半导体制造技术合集12篇

时间:2023-12-04 09:51:56

半导体制造技术

半导体制造技术篇1

DOI:10.16640/ki.37-1222/t.2016.11.038

0 引言

人来研究半导体器件已经超过135年[1]。尤其是进近几十年来,半导体技术迅猛发展,各种半导体产品如雨后春笋般地出现,如柔性显示器、可穿戴电子设置、LED、太阳能电池、3D晶体管、VR技术以及存储器等领域蓬勃发展。本文针对半导制造技术的演变和主要内容的研究进行梳理简介和统计分析,了解半导体制造技术的专业技术知识,掌握该领域技术演进路线,同时提升对技术的理解和把握能力。

1 半导体技术

半导体制造技术是半导体产业发展的基础,制造技术水平的高低直接影响半导体产品的性能及其发展。光刻,刻蚀,沉积,扩散,离子注入,热处理和热氧化等都是常用的半导体制造技术[2]。而光刻技术和薄膜制备技术是半导体制造技术中最常用的工艺,下面主要对以上两种技术进行简介和分析。

2 光刻技术

主流的半导体制造过程中,光刻是最复杂、昂贵和关键的制造工艺。大概占成本的1/3以上。主要分为光学光刻和非光学光刻两大类。据目前所知,广义上的光刻(通过某种特定方式实现图案化的转移)最早出现在1796年,AloysSenefelder发现石头通过化学处理后可以将图像转移到纸上。1961年,光刻技术已经被用于在硅片上制造晶体管,当时的精度是5微米。现在,X射线光刻、电子束光刻等已经开始被用于的半导体制造技术,最小精度可以达到10微米。

光学投影式光刻是半导体制造中最常用的光刻技术,主要包括涂胶/前烘、曝光、显影、后烘等。非光学光刻技术主要包括极深紫外光刻(EUV)、电子束光刻(E-beam Lithography)、X射线光刻(X-ray lithography)。判断光刻的主要性能标准有分辨率(即可以曝光出来的最小特征尺寸)、对准(套刻精度的度量)、产量。

随着半导体行业的发展,器件的小型化(特征尺寸减小)和集成电路的密集度提高,传统的光学光刻制造技术开始步入发展瓶颈状态,其面临的关键技术问题在于如何提高分辨率。

虽然,改进传统光学光刻制造技术的方法多种,但传统的光学投影式技术已经处于发展缓慢的阶段。与传统的投影式光刻技术发展缓慢相比,下一代光刻技术比如EUV、E-beam、X-ray、纳米压印等的发展很快。各大光刻厂商纷纷致力于研制下一代光刻技术,如三星的极紫外光刻、尼康的浸润式光刻等。目前先进的光刻技术主要集中在国外,国内的下一代光刻技术和光刻设备发展相对较为滞后。

3 薄膜制备技术

半导体制造工艺中,在硅片上制作的器件结构层绝大多数都是采用薄膜沉积的方法完成。薄膜的一般定义为在衬底上生长的薄固体物质,其一维尺寸(厚度)远小于另外二维的尺寸。常用的薄膜包括: SiO2, Si3N4, poli-Si, Metal等。常用的薄膜沉积方法分为化学气相沉积(Chemical Vapor Deposition)和物理气相沉积(Physical Vapor Deposition)两种。化学气相沉积利用化学反应生成所需的薄膜材料,常用于各种介质材料和半导体材料的沉积,如SiO2, poly-Si, Si3N4等[3]。物理气相沉积利用物理机制制备所需的薄膜材料,常用于金属薄膜的制备,如Al, Cu, W, Ti等。沉积薄膜的主要分为三个阶段:晶核形成―聚集成束―形成连续膜。为了满足半导体工艺和器件要求,通常情况下关注薄膜的一下几个特性:(1)台阶覆盖能力;(2)低的膜应力;(3)高的深宽比间隙填充能力;(4)大面积薄膜厚度均匀性;(5)大面积薄膜介电\电学\折射率特性;(6)高纯度和高密度;(7)与衬底或下层膜有好的粘附能力。台阶覆盖能力以及高的深宽比间隙填充能力,是薄膜制备技术的关键技术问题。我们都希望薄膜在不平整衬底表面的厚度具有一致性。厚度不一致容易导致膜应力、电短路等问题。而高的深宽比间隙填充能力则有利于半导体器件的进一步微型化及其性能的提高。同时,低的膜应力对所沉积的薄膜而言也是非常重要的。

4 结语

虽然,与不断更新换代的半导产品相比,半导体制造技术发展较为缓慢,大部分制造技术发展已经趋于成熟。但是,随着不断发展的半导体行业,必然会对半导体制造技术的提出更高的要求,以满足半导体产品的快速发展。因此,掌握和了解半导体制造技术的相关专利知识有利于推进该领域的发展。

参考文献:

半导体制造技术篇2

中图分类号:G642 文献标识码:A 文章编号:1002-7661(2015)17-0001-02

《半导体制造工艺基础》以施敏所著教程为例,该课程在对基本原理介绍的基础上注重对工艺过程、工艺参数的描述以及工艺参数测量方法的介绍,并在半导体制造的几大工艺技术章节中加入了工艺模拟的内容,弥补了实践课程由于昂贵的设备及过高的实践费用而无法进行实践教学的缺憾。故熟练掌握《半导体制造工艺基础》将有助于我们加深对半导体制备的了解,为我们学习微电子专业打下坚实的基础。但目前《半导体制造工艺基础》在教学过程中还面临很多问题。在此背景下,我们将对《半导体制造工艺基础》课程进行教学探索。

一、教学内容的设置

《半导体制造工艺基础》的第一章简要回顾了半导体器件和关键技术的发展历史,并介绍了基本的制造步骤。第二章涉及晶体生长技术。后面几章是按照集成电路典型制造工艺流程来安排的。第三章介绍硅的氧化技术。第四章和第五章分别讨论了光刻和刻蚀技术。第六章和第七章介绍半导体掺杂的主要技术;扩散法和离子注入法。第八章涉及一些相对独立的工艺步骤,包括各种薄层淀积的方法。《半导体制造工艺基础》最后三章集中讨论制版和综合。第九章通过介绍晶体工艺技术、集成器件和微机电系统加工等工艺流程,将各个独立的工艺步骤有机地整合在一起。第十章介绍集成电路制造流程中高层次的一些关键问题,包括电学测试、封装、工艺控制和成品率。第十一章探讨了半导体工业所面临的挑战,并展望了其未来的发展前景

二、教学中存在的问题

在教学过程中,从教学工作量来看,发现《半导体制造工艺基础》教学内容过多,根据学校安排的学时很难上完。从教学方法来看,传统的口述以及PPT展示教学方法很难达到预期的教学效果,原因在于这门课程实践性很强。书中的图片特别是工艺过程及工艺效果只是简单的图片展示。从教学深度来看,传统教学方法只是演示,学生对工艺的参数没有概念,故对书本上的内容理解的深度很是欠缺。

