,能提高处理速度20%~30%。

2.2 软件设计结构框图

3 网络包数据分析软件设计

3.1 软件主程序设计

4 软件的测试

5 结 语

本文在VC软件开发环境下实现了基于标准以太网传输的PCAP格式的网络数据包分析处理软件的设计。并对该软件进行了软件测试工作,经过设计和测试,该软件能够有效地处理分析基于以太网传输的采集的PCM数据,实现了网络包形式的PCM数据解析,为飞行试验中基于网络采集的试飞数据处理提供了方便。

参考文献

[1] 中国飞行试验研究院.航空武器装备飞行试验指南[M].西安:中国飞行试验研究院,2010.

[2] 彭国金.非机构化海量网络数据处理技术研究[J].现代电子技术,2011,34(14):121?123.

[3] 付建民.计算机网络技术[M].北京:中国水利水电出版社,2011.

[4] 白乔,左飞.把脉VC++[M].北京:电子工业出版社,2009.

数据分析设计篇10

中图分类号:TP311 文献标识码:A 文章编号:1671—7597(2013)021-079-01

气象灾害是影响农业发展、经济建设、社会发展的一个重要障碍。为减小气象灾害为国民经济带来的损失,提高气象预警能力,各地都根据自身情况建立了气象灾害数据库。利用该系统收集的全面的、系统的气象信息,气象工作人员可以对气象灾害的发生发展情况进行准确分析,并根据分析结果科学制定各种防灾灭灾决策,以帮助减小气象灾害所带来的损失。

随着业务的深入,科技的发展,气象预警对气象灾情信息的要求从基本的文字信息、灾害信息扩展到受灾时间地点信息、受灾程度信息、受灾空间属性信息等多个方面。因此设计一个能够满足使用需求的气象灾情信息数据库显得更加重要。

1 数据库系统要求分析

为满足气象灾情信息评估,数据库应该具有如下几方面的功能。首先是,数据精细化。为保证后续信息分析的精确度和细化度,在数据分类和逻辑构成上应该进行细分。其次是GIS化。空间属性信息已经成为当前气象灾情信息的一个标准配置,将数据库信息GIS化可以为数据应用和决策制定提供有力支撑。再次是规范化。规范准确的灾情信息可以充分满足灾情评估和减灾防灾的工作需求。最后是可扩展性。为方便后续扩容需求和多样化的数据分析需求,该数据库应该在结构上具有一定的可扩展性。本文就基于SQL Server的气象灾情信息数据库进行了分析和设计。

2 数据库设计方案

2.1 灾情信息表

对灾情数据进行信息分类是一项非常重要的过程,适当的分类可以简化系统结构,实现数据的精确分析。具体来说,灾情数据分为两部分,一部分是过程信息表,一部分是灾情信息表。其中,过程信息表用来记录灾害天气发生过程中的灾害信息,这部分记录是灾情数据库的基础;灾情信息表是受灾后的灾情详细信息记录,如灾害强度、灾害损失、灾害原因等。两部分在数据使用方面体现为一对多关系,即一次灾害过程对应着多个灾情信息记录。

灾情信息表是整个数据库系统的核心,其结构是否科学合理决定了后续灾情分析的准确程度。为满足分析需求,通常灾情详细信息表的数据存储字段可分为灾情起因信息、基本信息、空间属性信息、灾害带来的损失信息、后期影响信息等几部分。

2.2 灾情的协同通报信息结构

数据库的建立不仅仅用于记录,还应该具有联网通报的功能,通过该功能可以实现信息的联网分析和总结,提高灾情通报的实时性和系统使用效率,减少或者避免重复工作所带来的人力资源浪费。

该部分数据库架构为,在灾情协同录入界面,辅助录入人员可以将灾情数据进行及时收集整理后进行录入,然后利用协同通报系统将信息上传到数据库端并将该部分数据标记为待审核数据。经过工作人员的审核和评定后,若该数据录入准确且具有唯一性,则取消待审核状态,转为灾情详细信息数据,为后续上报或者灾情分析评估等提供数据支持。该部分的信息需要进行单独存放,以免与灾情信息表产生混淆。

