高中数学基本思想方法范文

时间:2023-08-28 09:23:58

引言:寻求写作上的突破?我们特意为您精选了4篇高中数学基本思想方法范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

篇1

中图分类号:G63 文献标识码:A文章编号:1673-0992(2010)11-0000-01

正文:

(一)整体思想

往往很多学生遇到一个大题或一个较复杂的小题时,会感到束手无策,不知如何下手。其实如果你仔细分析题意,认真观察结构,把某个要解决的问题看作一个整体,通过研究问题的整体形式、整体结构或做种种整体处理后,常常能够得到巧妙的解法。比如:当式子中出现e^x和x,还要求导时,如果直接求导,不能消去e^x。而一个式子里同时出现e^x和x,我们是无法求导的。所以我们给就可以简单的换元,令e^x=t,则x=lnt,经过求导以后,就可以消除e^x。

整体思想大概有:整体代入、整体变形、整体配对、整体设元。下面举一个典型的例子:已知:2sinx-cosx=1,求(sinx+cosx+1)/(sinx-cosx+1)的值。看到这个题,我们可能感到很困难,但经过仔细的分析,可以发现用换元的方法,这个问题就迎刃而解了。设t=(sinx+cosx+1)/(sinx-cosx+1),则(1-t)sinx+(1+t)cosx=t-1,与已知条件2sinx-cosx=1联立接得sinx=(2t)/(3+t),cosx=(3t-3)/(3+t).再由(2t/(3+t))^2 + ((3t-3)/(3+t))^2 =1,解得t=0或2.即所求式子的值为0或2.

(二)化归思想

化归就是要化一般为特殊,化未知为已知。它能使解决问题时的山穷水尽变得柳暗花明。这种顿悟和解题的发现能培养学生的数学思维能力,正确的转化能达到事半功倍的效果。化归的思想用的很广泛,比如说三角函数里,利用诱导公式,可以把任意角的三角函数化归为锐角三角函数;利用两角和与两角差的正弦、余弦、正切公式,能够将和角与差角问题化为单角的正弦、余弦、正切问题;利用二倍角公式、能够将二倍角问题化为单角问题。它还可以充分运用到证不等式问题、以及各种函数问题中。有好多证不等式的方法,如分析法、反证法;以及分离变量、数形结合等方法都用到了化归的思想。

(三)归纳和猜想

有时候,可能遇到一个题,完全不能用常规方法解,或者说计算很复杂。但这些题往往会有一些特定规律,即有一类事件和式子。这样一来,我们就要学会由它的一些特殊事例或其全部可能情况,归纳出一般结论。一般的,它有完全归纳和不完全归纳两种,解题时要一般用到的是不完全归纳。

篇2

高中数学新课标从改革理念、课程内容到课程实施都发生了较大变化。要实现数学教育教学改革的目标,教师是关键,教学实施是主渠道,而教学设计是实现课程目标、实施教学的前提和重要基础。因此,在高中数学教学设计中必须充分考虑数学的学科特点,高中学生的心理特点,以及不同水平、不同兴趣学生的学习需要,运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及数学思想方法,发展应用意识和创新意识,形成积极的情感态度,提高数学素养,使学生对数学形成较为全面的认识,为未来发展和进一步学习打好基础。

一、重新审视基础知识,注重基本技能训练

1. 强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。

2. 重视基本技能的训练。熟练掌握一些基本技能,对学好数学非常重要。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练,但应注意避免过于繁杂和技巧性过程的训练。

3. 审视基础知识与基本技能。随着科技的进步、时代的发展和数学研究的不断深化,高中数学的基础知识和基本技能也在发生变化,教学要与时俱进地审视基础知识和基本技能。例如统计、概率、导数、向量、算法等内容已经成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。例如,立体几何的教学可从不同视角展开――从整体到局部,从局部到整体,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式的教学要关注它的几何背景和应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明。