三、教学方法的改革

为了提高教学效果,故必须对传统的教学方法进行改革。将工艺仿真软件TSUPREM 4 进行同步仿真与书本相结合将是一个好的教学方法。工艺仿真不但能让学生更轻松的理解工艺内容,还能让学生体会到工艺参数的重要性。下面将结合书本对这种方法进行讲解。《半导体制造工艺基础》第一章介绍半导体工艺技术基本步骤,属于概论,为了节约课时对其内容有所了解即可。第2章介绍晶体生长从熔融硅中生长的区熔(float-zone)法单晶生长工艺,为了节约课时对其内容进行简单介绍即可。第3章介绍硅的氧化包括热氧化过程,由于氧化工艺是半导体工艺的重点内容,应详细阐述,并且教会学生应用工艺仿真软件TSUPREM 4 进行同步仿真,观察每一步氧化带来的硅片上结构的变化,对氧化的效果有直观的了解。第4章介绍光刻技术,采用工艺仿真软件TSUPREM 4 对硅片进行光刻,观察硅片上光刻图形的变化。第5章介绍了刻蚀包括湿法化学刻蚀和干法刻蚀,刻蚀技术是工艺的重要内容,要求学生采用工艺仿真软件TSUPREM 4 对刻蚀进行仿真,比较两种刻蚀方法的效果,并观察每步刻蚀带来的结构变化。第6章介绍了扩散包括非本征扩散,横向扩散。同样采用工艺仿真软件TSUPREM 4对扩散过程进行仿真验证,观察可扩散的温度,时间,离子的浓度等参数对扩散结构的影响,为重点教学内容。第7章介绍了离子注入。离子注入是半导体工艺的核心部分,也是常见的工艺步奏,通过采用工艺仿真软件TSUPREM 4离子注入进行模拟仿真,观察离子注入的浓度,能量,退火时间以及退火温度等参数对离子分布的影响,加深对工艺参数的理解。另外第8章介绍薄膜淀积。第9章介绍MOS工艺。第10章介绍集成电路制造,测试,封装等工艺技术。最后这三部分由于涉及到很多具体的器件和电路,内容较多故可以一个典型例子为例进行讲解,同样采用工艺仿真软件TSUPREM 4进行工艺仿真,学生能熟练掌握工艺仿真软件后面的内容可以自己进行仿真验证。

四、结束语

《半导体制造工艺基础》是一门实践性很强的课程,采用工艺仿真软件TSUPREM 4来模拟工艺过程将有助于加强学生对工艺的了解。让学生深入浅出的理解半导体制造流程还需从教学方法上进行进一步改革。c

参考文献:

[1]施敏.半导体制造工艺基础[M].合肥:安徽大学出版社,2007.

半导体制造技术篇3

中华民族有着伟大的创新竞争能力。我国两弹一星的成功是一个辉煌例证,台湾半导体的崛起也是一个例证。但20多年来,由于外部内部的种种原因,我们半导体产业的这种创造力被遏制而得不到发挥,从而在国际竞争中长期处于下风,事实上已被“锁定”在国际半导体产业链条的低端。我们面临被国际水平越拉越远的现实威胁。

按“比较优势论”,这是客观 经济 规律 所决定的必然结果,不值得大惊小怪,更没有必要勉强“赶超”。

技术路线:业内公认,预计再过10年,摩尔定律将失效,国际半导体界正在加紧新材料、新设计、新加工技术、新设备的 研究 。我们已经被动跟进了20年左右了。要实现追赶战略,是循现有硅技术跟进,还是走“拦截”道路(如放弃硅加工技术的追赶,从纳米技术开始)?主张放弃硅加工技术、专攻纳米级加工技术的声音在管理部门占有一定席位。但 科学 界很多人认为,21世纪以硅技术为中心的半导体加工技术仍占主流(见本文第二部分)。

投资体制:鉴于我国现有国家投资的先进生产线多数没有自己的控制权,是否还有必要以国家为主体投资3-5条先进生产线,包括砷化镓生产线?由于所需投资额要以百亿人民币 计算 ,国家在“十五”期间似无此打算。但如果真是关系到全局利益,是否有必要再提出议论?等等,

实施半导体产业追赶战略的讨论

国家有关机构及业内已经就加快我国半导体产业 发展 制定了规划、政策,现在很多情况下是如何落实的 问题 。在这里,作者提出经过考虑认为是必要的措施:

需要国家层次的决心和指挥,制定积极可行的发展规划

首先要组织落实。成立代表国家意志的权威性微 电子 领导机构,集中负责,具体领导和协调国家组织的研发-生产全过程,重点扶持,克服地方部门分割的弊病,统筹合理使用资金和人才。

发展战略不能流于一般号召和思路,在充分论证的基础上,作好中长期微电子跨越发展的科学规划(具有前瞻性的 科技 规划、产业建设、市场扩张)。要提高决策水平和反应速度。半导体更新换代快,计划要求不断滚动调整,现有五年计划 方法 需要改进。

半导体产业与其他产业最明显不同的一个特点,是技术进步和产业 应用 具有相当清楚的路线图和时间表,因此,我们的微电子科技规划必须具有和产业发展规划相对应的切入点和结合点的时间表,以及明确的产业应用目标和相应的成果转化应用政策与机制。

要充分利用外商投资半导体热潮这一良机,加强引进消化,逐步提高产业的自主创新和自主发展能力。

制定切实可行的市场战略,从中低端产品起步。作为长期目标,则要有占领高端技术和产品的决心和意志,不应放弃。

要配合工艺技术的进步,自主开发关键设备、工具、仪器,最终打破在制造设备上受制于人的被动局面,建立起可以与世界前沿平等交流的技术支撑体系。

抓住当前市场机会,瞄准长期发展方向

我国 目前 科技水平还不具备占领高端产品的能力,宜从占领低端市场和新兴市场起步,有必要选定一组有市场前途、国际竞争压力较小的品种作为突破口。

当前微电子技术有三个清晰的发展方向:以存储器(dram)和微处理器(mpu)为代表的计算机芯片;以系统集成芯片为主流的专用电路(asic)各控制应用领域;信息传输技术。

我国目前宜立足于专用集成电路和通信市场寻求发展。尤其通讯领域还没有形成强垄断力量,国内市场潜力巨大,及时抓住民用砷化镓通讯器件及电路的机会,可占领一定的市场份额。在这两个领域积蓄起足够的力量之后,再向主流市场发起攻击,最终占领通用芯片市场。