2.3 灾情评估信息数据结构

灾情根据灾害特点和灾害原因可以分为多种类别,如自然灾害和人为灾害、地质灾害和天气灾害等。不同的灾害收集方式和评估方式均有所不同,因此在数据库架构中如何合理制定灾害信息采集分析表对应用灾害数据进行灾情评估具有重要作用。

该部分数据库应该按照如下方式进行构建。首先建立灾情分类数据库,不同灾情与对应灾情描述之间进行特征关联,同类型灾害进行细分和归类。然后根据灾情特征建立对应的数据模型,便于数据录入和灾害评估。

2.4 辅助数据表结构

为提高系统的应用性能,可以增设部分辅助数据表作为灾情数据库的补充。利用该表可以进行新灾情的自定义等,增强数据库的可扩展性。同样辅助表还具有区域记录功能,通过对受灾区域进行记录,可以提高灾情地理分布的精确度,增强局部预警能力。

3 基于灾情数据库的灾害评估技术分析

在建立气象灾情信息数据库的基础上结合使用GIS技术、数据分析技术、WEB技术等,可以保证对数据库的充分利用,实现灾情的精确评估,减少灾害带来的经济损失。

3.1 灾情统计分析技术

对灾情进行记录的主要目的在于利用这些数据进行统计分析,并对分析结果进行总结,生成统计报表,根据报表制定防灾决策,或者指导今后的灾情预警等。该技术生成的统计报表可以用于存储或检索。其中,检索功能可以进行要素关联检索、条件检索、影响检索等。通过进行细分检索和信息对比,可以方便的实现灾害评估。

3.2 可视化分布图显示技术

在对灾害数据库进行限定检索后,可以获得相关灾情信息和气象数据。结合使用可视化技术等,可以根据数据统计量生成要素分布图。如灾情分布图、灾害损失分布图等。这些分布图可以直观、便捷的实现天气和灾情的关联,突出灾害易发点,为不同天气下的灾害预防工作提供理论依据。

3.3 灾害防御对策技术

灾害防御对策技术主要是指对数据库内的灾害数据进行分析,根据各要素的影响程度调用对应的防御对策信息以供气象工作人员参考。该技术的实现需要对现有的应对策略进行收集、整理和归类,并根据灾害程度制作成相应的数据库文件,进而将该数据库与灾害信息库进行关联。

4 总结

该系统为气象工作人员提供了一个适当的、操作简便的信息平台,利用该平台,气象工作人员可以对特定灾害、特定时间、特定地点的气象灾害进行统计和风险评估。基于数据库的气象灾情信息统计系统还能够方便的与其他相关系统实现信息共享,便于向气象灾害潜在覆盖用户提供预测信息。综上所述,气象 灾情信息数据库具有广泛的应用空间,并对现实工作具有一定的指导意义。

参考文献

[1]吴亚玲,吴佳银,曾峰.深圳市气象灾情信息数据库的设计与应用[J].广东气象,2010,32(3).

数据分析设计篇11

1 工程数据库管理系统产生背景及其发展

CAD/CAE/CAM 集成就是为实现各CAD/CAE/CAM 系统之间完整的产品数据交换,达到信息共享的目的。为此应采用统一的标准来实现产品数据的定义,ISO制订了《SO10303一产品数据的表达与交换》,又称STEP标准。该标准根据集成要求、内容以及数据量,有如下四个层次的集成方式。

1.1 基于中性文件的集成方式 数据存放在有专门格式规定的STEP文件中,各应用系统之间数据交换经过前/后置处理程序处理为中性文件进行交换。这种方式实现简单,但存在数据冗余度大,数据独立性差、难于扩充的缺点。