二、关注相关数学内容之间的联系,全面地解和认识数学

数学各部分内容之间的知识是相互联系的,学生的数学学习是循序渐进、逐步发展的。为了培养学生对数学内容联系的认识,在教学设计中,须要将不同的数学教学内容相互沟通,以加深学生对数学的认识和本质的理解。例如,可以借助二次函数的图像,比较和研究一元二次方程、不等式的解;比较等差数列与一次函数、等比数列与指数函数的图像,发现它们之间的联系等。

新的高中数学教学内容是根据学生的不同需要,分不同的系列和层次展开的,因此必须引起课堂教学设计的足够关注。同时,处理这些内容时,还要注意明确相关内容在不同模块中的要求及其前后联系,注意使学生在已有知识的基础上螺旋上升、逐步提高。例如,统计的内容,在必修系列课程中主要是通过尽可能多的实例,使学生在义务教育阶段的基础上,体会随机抽样、用样本估计总体的统计思想,并学习一些处理数据的方法;在选修课中则是通过各种不同的案例,使学生进一步学习一些常用的统计方法,加深对统计思想及统计在社会生产生活中的作用的认识。

三、关注知识的发生和发展过程,促进学生自主探索

在高中数学教学设计中,呈现教学内容应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。例如,在引入函数的一般概念时,应从学生已学过的具体函数(一次函数、二次函数)和生活中常见的函数关系(如气温的变化、出租车的计价)等入手,抽象出一般函数的概念和性质,使学生逐步理解函数的概念;立体几何内容,可以用长方体内点、线、面的关系为载体,使学生在直观感知的基础上,认识空间点、线、面的位置关系。

在教学设计中,应注意创设恰当的情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题,提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。教学素材的呈现应为引导学生自主探索留有比较充分的空间,有利于学生经历观察、实验、猜测、推理、交流、反思等过程;还可以通过设置具有启发性、挑战性的问题,激发学生进行思考,鼓励学生自主探索,并在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对数学较为全面的体验和理解。

篇3

在必修3中第一章算法是独立的一章,看似与传统数学内容的联系很少,因此教师在教学中容易将它孤立起来,机械地、照本宣科地实施教学任务,教完后不会像函数、方程、数列那样在后续的教学中重复出现。学生常常是在高一新授课时利用两周学完,在高三复习的最后阶段做两套练习,此外就极少再接触到算法,有些学生及教师将算法比喻成“鸡肋”,食之无味,可有可无。

《普通高中数学课程标准》写到“算法是一个全新的课题,已经成为计算机科学的重要基础,它在科学技术和社会发展中起着越来越重要的作用。算法的思想和初步知识,也正在成为普通公民的常识。在高中数学必修课程中将学习算法的基本思想和初步知识,算法思想将贯穿高中数学课程的相关部分。”由此可见,不能孤立地教学算法,要使学生将算法的核心思想融入到已有的认知结构中去。结构主义也提出:学科教育的实质是使学生理解学科的基本结构,建立新知识和原有知识之间的联系。

二、数学的算法如何和信息技术的算法整合

如何整合数学的算法和信息技术的算法,将两者有机地结合起来,使得算法课既有数学味,又不失计算机的特色,这是困扰中学教师的又一个问题。

《标准》明确指出:“在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。”可见数学的算法和信息技术的算法是不同的。信息技术的算法即编程,是一项浩大的工程,通常要涉及大量细碎的技术问题。数学的算法不会让学生过多地纠缠于程序的调试和实现,而是要让学生感受算法的思想,理解算法的“算理”。

当然数学的算法也不可能完全脱离计算机的技术,教学中也要让学生体会算法的程序性、明确性、有限性等特点。必须帮助学生认识计算机工作的一些基本原理。

三、算法思想如何自然地在高中数学教学中渗透

《标准》要求“算法的思想方法应渗透在高中数学课程其他有关内容中,鼓励学生尽可能地运用算法解决相关问题。”其实这个要求不过分,算法对学生来说并不陌生。从小学的四则运算所遵循的先乘除、后加减的规则,括号的处理规则,到初中的方程组的解法,高中的二分法求方程的近似解,数列、递推数列求和都是算法的典型体现。几乎每个问题的解决都对应一个算法,高中数学的教学需要让学生站在较高的角度解决问题,算法思想的渗透和研究是必要的,这是每位高中数学教师都明白的。要学生很自然地认识到算法思想的重要性,使之成为学生的一种意识、一种思想、一种方法、一种工具,这也是教学过程中的重中之重。