专用集成电路因应用领域十分广泛,市场空间极大。但这也给 企业 寻找市场、开发适时产品又提出了严峻的挑战,对企业的营销管理和应变能力有着很高的要求。

依托我国市场优势,将半导体和整机生产结合起来。由国家组织专项重点工程,如高清晰度电视、移动通讯和pc机等,根据我国国情制定标准,建立整机业与芯片业的战略联盟。

发挥政府主导作用,贯彻产业政策

要全面提高我国半导体产业水平,将是一个大规模的系统工程,根据目前国内企业缺乏资金和技术实力的情况下,有必要通过政府作用,发掘和聚合全国有限的科技力量。由于半导体的高强度竞争性质,必须有国家的坚强领导,稍有松懈就会被淘汰。所以对政府的管理水平提出很高的要求。

·在 发展 规划指导下,促进半导体产业合理布局的形成。

我国半导体产业已经形成了三块主要聚集区。 目前 许多地方对投资半导体表示极大兴趣,纷纷提出要建设自己的“硅谷”。要协调各方面利益关系,打破部门地区封锁,促进资源的合理配置,防止各地争建“硅谷”、“新竹”,形成新的分散浪费。有必要加强调控,建设几个较集中的微 电子 园区。鼓励跨省投资,税收政策相应也要调整。

·组织部门地区单位间协作,官产学研联合,组织重点领域及关键设备的攻关,以及推动形成技术共享机制和 企业 策略联盟。

·鼓励建立区域行业协会,推动企业技术联盟的形成。

·切实落实国家已经颁布的对微电子类企业的各项优惠政策。落实增值税减免政策,提高折旧率、对进口成套设备提供特批关税和增值税豁免等。

放宽企业的融资条件,扩大风险投资基金,或政府直接建立半导体投资基金,或拨出定额的人民币及外汇贷款规模。由于投资所需资金额庞大,政府融资能力有限,要形成多渠道投融资的投资机制,允许半导体企业在国内外资本市场有限融资。给半导体生产企业优先上市权。

·适度市场保护政策。微电子作为国家的命脉,在幼稚阶段必须得到适当保护。要制定法规,涉及国家安全的电子信息系统、身份证ic卡,国家机关使用的电子系统,政府采购要优先使用国产芯片,抵制洋货(上海的公交、社保ic卡已经实行这一办法,应该全国实行),制定我国自己的技术协议及标准。

深化 经济 体制改革,营造公平竞争环境

处理好微电子战略性和竞争性的关系,正确发挥政府在产业发展中的作用,形成政府-企业间新型互动关系,营造一个“自主经营、自主创新、合理竞争、保障持续增长”的公开有序的市场环境和法制环境,培育灵活高效、能够激励个人和团队创造性的企业管理和激励机制。

鼓励民营、外资等各种经济形式的企业投资半导体。现半导体产业的民间投资出现良好势头,目前主要是民营芯片设计企业,也应鼓励各类经济实体投资半导体制造业,鼓励发展各种技术档次的专用集成电路生产线,占领广大的中低端半导体市场。如上海贝岭80%的产品与整机系统挂钩,效益良好;友旺原是民营fabless公司,通过租赁国有半导体生产线获得效益,现开始投资新生产线。

促进国企改革与重组,按 现代 企业运行模式,在管理体制方面加大改革力度。落实企业管理、技术和市场骨干人员的待遇和期股权。

稳定队伍,大力吸引海外优秀人才

高 科技 人才是半导体产业的根本,要高度重视人才战略。我国十分有限的微电子人才不断外流,多有去无回,损失巨大。

从根本上说,人才战略是要建造一个有利于科技人员发挥创造力、有利于创业创新的制度环境和人文环境。要鼓励公平竞争,改革企业单位内人事制度分配制度。

要制订优惠政策,拿出足够强度的专项经费,稳定并充分发挥现有人才队伍的作用,充分重视海外华裔技术专家的作用,加强与海外技术团体的联系,大力吸引海外微电子高层技术和管理人才,采取特殊措施吸引国外微电子顶尖人才。

加强微电子科研与 教育 队伍的建设,重视系统设计人员、专用电路设计人员、工艺 研究 人员、企业管理、营销、项目管理人才的培养。高新科技园区要和人才战略结合起来。营造鼓励创业的政策环境,要突破现行体制的限制,尽快实行期股制度。

充实有关科研机构,从制度上保证半导体企业有条件留够研究开发费用。

几项具体措施的建议:

·促进业内合理分工,鼓励发展设计行业(无生产线公司)

集成电路(特别是专用电路)制造和设计是相辅相成的。ic专业生产厂和分散的无生产线(fabless)设计公司并存与分工合作,成为世界微电子产业的通行模式。设计业投资小,与市场密切相关,只要有优惠的产业政策和好的人才政策,就可以很快发展壮大。如从专用集成电路方面突破,则大力发展设计行业就更有必要。

设计行业要以部级高档次需求和中低档次并举,建立技术共享机制。

从战略角度看,国家有必要在突破cpu和存储器为代表的核心技术方面,以及对占领市场、扶持产业 发展 有重大意义的高档产品设计方面(如通讯芯片),发挥组织作用。

要建立技术支援和技术共享环境。为适应系统芯片(soc)的迅速发展,亟需组织建立部级的有知识产权的设计模块(ip)库,统一规范管理与服务,建立面向全国的调用机制,提高国内设计公司的整体水平。同时,也有必要通过区域性半导体行业协会,促进 企业 间技术联盟和建立技术共享机制。

·国家牵头,多方筹资,建设几条8英寸以上硅芯片生产线,并掌握其技术、市场和管理的主导权。同时以多元化模式在未来5年内建成6-10条大生产线,形成产业群。由于我国多年来全套引进和国内科研成果的积累,已经具备一定基础,不必再引进全套技术,而是引进单项关键工艺技术专利和有关高技术人才,自主创新,逐步建立自主知识产权。

·尽快建立国家微 电子 研发中心,加强新一代工艺、设备的研发和前瞻性科研

要摆脱在关键设备和核心工艺技术依赖外国,且一代代被动引进的局面,必须保留并大力加强自己的微电子科研能力,改变当前科研生产严重脱节、各部门间科研力量互相封闭的状态。如果不从现在开始努力加强自己的工艺技术后盾和关键设备研制能力,最终将无法在国际竞争舞台上立足。

参照美日欧行之有效的经验,国家有必要牵头建立微电子研发中心,集中有限的人力财力,把国内有优势的高效和 研究 所力量更好地组织起来,作为自主研发的基本骨干队伍,并为各部门科研机构。

要开发新一代核心工艺技术以及高档产品;依托现有生产线,购置部分先进设备,以最快的速度用自主科研成果提升生产线的技术,在开发新一代工艺的基础上开发关键设备。

要抓紧研发新一代关键设备。光刻机是限制我国微电子制造技术的瓶颈,要组织力量,集中投资,瞄准193纳米准分子激光投影光刻机为重点的专用设备中的关键技术并达到实用化。现有光学曝光技术已接近极限,国际上正在开展电子束和x射线光刻及新型刻蚀机的研究,我国有必要加大力量开展这一方面的技术攻关。(工程院)