1.2 基于工作格式的集成方式 工作格式是产品数据结构在内存中的表现形式,它利用内存数据管理系统使要处理的数据常驻内存,对它进行集中处理,产生STEP文件。其特点是处理数据的速度快,可以不必考虑数据的存储方式,实现简单。缺点是由于内存空间的限制,当处理大量的数据时要设置页交换文件,而且也存在着数据冗余,难于扩充的问题。

1.3 基于工程数据库的集成方式 应用系统通过工程数据库来统一管理和操纵数据,进行数据交换。这种方式简化了信息交换方式,适用于数据量大、数据管理规模大,可满足数据共享性、独立性、安全性和完整性要求。它不仅可描述数据本身,还可通过存取路径来描述数据之间的联系。通过工程数据库存取所需信息,达到数据共享和一致,减少了数据的冗余度,节约空间,缩短存取时间。这是实现系统集成的一种理想集成方式。

2 CAD/CAE工程数据特点及对数据库功能要求

2.1 CAD/CAE工程数据特点 在CAD/CAE集成过程中要利用和生成的大量的工程设计和分析数据。其中一部分是各种设计规范和标准以及产品的技术参数,这些数据是设计过程选用的静态数据。另一部分是设计过程中生成的数据,如产品的结构分析、性能分析、图形、尺寸公差、技术要求、材料热处理等数据,这些数据具有高度的动态性。与一般的商业数据相比,CAD/CAE工程数据有着与其显著不同的特点,具体如下:①数据结构复杂。机械产品设计中的数据不仅包括结构化数据,它还包括图形、长文本、表格、线图、视频等非结构化数据,而且在设计过程中数量不断增大,类型不断增多,且要不断修改和补充。②数据联系复杂。在数据元素之间存在复杂的联系,其中一对多、多对多的联系比较普遍。这种密切的联系,构成复杂的网状结构,从而使数据模型十分复杂。③数据的一致性。工程数据中存在着从产品的初始模型推导出的二次数据,一旦初始模型被修改,导出数据也就失效,需要重新计算,用新的数据取代失效的数据,以保持数据库中数据的一致性。④模式的动态修改。工程设计过程中工程设计人员建立的几何数学模型的结构会经常修改,要求工程数据库模式能支持这种动态修改,能进行动态数据的定义、删除和恢复等。

2.2 CAD/CAE工程数据处理对工程数据库的功能要求 由于上述CAD/CAE工程数据特点,对用于CAD/CAE工程领域的工程数据库提出如下要求:①能描述和处理复杂数据类型。由于工程数据结构复杂,语义关系丰富,因此EDBMS不仅要支持用户定义复杂的类型,而且还要支持多对多关系、递归关系等复杂数据结构的描述。②动态处理模式变化的能力。由于设计过程和工艺规划过程中产生的数据是不断变化的,要求EDBMS能支持动态描述数据的能力,使用户既能修改数据库中的值,又能修改数据结构的模式。③版本控制管理。设计是一个设计——分析——再设计的反复过程。设计者经常要对设计过程进行回溯,并重新进行新一轮的设计。版本管理应能记录设计过程中的历史数据,使设计回溯到一个合理的阶段,不致使整个设计推翻重新开始。同时设计对象的版本管理应能提供多个设计者并行更新同一设计对象的机制。④支持工程设计事务。工程设计事务是长达以小时、天或周计的长事务。长时间封锁某一设计对象,将严重影响设计的并行性。在EDBMS中必须解决工程长事务中对设计对象的封锁、恢复和共享问题。

3 采用基于Web的工程数据库管理系统的原因

3.1 Web技术与工程数据库管理技术的关系 工程数据管理系统(EDBMS)作为一种应用框架,其对开放性和扩展性的要求与web的开放系统结构相互补充。在web技术上构建EDBMS可充分享受到Web开放体系带来的优势,增强EDBMS异构环境下的应用。并且随着网络化虚拟设计模式的迅速发展,产品的设计过程在并行和协同中完成,对于异地的并行协同设计过程,己有的工程数据管理技术不能很好满足现在全球化产品开发战略发展的需要。因此,必须根据新的形式,通过web技术扩展其功能,使之适应网络化虚拟设计的产品数据和过程管理,使之能够支持异地和异构环境的设计与制造。