四、突出算理,牢牢把握算法教学的重点

笔者认为首先必须明确算法的教学重点,算法的含义是“对一类问题的机械的、统一的求解方法”,其精髓是算理,算理具有概括性,它指向一类问题,以系列步骤为载体。因此教学的重点是突出算理,以教科书中提供的案例为载体,体会算法的基本思想,提高学生的逻辑思维能力,要防止将算法的教学变成程序语言和程序设计的教学。

篇4

2001年我国新一轮基础教育课程改革已正式启动,此次基础教育数学课程改革的特点之一就是把数学思想方法作为课程体系的一条主线。已经有不少文章探讨初中数学教材中的数学思想方法,但对高中数学教材中蕴含的数学思想方法探讨较少。事实上,高中数学教材的改革也已经开始酝酿,目前高中普遍使用的数学教材是人教社2000年版的《全日制普通高级中学教科书(试验修定本)•数学》(下称普通教材),也有部分高中根据学生的情况选用了原国家教委的《中学数学实验教材(试验本•必修•数学)》(下称实验教材)。可以说在素质教育推动下,与旧数学教材相比这两套新教材在内容、结构编排上都有了很大变化,都体现了新的数学教育观念,而在原国家教委的《中学数学实验教材》中尤其突出了数学思想和数学方法,体现了知识教学和能力培养的统一。本文就着重探讨高中数学内容中所蕴含的数学思想方法,并对实验教材与普通教材在数学思想方法处理方面进行比较。

二、高中数学应该渗透的主要数学思想方法

1、数学思想与数学方法

数学思想与数学方法目前尚没有确切的定义,我们通常认为,数学思想就是“人对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想”。就中学数学知识体系而言,中学数学思想往往是数学思想中最常见、最基本、比较浅显的内容,例如:模型思想、极限思想、统计思想、化归思想、分类思想等。数学思想的高层次的理解,还应包括关于数学概念、理论、方法以及形态的产生与发展规律的认识,任何一个数学分支理论的建立,都是数学思想的应用与体现。

所谓数学方法,是指人们从事数学活动的程序、途径,是实施数学思想的技术手段,也是数学思想的具体化反映。所以说,数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。由于数学是逐层抽象的,数学方法在实际运用中往往具有过程性和层次性特点,层次越低操作性越强。如变换方法包括恒等变换,恒等变换中又分换元法、配方法、待定系数法等等。

总之,数学思想和数学方法有区别也有联系,在解决数学问题时,总的指导思想是把问题化归为能解决的问题,而为实现化归,常用如一般化、特殊化、类比、归纳、恒等变形等方法,这时又常称用化归方法。一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。

2、高中数学应该渗透的主要数学思想方法

中学数学教育大纲中明确指出数学基础知识是指:数学中的的概念、性质、法则、公式、公理、定理及由数学基础内容反映出来的数学思想方法。可见数学思想方法是数学基础知识的内容,而这些数学思想方法是融合在数学概念、定理、公式、法则、定义之中的。

在初中数学中,主要数学思想有分类思想、集合对应思想、等量思想、函数思想、数形结合思想、统计思想和转化思想。与之对应的数学方法有理论形成的方法,如观察、类比、实验、归纳、一般化、抽象化等方法,还有解决问题的具体方法,如代入、消元、换元、降次、配方、待定系数、分析、综合等方法。这些数学思想与方法,在义务教材的编写中被突出的显现出来。

在高中数学教材中,一方面以抽象性更强的高中数学知识为载体,从更高层次延续初中涉及的那些数学思想方法的学习应用,如函数与映射思想、分类思想、集合对应思想、数形结合思想、统计思想和化归思想等。另一方面,结合高中数学知识,介绍了一些新的数学思想方法,如向量思想、极限思想,微积分方法等。