同时,针对中长期我国微电子产业的需求,开展新一代系统芯片中新工艺、新器件和新结构电路的前瞻性、战略性研究,以及承担各研究机构的验证集成和中试任务,最终发展成自主知识产权的源泉。

有所为有所不为

所谓追赶战略,不会是直线式的发展,需要技术、 经济 实力的逐步积累。关键在于提供好的环境,促进产业生态的成长,坚持数年,积累能量,终会有爆发式的进步。

半导体制造技术篇4

云计算、物联网、人工智能,不断冒出的新技术让我们想象着一个不可预知的未来,而我们手中的移动终端也在往更轻薄、更低能耗以及更高性能的方向发展,但是要实现这一切都基于芯片的演进。让芯片变得更薄更轻、性能更强而能耗更低,要从芯片制造工艺本身来改进,现有的改进方法有芯片制造过程的缩减以及芯片架构的调整。不过无论哪种方式都对制造芯片的设备提出了更高的要求。在泛林集团(Lam Research)总裁兼首席执行官Martin Anstice看来,摩尔定律需要延续甚至突破,半导体行业才能持续发展。

C:全球半导体领域的技术发展呈现出怎样的趋势?

A:技术的发展基于整个半导体行业以及电子工业的发展,而半导体行业的发展又遵循于“摩尔定律”。要将“摩尔定律”延续下去,需要整个行业不断创新,以挖掘更多技术上的可能性。比如,现在业界比较关注的多重图形技术,就是把芯片的设计图曝光到晶圆上,然后我们再根据这个设计图来刻蚀晶圆。但由于现在器件越来越小,越来越精密,制造工艺都是在纳米级别下完成的,很多时候仅通过一次曝光很难达到需要的精度,必须通过多次曝光和刻蚀才能实现。此外,如今人们对电子产品性能的要求越来越高,这就意味着对半导体器件的性能提出更高的要求。如何在现有尺寸的器件上集成更多的功能,已成为我们必须解决的问题。目前,行业通过将器件的构架由二维向三维转变解决了这个难题,比如3D NAND技术,就是沿垂直方向来堆叠存储单元,从而有效提升器件的整体性能。其他的还有鳍式场效应晶体管(FinFET)技术、先进封装技术等。总而言之,未来的发展趋势主要聚焦于如何通过创新技术实现芯片尺寸的进一步缩减,这也将对半导体设备制造商带来很大的挑战。

C:设备制造商所在的行业面临什么挑战?

A:如今,随着物联网、云计算、互联网+等概念的应用和深入,以及电子产品与移动终端的普及和更新迭代速度的加快,市场对半导体产品的需求大大增加,同时也要求上游半导体器件设备制造商对市场的反应速度更快,经营方式更加灵活,业务体系更加全面。这是挑战之一。其次,消费者也希望手中的电子产品和移动终端变得更加轻薄、能耗更低,性能更高,但价格却更加优惠。这就要求这些设备中的半导体器件的尺寸进一步缩减,性能进一步提升。这样势必对半导体器件的制造工艺和设备制造商的创新能力提出更高的要求,尤其是在诸多技术已经进入拐点,行业迫切需要突破的时候。这是挑战之二。第三个挑战是如何培养,吸纳和留住尖端的技术人才。

C:你们怎么看待中国在半导体教育以及人才储备方面的状况?

半导体制造技术篇5

专题一、半导体照明系统集成与应用示范工程

研究目标:以重要交通枢纽、高架道路和隧桥、大型商务区和主要商业街道为示范区,推动半导体照明系统集成与规模化应用,实现公共照明节能降耗。

研究内容:示范工程总体设计与实施方案研究;灯光管理与系统控制技术研究;半导体照明通用照明产品开发;示范工程用特种灯具开发;半导体照明系统与规模化生产技术研究。

研究期限:年9月30日前完成

专题二、低成本高效率通用白光照明产品开发与应用

研究目标:突破半导体照明共性关键技术,研制性价比较优、效率达到80lm/W的功率型白光照明灯具,形成批量生产能力并在示范点上推广应用。

研究内容:结合产品定位和应用推广方案,开展灯具设计技术、ZnO电极技术、芯片高效封装技术、灯具的高效率低成本制造技术研究。

研究期限:2年9月30日前完成

专题三、半导体照明检测技术研究与服务

研究目标:研制半导体照明产品检测标准,建立半导体照明测试服务平台,为企业和研发机构提供样品测试、产品检测等公共服务。

研究内容:半导体照明脉冲驱动电路技术和芯片抗静电性能测试方法、标准及规范的研究;半导体通用照明系统的应用标准和规范研究;产品仿真展示技术和光学环境交互技术开发;半导体照明产品寿命与能效测评。

研究期限:年9月30日前完成

专题四、小功率陶瓷金卤灯(HID)制造技术与应用产品开发

研究目标:突破小功率陶瓷金卤灯(HID)的制造技术,包括材料技术、灯具配套技术,灯具及其配套镇流器形成批量生产能力,小功率HID灯进入室内照明领域和商业照明领域。

研究内容:10-150W陶瓷金卤灯透明陶瓷制造技术、陶瓷电弧管制造技术、配套电子镇流器制造技术、灯具生产示范线工艺与装备的研制等。

研究期限:2年9月30日前完成

专题五、OLED生产线集成与TFT-OLED产业化关键技术

研究目标:建立TFT-OLED中试平台,解决OLED低成本化和产业集成技术。自主设计和建设2.5代TFT-OLED示范生产线,形成年产10万片(玻璃尺寸为370mm×470mm)生产能力,7英寸以下中小尺寸产品进入市场。

研究内容:低成本OLED产品设计、规模化生产技术;OLED生产线集成技术与成套装备制造技术;配套材料、工艺技术开发;基于OLED的Si基TFT技术研究。

研究期限:2年9月30日前完成

二、申请方式

1、凡符合《*市科研计划课题制管理办法》要求的企事业单位均可以申请。申报单位要有较强的科研力量,具有实施项目所必需的研究开发设施及自有资金。要有健全的科研管理、知识产权管理、财务管理、资产管理和会计核算制度。

2、课题责任人和主要科研人员同期参与承担的863、973、国家科技攻关和*市重大、重点科研项目数不得超过三项。

3、鼓励以产学研联合方式申请。多家单位联合申请的课题,应在申请材料中明确各自承担的工作和职责,并附上合作协议或合同。

4、申报单位应从“*科技”网站进入“在线受理科研计划项目可行性方案”,并下载相关表格《*市科学技术委员会科研计划项目课题可行性方案》,按照要求认真填写,所有附件均需上传到网上。