3.2 Web-basedEDBMS的优点 随着网络技术的发展,90年代中后期,出现了以Web技术为基础的新型系统平台B/S(Brow—ser/Server)模式,B/S模式把传统的c/s模式中的服务器部分分为数据库服务器和应用服务器,从而构成一个三层结构。本文的数据管理系统就是采用这种三层结构模式。WebbasedEDBMS的优点如下:①易于分散用户交流、同步。② 简化了系统的开发与维护。3)较强的跨平台性,用户界面统一、友好。

4 CAD/CAE数据管理系统与PDM的关系

数据分析设计篇12

1国内外研究开发现状和发展趋势

1.1现状与趋势

在当今大数据、云计算、物联网和移动互联网等新思路、新技术快速发展的又一历史时期,高等教育面临着前所未有的发展机遇,在经历了网络化、数字化、信息化管理阶段之后,“智慧校园”将是在“互联网+教育”趋势下最重要的发展思路。随着计算机技术的不断发展,各种系统结构化和非结构化数据以前所未有的惊人速度迅猛增长,“大数据”时代已经到来。大数据是指数据结构比较复杂、数据规模大的数据集合。其数据量已经远远超出了一般数据管理工具可以承受的处理时间以及数据处理及存储管理能力。在当今大数据环境下,高校管理系统的数据结构及数据量发生了巨大的变化。在数据存储、数据管理、数据分析及数据挖掘等方面面临着巨大的机遇和挑战。为了有效地利用大数据为高校决策分析提供更好的服务,必须基于大数据建立相应的数据分析系统。

1.2国内外研究与开发综述

随着大数据的发展和教育信息化的不断深入,基于大数据开展的高校校园数据分析与应用逐步受到重视。对大数据的定义始终没有形成统一的意见。维基百科对大数据(Bigdata)的定义是:所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理并整理成为人类所能解读的信息。麦肯锡全球研究院将大数据定义为:无法在一定时间内使用传统数据库软件工具对其内容进行获取、管理和处理的数据集合。加特纳(Gartner)于2012年修改了对大数据的定义:大数据是大量、高速、多变的信息资产,它需要新型的处理方式去促成更强的决策能力、洞察力与优化处理。而在高校学生数据的分析应用方面,国内外高校均有开展相关的研究。纽约州波基普西市玛丽斯特学院(MaristCollege)与商业数据分析公司Pentaho合作发起开源学术分析计划,旨在一门新课程开始的两周内预测哪些学生可能会无法顺利完成课程,它基于商业分析平台开发了一个分析模型,通过收集分析学生的学习习惯,包括线上阅读材料、论坛发言、完成作业时长等数据信息,来预测学生的学业情况,及时干预帮助问题学生,从而提升毕业率。上海财经大学基于校园信息化数据基础,开发了校务决策支持系统,面向人才培养、内部管理、科学研究和师生服务等方面开展决策分析;华东师范大学利用校园信息化基础数据,开展了校车人数与载客分布分析,提升了校车使用率;利用一卡通数据开展了贫困生的特征确定、潜在贫困生分析、后续跟踪验证,有效提升了帮困扶贫的工作效率。

2需求分析

结合西安欧亚学院信息化建设基础与海量的数据积累,建立“智慧校园”数据分析系统,通过此平台的建设和应用,运用数据挖掘和知识发现,从而在大数据中获取数据之间内在的相互联系,以及其中可能存在的某种规律,从而有效提升校园管理的决策效率,提升教学科研与管理服务的综合水平。通过调查走访各部门,了解教师、学生与行政管理人员的相关需求。主要包括四个方面:一是教学数据分析需求。包括各分院、招生办、教务处等部门对于招生、学生学习行为、教学质量、学科建设与学生就业等方面的分析。二是生活服务数据分析需求。包括图书馆、后勤等部门对于学生的消费行为即图书借阅、网络行为、资源利用等项目的分析。三是财务、人事、宣传等部门对于全校的资产、师资力量、宣传效果等项目的分析。四是研究发展部门对于全校科研项目与成果完成情况的分析(见图1)。