因为其中一些数学思想方法都介绍很多了,这里只谈一下初等微积分的基本思想方法。无穷的方法,即极限思想方法是初等微积分的基本思想方法,所谓极限思想(方法)是用联系变动的观点,把考察的对象(例如圆面积、变速运动物体的瞬时速度、曲边梯形面积等)看作是某对象(内接正n边形的面积、匀速运动的物体的速度,小矩形面积之和)在无限变化过程中变化结果的思想(方法),它出发于对过程无限变化的考察,而这种考察总是与过程的某一特定的、有限的、暂时的结果有关,因此它体现了“从在限中找到无限,从暂时中找到永久,并且使之确定起来”(恩格斯语)的一种运动辨证思想,它不仅包括极限过程,而且又完成了极限过程。纵观微积分的全部内容,极限思想方法及其理论贯穿始终,是微积分的基础。

三、普通教材与实验教材在数学思想方法处理方面的比较

普通高中教育是与九年义务教育相衔接的高一层次基础教育,在数学教材的编写上,必须要注意培养学生的创新精神、实践能力和终身学习的能力。与旧教材相比,新的数学教材开始重视渗透数学思想方法,那么高中现行使用的普通教材与实验教材在数学思想方法处理方面有何异同呢?因为内容太多,下面只能粗略的作一比较。

1、相同之处在于

普通教材与实验教材都多将数学思想方法的展示,融合在数学的定义、定理、例题中。例如集合的思想,就是通过集合的定义“把某些指定的对象集在一起就成为一个集合”,及通过用集合语言来表述问题,体现了集合思想方法来处理数学问题的直观性,深刻性,简洁性。对非常重要的数学思想方法也采用单独介绍的方式,如普通教材与实验教材都将归纳法列为一节,详细学习。

2、不同之处在于

(1)有些在普通教材中隐含方式出现的数学思想方法,在实验教材中被明确的指出来,并用以指导相关数学知识的展开。

关于数学方法

我们举不等式证明方法的例子。实验教材在不等式一章第三节“证明不等式”中详细讲述了不等式证明的方法,比较法、综合法、分析法、反证法。普通教材中虽然也在不等式一章,列出第三节“不等式的证明”介绍比较法、综合法、分析法,但对方法的分析不够透彻,更象是为了解释例题。比如在综合法的介绍中,普通教材只讲:“有时我们可以用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。”而在实验教材更准确更详细的介绍:“依据不等式的基本性质和已知的不等式,正确运用逻辑推理规律,逐步推导出所要证明的不等式的方法,称为综合法。综合法实质上是“由因导果”的直接论证,其要点是:四已知性质、定理、出发,逐步导出其“必要条件”,直到最后的“必要条件”是所证的不等式为止”。分析法的介绍也是这样,在实验教材中给出了分析法实质是“执果索因”的说明,这样学生能清楚的领会综合法、分析法的要义,会证不等式的同时学会了综合法和分析法,而不仅是能证明几个不等式。

关于数学思想

在实验教材第一册(下)研究性课题“函数学思想及其应用”中,明确提出“把一个看上去不是明显的函数问题,通过、或者构造一个新函数,利用研究函数的性质和图象,解决给出的问题,就是函数思想”,并举例用函数思想解决最值问题、方程、不等式问题,及一些实际应用的问题。其实普通教材在讲函数时也在用运动、变化的观点,分析研究具体问题中的数量关系,通过函数形式把这种数量关系进行刻划并加以研究,但从未提函数思想方法。虽然实验教材中只是以研究性课题的形式,对函数思想作以介绍和应用探讨,可这已经是一种重视数学思想方法的信号,随着今后素质教育的推进,和实践经验的积累,我想数学思想方法在数学教材中会有更明确的介绍。我们举向量的例子。