5、本专项课题的申请起始日期*年6月19日,截止日期为*年7月18日。课题申报时需提交书面可行性方案及其附件一式4份,并通过“*科技”网站提交可行性方案和其他所有表格。书面可行性方案集中受理时间为*年7月14日至7月18日,每个工作日上午9:00—下午4:30。所有书面文件请采用A4纸双面印刷,普通纸质材料作为封面,不采用胶圈、文件夹等带有突出棱边的装订方式。

6、已申报今年市科委其它类别项目者应主动予以申明,未申明者按重复申报不予受理。

7、网上填报备注:

1)点击连接可进入《科研计划项目课题可行性方案》申报页面;

2)首次登录必须选择“初次填写”转入申报指南页面,点击"专题名称"开始申报;

3)有关操作可参阅在线帮助。

三、联系方式

半导体照明项目申报材料

为推动本市高效节能照明技术开发和产品应用,推动新型平板显示产业升级,围绕国家和*中长期科技发展规划纲要以及“*”科技发展规划,开展以应用为导向、以企业为主体的关键技术攻关,*市科学技术委员会特本指南。

一、研究专题和期限

专题一、半导体照明系统集成与应用示范工程

研究目标:以重要交通枢纽、高架道路和隧桥、大型商务区和主要商业街道为示范区,推动半导体照明系统集成与规模化应用,实现公共照明节能降耗。

研究内容:示范工程总体设计与实施方案研究;灯光管理与系统控制技术研究;半导体照明通用照明产品开发;示范工程用特种灯具开发;半导体照明系统与规模化生产技术研究。

研究期限:年9月30日前完成

专题二、低成本高效率通用白光照明产品开发与应用

研究目标:突破半导体照明共性关键技术,研制性价比较优、效率达到80lm/W的功率型白光照明灯具,形成批量生产能力并在示范点上推广应用。

研究内容:结合产品定位和应用推广方案,开展灯具设计技术、ZnO电极技术、芯片高效封装技术、灯具的高效率低成本制造技术研究。

研究期限:2年9月30日前完成

专题三、半导体照明检测技术研究与服务

研究目标:研制半导体照明产品检测标准,建立半导体照明测试服务平台,为企业和研发机构提供样品测试、产品检测等公共服务。

研究内容:半导体照明脉冲驱动电路技术和芯片抗静电性能测试方法、标准及规范的研究;半导体通用照明系统的应用标准和规范研究;产品仿真展示技术和光学环境交互技术开发;半导体照明产品寿命与能效测评。

研究期限:年9月30日前完成

专题四、小功率陶瓷金卤灯(HID)制造技术与应用产品开发

研究目标:突破小功率陶瓷金卤灯(HID)的制造技术,包括材料技术、灯具配套技术,灯具及其配套镇流器形成批量生产能力,小功率HID灯进入室内照明领域和商业照明领域。

研究内容:10-150W陶瓷金卤灯透明陶瓷制造技术、陶瓷电弧管制造技术、配套电子镇流器制造技术、灯具生产示范线工艺与装备的研制等。

研究期限:2年9月30日前完成

专题五、OLED生产线集成与TFT-OLED产业化关键技术

研究目标:建立TFT-OLED中试平台,解决OLED低成本化和产业集成技术。自主设计和建设2.5代TFT-OLED示范生产线,形成年产10万片(玻璃尺寸为370mm×470mm)生产能力,7英寸以下中小尺寸产品进入市场。

研究内容:低成本OLED产品设计、规模化生产技术;OLED生产线集成技术与成套装备制造技术;配套材料、工艺技术开发;基于OLED的Si基TFT技术研究。

研究期限:2年9月30日前完成

二、申请方式

1、凡符合《*市科研计划课题制管理办法》要求的企事业单位均可以申请。申报单位要有较强的科研力量,具有实施项目所必需的研究开发设施及自有资金。要有健全的科研管理、知识产权管理、财务管理、资产管理和会计核算制度。

2、课题责任人和主要科研人员同期参与承担的863、973、国家科技攻关和*市重大、重点科研项目数不得超过三项。

3、鼓励以产学研联合方式申请。多家单位联合申请的课题,应在申请材料中明确各自承担的工作和职责,并附上合作协议或合同。

4、申报单位应从“*科技”网站进入“在线受理科研计划项目可行性方案”,并下载相关表格《*市科学技术委员会科研计划项目课题可行性方案》,按照要求认真填写,所有附件均需上传到网上。

5、本专项课题的申请起始日期*年6月19日,截止日期为*年7月18日。课题申报时需提交书面可行性方案及其附件一式4份,并通过“*科技”网站提交可行性方案和其他所有表格。书面可行性方案集中受理时间为*年7月14日至7月18日,每个工作日上午9:00—下午4:30。所有书面文件请采用A4纸双面印刷,普通纸质材料作为封面,不采用胶圈、文件夹等带有突出棱边的装订方式。

6、已申报今年市科委其它类别项目者应主动予以申明,未申明者按重复申报不予受理。

7、网上填报备注:

1)点击连接可进入《科研计划项目课题可行性方案》申报页面;

半导体制造技术篇6

CPU、存储器、SoC等产品领域的最先进工艺已从90nm向65/56nm转移,同时,今年早期即可迎来43/45nm工艺的初期生产。尤其值得注意的是,一些半导体厂商已开始下一代32nm工艺的开发,工艺发展有加速前进之势。据表1的预测,2010-2015年间将向22nm、16nm工艺前进。

由于电子产品竞争日趋激烈,半导体价格下降的压力不断增加。厂商的对策一般有两种:一是采用更先进的工艺,二是增大晶圆直径,使每一晶圆上能切割出更多的芯片,每一芯片上集成更多的器件,从而达到削减成本的目的。存储器厂商已全面采用300mm晶圆以确保价格优势,而模拟、分立半导体厂商则在向150mm、200mm晶圆生产线迈进。至于450mm晶圆的引入,预计要到2012年300mm生产工厂数占到一半的时候才有可能。

最新技术动向

DRAM制造工艺的进展情况和2005年版基本相同,而NAND闪存则预期可提前2年。4位/单元技术2005年已实现,2位/单元、3位/单元和4位/单元技术都是过渡技术,2010年后将向8位/单元进军。存储电容器10年来没有变化,存储器结构基本是层叠型和沟道型两种。

2006年版预测从2010年开始,高性能MPU将采用高k栅绝缘膜,而2007年版则认为开始时间将提前到2008年。使用ArF浸液式光刻技术(波长193nm),应用2次曝光的方法,可能还会继续采用。

摩尔定律

近年对摩尔定律的议论甚多,日前iSuppli公司发表文章认为,摩尔定律仍然有效,以Intel公司为例,芯片上的晶体管数大约还是两年翻一番。1995~2007年的加工工艺从350nm发展到45nm,平均2年线宽缩小129.6%,从而达到了晶体管数两年翻番的目的。同时,iSuppli还预测Intel和AMD公司2011年的加工工艺都将进步到22nm。