3系统方案设计

3.1框架设计

结合需求情况,开展系统的总体框架设计,初步将系统分为三大板块,包括数据监测、决策支持和查询定制(见图2)。

3.2系统方案

系统总体架构包括四个层次,分别是数据引擎、数据挖掘、数据库解决方案和交互平台。数据引擎部分将集成校园WIFI、固网、一卡通、教务系统等各类信息系统的数据,形成数据源,数据挖掘将通过分布式计算架构和数据分析平台对潜在数据进行分析与建模,通过数据库建立本系统的分析数据库,最终通过PC、手机等客户端向用户进行呈现(见图3)。

3.3典型应用研究内容

3.3.1教学质量评估教学质量评估属于高校定期必须完成的任务,教学评估的主要目的是更好地发掘出教学过程中存在的一些问题,从而及时地对教学方法进行调整,最终实现教学质量的提升。将大数据运用到高校教学评估系统之中,不但能够在很大程度上提高高校教学管理的科学性,同时还可以提高信息化教学的实用性。把基于大数据挖掘的算法运用在教学评估工作之中,找出教学效果、信息技术在教学中的应用、师生之间的沟通互动等因素之间的联系,从而给高校的教学部门带来非常科学的决策信息,同时让教师可以更加有效地开展教学工作,提高教学质量。

3.3.2教师教学能力分析以往的教学缺乏大量数据支撑,教学的质量高低主要靠教师自我度的把握。现在,可以通过在线课堂等技术,搜集大量课堂情况信息,比如学生对知识点的理解程度、教师课堂测试的成绩、学生课堂纪律等。通过这些数据的分析,了解教师熟悉教案的程度、课堂氛围等,改善教学水平。也可以通过深度分析学生在教学过程中教师的课堂表现,从而发现课程的闪光点以及不足,从而让教师能够进一步地对课程教学进行改善,提升教学质量。

3.3.3个性化课程分析个性化学习是高校教学改革的目标,过去的班级制教学中无法很好达到这一点,通过把大数据挖掘技术和学习内容结合起来,指导学习者规划学习发展方向,制订学习规划,实现个性化学习功能。通过评估个人情况,根据分析结果推荐可能取得优秀成绩的课程方案。首先获取学生以往的学习表现,然后从已毕业学生的成绩库中找到与之成绩相似的学生信息,分析前期成绩和待选课程结果之间的相关性,结合专业要求和学生能力进行分析,预测学生选择的课程中可能取得的成绩,最后综合权衡预测学生成绩和各门课程的重要性,为学生推荐一份专业课程清单。

3.3.4学习行为分析通过一卡通门禁信息、网络信息、课程信息、在线教育系统等相关数据,可以把学生到课堂时间、上课表现、作业完成情况、自习情况等学习信息记录下来,进行变量分析。当一些与学习行为有关的因素(如旷课、纪律问题、课堂表现)发生变化时,对学生提示并进行分析。通过这种系统分析,可以很好地规划学生的学习时间,提高学习效率。

4技术创新点

4.1大数据环境下提升数据挖掘范围

相比于传统常规环境下的数据获取渠道,大数据环境下,校园数据的获取更为广泛和准确。常规环境下的数据主要以经费收支、课程建设、问卷、访谈、课堂观察等来源,而在大数据环境下,通过对事件数据、舆情数据、一卡通、日志搜索等数据的抓取与分析,更能够准确地反映实际校情。

4.2可视化技术展现数据分析结果

利用大数据分析的数据挖掘与可视化分析,能够直观地呈现大数据特点,同时能够非常容易被使用者所接受,就如同看图说话一样简单明了。智慧校园中,结合学生学习、生活消费的各类数据,通过系统分析与图表展现,让用户只管了解数据分析的结果。

4.3数据质量管理提供重要支持

友情链接