(2)实验教材中还增加了一些数学思想方法的介绍。

关于数学方法

普通教材在第一册第三章“数列”中只介绍了数列的概念、等差等比数列及其求和,而在实验教材第二册(下)的第十章“数列”中增加了第四节“数列应用举例”介绍了作差,将某些复杂数列转化为等差等比数列的方法。这在潜移默化中也渗透了转化的思想。又如在第一册(上)中,增加了研究性课题“待定系数法的原理、方法及初步应用”,阅读材料“插值公式与实验公式”,虽然不是作为正式章节,但也体现了对数学思想方法的重视。再如数学归纳法普通教材介绍的相当简略,而实验教材详细介绍了什么是归纳法,归纳法的结论是否一定正确,什么是数学归纳法归纳起始命题等问题,还举了大量例子,切实注重让学生真正理解方法。

关于数学思想

实验教材中对向量,解析几何的处理体现了将向量思想,几何代数化思想的引入,并用这些数学思想方法来统领相关数学知识的介绍。实验教材在第六章“平面向量”开首就讲:“代数学的基本思想方法是运用运算律去系统地解答各种类型的代数问题;几何学研究探索的内容是空间图形的性质。……在这一章中,我们首先要把表达“一点相对另一点的位置”的量定义为一种新型的基本几何量……我们称之为向量,……这样,我们就可以用代数的方法研究平面图形性质,把各种各样的几何问题用向量运算的方法来解答。再看普通教材第五章“平面向量”的前提介绍:“……,位移是一个既有大小又有方向的量,这种量就是我们本章报要研究的向量。向量是数学中的重要概念之一。向量和数一样也能进行运算,而且用向量的有关知识更新还能有效地解决数学、物理、等学科中的很多问题。这一章里,我们将学习向量的概念、运算及其简单的应用。”显然实验教材是从数学思想方法的高度来引入向量,这也使后面内容的学习可以以此为线索,体现了知识的内在统一。实验教材在第六章“平面向量”之后,紧接着设置了第七章“直线和圆”,从第七章的内容提要中我们看出这样设计是有良苦用心的。内容提要如下:“人们对于事物的认识和理解,总是要经过逐步深化的过程和不断推进的阶段。对于空间的认识和理解,就是先有实验几何,然后推进到推理几何,理推进到解析几何。在第六章,我们引进了平面向量,并且建立了向量的基本运算结构,把平面图形的基本性质转化为得量的运算和运算律,从而奠定了空间结构代数化的基础;再通过向量及其运算的坐标表示,实现了从推理几何到解析几何的转折。解析几何是用坐标方法研究图形,基本思想是通过坐标系,把点与坐标、曲线与方程等联系起来,从而达到形与数的结合,把几何问题转化为代数问题进行研究和解决。”并且在后面直线的方程、直线的位置关系点到直线的距离几节中都自然而然的延续了向量的思想和方法,使直线的学习连惯、完整、深刻。而普通教材将第一册(下)的第五章设为“平面向量”,在第二册(上)的第七章才设置“直线和圆的方程”,中间隔了不等式一章,并且在内容上,也没有将向量与直线方程联系起来,关于法向量、点直线点法式方程都没有讲,只是随后设置了“向量与直线”的阅读材料简单介绍法向量、直线间的位置关系。

四、重视数学思想方法,深化数学教材改革

1、在知识发生过程中渗透数学思想方法

这主要是指定义、定理公式的教学。一是不简单下定义。数学的概念既是数学思维基础,又是数学思维的结果。概念教学不应简单地给出定义,而是应引导学生感受或领悟隐含于概念形成之中的数学思想方法。二是定理公式介绍中不过早下结论,可能的话展示定理公式的形成过程,给教师、学生留有参与结论的探索、发现和推导过程的机会。

2、在解决问题方法的探索中激活数学思想方法

①注重解题思路的数学思想方法分析。在例题、定理证明活动中,揭示其中隐含的数学思维过程,才能有效地培养和发展学生的数学思想方法。如运用类比、归纳、猜想等思想,发现定理的结论,学会用化归思想指导探索论证途径等。

友情链接