ITRS2007年版对以前版本曾经提到的More Moore(更摩尔)和More thanMoore(超摩尔)两个概念专列了一章进行表述。More than Moore追求的是功能多样化。所谓功能多样化是不必通过摩尔定律走微细化的道路,而是使器件具有更多功能,为更多应用服务,进而产生附加价值。

More than Moore是把非数字功能(射频通信、电源控制、无源元件、传感器、调节器等)做进系统板、SiP、SoC中去,以满足完整功能的需求,它的不足是功能不易分离。

More Moore则是沿着摩尔定律继续走微细化的道路(Scaling,按比例缩小),它的优点是芯片面积越来越小,不足之处在于功能受到限制。图1清晰地指明,半导体技术今后有两个发展方向――More moore和More than Moore,两者互为补充。

半导体革新技术的变化

近年半导体技术的革新虽在形式上有所变化,但革新速度一直没有放慢下来。半导体制造工艺的发展进程依然跟上了摩尔定律的要求,2008年将正式开始采用45nm工艺,从而保证了处理器和逻辑电路的高速处理性能和存储器的大容量化。但我们也必须看到,半导体技术已不是朝着这单一方向发展,有人已对摩尔定律提出了质疑,认为它开始过时。日本媒体最近提出一个观点指出:半导体技术革新正从微细化突进时代迈向诉求低功耗的时代。它同时认为,半导体技术革新还正在追求包括实际性能和低成本在内的综合技术发展方向,凸显了低功耗、低成本的重要性。

低功耗技术已成为半导体开发的关键技术,成为半导体用户对半导体器件应用的第一要素,处理性能倒在其次,性能虽好而功耗大的芯片很难应用于电子设备。

电子设备的小形化和便携化都要求低功耗以减少电源的使用、抑制器件的发热和延长电池的使用寿命。为实现半导体的低功耗化,有几种技术可供使用,例如取消无用晶体管的电路设计技术。在制造过程中抑制泄漏电流是实现低功耗的重要技术,采用多核技术以抑制泄漏电流的方法受人注目。多电压技术也是削减功耗的代表性技术,SoC不是使用一种电压,而是对每一电路只提供工作必要的最小电压。多电压技术也可说是电压关断技术,它防止了多余电压的供给。缩短布线也是实现低功耗的手段之一,如采用叠层型3D封装的芯片的布线长度只及传统布线的千分之一。今天各半导体厂商都在积极投资低功耗技术的开发,从新产品规格决定开始,到制造、检查的全部工程,都对降低功耗的技术有所投入。此外,各厂商也很重视引进EDAT具等更加自动化和适用的技术来达到低功耗的目的。

全球电子产品市场正从传统的工业发达国家向着“金砖四国”(BRIC一巴西、俄罗斯、印度和中国)等新兴国家转移,要求产品不仅是高功能的,而且更要廉价,因而价格竞争日烈。大量生产是半导体产品低成本化的最有效途径,这无疑也会加剧厂商之间的市场份额之争。为此,厂商将有选择性地集中生产有市场竞争力的产品,争取把定制产品变为通用产品。在技术层面,此前针对低价格市场厂商常利用落后1~2代的生产线制造产品,现在则重视生产效率,为生产高附加价值产品而引进大尺寸晶圆和最先进的制造技术。此外,不仅后工程生产线要接近顾客,配置在中国等亚洲各地以减少物流成本和人工费用,而且产品的设计、开发也将设在中国、越南以及印度等地,并聘用本地员工以满足最终消费者的需求。

新技术开发成为企业增长源泉

半导体技术是信息社会的共同基础。ISSCC 2008(2008年国际固态电路会议)的主题是:系统集成服务于生活和生活方式(SystemIntegration For Life And Life Style)。换言之,会议讨论的是新的电路和系统实现的功能如何来丰富人们的生活和生活方式。可见,半导体技术正日益深入人们的生活甚至生活方式,和人类的密切关系和重要性不言而喻。今天半导体的关键技术正从微细化技术转向低功耗技术,半导体厂商的研发费用不断增大,因为这是维持竞争力不可或缺的因素。根据各公司主打产品的不同,研发费一般占到公司销售额的5%~10%,且有逐渐增大之势,而据 表3的数字,那些全球著名的顶级半导体公司的研发费都大大超过了这一平均数,达到16%以上。三星公司最吸引人们的眼球,不仅研发费绝对值已超过行业老大Intel,且占其销售额比重的30%,这恐怕也是近年三星公司急速前进的理由之一吧。当然研发费如此之大,也确使公司有不堪负担之虞,甚至成为半导体业继续前进的绊脚石。此外,有公司如富士通已改变了研发投资的传统方向,它加强了电路设计技术的开发,而减少了对制造技术的投资比重。

纵览各国半导体技术的研发状况,美国不仅处于领先地位,而且还保持向上的趋势。美国政府近年新建了NRI(Nanoelectronic s Research Institute)研究所,欧盟也建立了ENIAC(EuropeanNanoelectronics Initiative AdvisoryCouncil,欧洲纳米电子计划咨询委员会),这些都是10~15年以上的长期计划,政府与产学联手,加强开发纳米电子以及后CMOS技术。此外,美国还有SEMATEC(半导体制造技术科研联合体)、GRC、Focus Center等各级科研组织从事分层的科研项目。日本对现有技术的开发水平并不处于落后地位,尤其是在半导体生产设备和材料方面都具有一定优势。但它颇有忧患意识,对未来缺乏纳米电子的长期战略以及人才不足和技术开发力下降的趋势表示担忧。

为振兴日本半导体工业,在政府主持下,官产学联合于2001年制定了增强国际竞争力和可持续发展的MIRAI(未来)计划。开发目标分为三期,第一期(2001~2003年)解决65nm的技术课题;第二期(2004~2005年)实现45nm;第三期(前段2006~2007年,后段2008~2010年)解决超45nm的技术课题和实现超低功耗SoC的必要技术。目前计划已完成第三期的前段任务,现正修正计划以开展2008年后的新任务。该计划领导人在2007年举办的成果报告会上说,今后要更加努力使研发成果能确实向产业界转移,并要明确研发内容真正具有全球水平。

韩国的半导体研发近年始终保持上升态势,韩国仿效日本,政府积极支持,官产学联合研发,在这样的体制下,通过1997年的新一代半导体基础技术开发项目,成功开发出了256Mb DRAM和1GbDRAM的基础技术,现已成长为全球第一DRAM生产国,占有全球45%的市场。韩国制订有1998~2011年系统集成半导体基础技术开发项目,并以“实现2015年半导体全球第二及显示业全球最强”的目标,制定了相应的开发战略。此外,还加强了生物和有机半导体,以及非挥发性存储器的研发。在研发方面政府的作用绝不可忽视,据2006年统计,在国家的全部研发费用中,美国政府占31%,民间占69%。日本政府占20%,民间占79.7%。

全球主要半导体厂商最新动向Intel公司

2008年制造工艺将正式从65nm转向45nm,去年底发表了采用45nm、开发代号为Penryn的最初样品,公司每年都对最先进的工艺技术和下一代结构进行开发,并正试制32nm的SRAM,预计明年可量产。此外,对45nm处理器也安排了降低功耗和无铅技术,开发不污染环境的Eco处理器。

三星公司

作为全球最大存储器公司,其设备投资也最多,2007年投入85亿美元。当前公司的重点是使产品差异化,竭力在NAND、NOR、SRAM、DRAM 4种存储器方面不落后于其他公司。在该领域公司对采用“融合”技术的0neNAND、FlexOneNAND、OneDRAM等尖端产品进行投资开发。公司还开发出了将取代HDD的SSD(固态盘),1.8英寸的SSD仅重44g,功耗仅为0.5W,耐冲击1500G。该公司去年在美国德州奥斯汀的300mm晶圆工厂正式投产,今年1季度已开始量产NAND闪存。

TI公司

最大的经营变化是从传统的“DSP+模拟”转为“模拟+DSP”的模式,今后的科研工作和产品开发将把资源集中在模拟领域。当前DSP和模拟大约各占公司销售额的40%,该公司DSP已占全球市场50%,占有压倒优势,且市场已趋成熟,而公司模拟产品虽也居于老大地位,但其份额仅占全球市场的13%~14%,成长空间还很大,预期5年后模拟产品的销售将占公司总收入的60%。去年10月,TI公司购并了面向移动产品电源管理IC的POWERPRECISE Solutions公司,增强了模拟产品的实力。公司产品主要面向汽车、数字消费电子、工业应用和医疗等4大市场。

东芝公司

半导体产品由闪存、SoC和分立器件三部分组成,2007年上半期大约各占公司总销售额的40%、42%和18%。公司业绩优良,2007年增长了11%,预期2008年可增长15%,都大大超过了业界平均增长水平。公司依靠从开发、生产到销售的一条龙(IDM)体制建立差异化,发展事业。公司43nm生产线的月产能力今年3月为4万个,最终可达21万个。2008年将引进Sony半导体的Cell高性能处理器的生产设备,进一步扩大最先进技术的生产能力。

瑞萨公司

成立5年来形成了MCU、系统解决方案和通用器件3大支柱事业。在全球占有最大份额的MCU方面,引入了先进制造工艺并不断开发高速闪存、廉价存储器、多核等方面的新技术和新产品,以求在各领域、各地区都能争取最大份额。对于已大量生产的16位和32位CISCMCU,明年将投产新cPU核的MCU。

系统解决方案方面除移动电话市场以外,还着力于汽车、AV/PC市场。汽车导航用半导体器件SH-Navi等在全球市场名列前茅,并可望继续扩大。面向AV/PC正开发平板电视用产品,同时与客户联手,将投资具有竞争力的ASSP(专用标准产品)。

至于功率半导体等通用器件事业,电源MOSFET和将驱动IC和MOSFET集成封装的DrMOS反应良好,可有更好成长。公司预定目标于2012年汽车用电源MOSFET占全球市场10%,低耐压电源MOSFET占20%。为应对价格下降和竞争激烈,公司对LCD驱动器引进了300mm晶圆、130nm生产技术。

45nm加工工艺今年年中开始供应样品,明年可量产移动电话用SoC等。公司海外市场占40%,对亚洲地区大量需求产品的后端制造工作放在了中国,并增强北京工厂和苏州工厂的实力,特别是北京工厂已是全球最大的MCU后端生产基地,2012年前要达到月产能力1.5亿 个左右。

ADI公司

该公司集中经营模拟、DSP和MEMS 3类产品,其中模拟约占一半,近年后两种产品也发展顺利。每年研发投资约占营收20%,超过4亿美元。每周约开发出2~3个新产品,加上ASSP每年约有200个新产品问世。

ADI公司产品应用于两大市场:一是视听类数字消费电子,以及成长中的垂直部门用产品/ASSP;二是基于公司模拟核心技术的工业设备、医疗设备和汽车设备等水平部门用产品。公司非常关心电源IC和锂离子电池安全使用的有关技术,积极开发电源管理IC,今年可望推出20~30种新产品。2008年对去年9月发表的新品牌Advantiv产品系列。将开发包括高级电视(ATV)及其产品DSC、录像机等的应用器件。DSP继续成长,近年MEMS的全球年增长率可达50%。

公司推行客户全球化,去年在上海也成立了处,将顾客作为设计伙伴,并有FAE(现场应用工程师)参与,进行新产品培训工作。

Linear公司

从事高端线性IC的生产,前景看好,产品主要应用于工业,测量和汽车等领域,也都在顺利成长。随着2年前开始出售、集成有DC-DC变换器和感应器等组件的微型电源模块μModule系列产品的扩大,作为交钥匙解决方案在工业设备和通信市场都获得好评。今年为对应多种规格预定将发售内置ADC/AC和放大器的信号处理模块。

面向汽车销售的不仅是信息系列产品,还有高耐压、低电流的电源IC等具有高安全性的产品,可望有高成长率。今后,公司针对通信设备和消费电子应用将继续推出高端模拟产品,此外,移动设备用稳压器以及针对通信市场下一代NGN、WiMAX应用电源IC和高频信号处理IC也都是公司将重点开发的产品。

半导体制造技术篇7

2、受益半导体行业规模的扩张;

3、强势研发团队掌控核心技术。

上海新阳半导体材料股份有限公司(以下简称“上海新阳”,代码300236)专业从事半导体行业所需电子化学品的研发、生产和销售服务,并致力于为客户提供化学材料、配套设备、应用工艺、现场服务一体化的整体解决方案。产品主要包括半导体封装领域所需的引线脚表面处理电子化学品,晶圆镀铜、清洗电子化学品及与它们配套的设备。

财务数据显示,2008年-2010年,上海新阳净利润分别为1956.73万元、2887.79万元、3337.22万元,体现了良好的成长性。此次公司拟公开发行2150万股,募集资金1.75亿元用于原有产品产能的扩张及技术研发中心的建设。项目实施后,预计将年增半导体专用化学品产能3600万吨,发展前景广阔。

行业佼佼者客户覆盖广泛

截至2010年年底,上海新阳已经具备了3000吨/年的电子化学品产能,下游拥有超过120家的客户,遍布华东、华南、东北、西北等全国各地。同时,公司还通过了多家国内以及国际知名的半导体封装企业严格的供应商资格认证,知名企业如长电科技、通富微电等都是上海新阳的固定客户群体,在新产品的研发和产业化方面都建立了长期的合作伙伴关系。

以上仅仅是在半导体封装领域的客户,在芯片制造领域,公司也同如中芯国际、江阴长电等高端芯片制造企业建立了合作关系。

上海新阳是中国集成电路封测产业链技术创新联盟理事单位,国家02重大科技专项科研任务的承担单位之一,在国内的半导体材料业内具有突出的行业地位。行业佼佼者加上与各领域的知名企业的长期合作将极大得保障公司未来稳定的收入来源。

受益半导体行业规模扩张

半导体行业作为电子信息高新技术产业的核心,未来仍将会有较快的发展,而对电子化学品的需求也将随着半导体行业规模的扩大而增加。根据中国半导体协会的预测,2013年引线脚表面处理所需的电子化学品的市场规模可达10亿元,而据Yole Development2009年10月的预测,2015年晶圆镀铜、清洗电子化学品市场规模可达10亿美元。

未来,在国家相关产业政策的支持下,利用本土竞争优势,公司产品对进口产品的替代以及相关产品技术储备的市场推广进程的加速,上海新阳的市场地位将进一步突出、稳固。在此背景下,上海新阳未来将极大得受益于行业规模的扩大。

强势研发团队掌控核心技术

半导体制造技术篇8

中华民族有着伟大的创新竞争能力。我国两弹一星的成功是一个辉煌例证,台湾半导体的崛起也是一个例证。但20多年来,由于外部内部的种种原因,我们半导体产业的这种创造力被遏制而得不到发挥,从而在国际竞争中长期处于下风,事实上已被“锁定”在国际半导体产业链条的低端。我们面临被国际水平越拉越远的现实威胁。

按“比较优势论”,这是客观经济规律所决定的必然结果,不值得大惊小怪,更没有必要勉强“赶超”。中国面临的发展问题太多,高科技我们玩不起;老老实实遵照国际分工格局,当好小伙计也能发家致富。

我们不能指望近期就能赶上或超过美国、日本今天的微电子科技水平。中学生一般是没有实力考博士的。但这里讨论的,是我国微电子领域的“追赶”问题。逆水行舟,不进则退。所谓追赶,就是以自己现有实力为基础,努力追踪国际微电子进步潮流,力图缩小差距(至少不要再扩大),建设起自己能够控制的技术/产业体系。当今的“全球化”,是经济、科技的世界性战场,一个大国,在电子领域中连印度、新加坡都赶不上,终有一天难免被开除“球籍”。所以:

我国加速发展半导体产业的必要性——基于国家总体战略的需要;

加速发展半导体产业的可能性——台湾人也是中国人,他们能成功,我们也不孬。况且海峡两岸的半导体经济圈,正在形成。

现实的追赶战略,基本的原则还是坚持开放政策,在力求高水平的引进中,走出“模仿-创新”的发展道路。

实现追赶战略的基本条件

通过对韩国、台湾和我国大陆半导体发展经验的研究可知,尽管但后进国家(地区)面临的外部环境及条件不同,发展半导体产业的路径和机制各有不同,但要有效实现追赶战略,必须克服资金、技术(人才)、管理和市场这些共同障碍。由此,以下几个要素是必不可少的:

·政府的主导作用。对微电子的重视和实现追赶的决心,以及积极进取而合理的规划和政策,至关重要。后进国家财力有限,科研实力弱,仅靠民间企业和科研机构层次的决策,门坎过高,无力承受风险。政府的支持不仅在财力方面,也有必要在技术路线的层面参与战略规划。

·明确的技术进步目标和路线。一般来说,高强度的引进消化吸收是缩短技术差距的基本途径。人才的国际化竞争是电子行业的突出特点,需要在创业条件、企业制度、收入水平等方面实行“综合治理”,创造足以吸引人才的环境。

·进入半导体制造业,意味着大规模的风险投资,需要灵活的筹资机制和融资环境。

·要求政府运作和企业经营管理的灵活高效。在某种意义上可以说,后进国家挤进“微电子俱乐部”的竞争,是经济运行效率的竞争。

要做到这一切,决非单项措施可以奏效。需要国家意志和组织作用,需要完整的发展战略和政策,更需要各层次组织的高度经济活力。由于半导体产业的全球高度市场性和战略性,需要政府、企业功能的正确定位,以及高水平的管理。

“未来10年将是我国微电子发展的关键时期。目标是通过10年左右的努力:掌握集成电路设计、生产的关键技术和自主知识产权,大大缩短生产工艺技术水平与世界的差距,提高国内市场的自给率并积极开拓国际市场,满足国防和信息安全的需求;形成能够良性循环的科研生产体系。”[1]

若干需要在业内讨论清楚的问题

但是,由于微电子科学技术的复杂性,我们的半导体产业的发展战略,还有许多根本性的、基于专业技术判断基础上的问题,首先需要在业内讨论清楚,试举出如下几项:

市场定位问题:日本在起步时期曾把工业控制和消费类芯片作为主攻方向,韩国则把DRAM芯片的设计、制造工艺作为突破口。今天世界市场的芯片,按大类可分为消费类IC、投资类IC、通讯类IC;投资类IC又可分为专用芯片和通用芯片(DRAM/CPU)两大类。我们要自主发展半导体科技,重点主攻方向在哪里?业内的意见,多数集中在专用芯片和通信类芯片(通信产品是近年来发展最快的市场),特别是以砷化镓为基片的通讯类集成电路,我国已有一定基础,和国外水平相差不太远,是一个很好的切入点。另有相当多的人主张,不能放弃占市场2/3以上的通用芯片。这恐怕是要分清近期重点和中远期重点的。转贴于

技术路线:业内公认,预计再过10年,摩尔定律将失效,国际半导体界正在加紧新材料、新设计、新加工技术、新设备的研究。我们已经被动跟进了20年左右了。要实现追赶战略,是循现有硅技术跟进,还是走“拦截”道路(如放弃硅加工技术的追赶,从纳米技术开始)?主张放弃硅加工技术、专攻纳米级加工技术的声音在管理部门占有一定席位。但科学界很多人认为,21世纪以硅技术为中心的半导体加工技术仍占主流(见本文第二部分)。

投资体制:鉴于我国现有国家投资的先进生产线多数没有自己的控制权,是否还有必要以国家为主体投资3-5条先进生产线,包括砷化镓生产线?由于所需投资额要以百亿人民币计算,国家在“十五”期间似无此打算。但如果真是关系到全局利益,是否有必要再提出议论?等等,

实施半导体产业追赶战略的讨论

国家有关机构及业内已经就加快我国半导体产业发展制定了规划、政策,现在很多情况下是如何落实的问题。在这里,作者提出经过考虑认为是必要的措施:

需要国家层次的决心和指挥,制定积极可行的发展规划

首先要组织落实。成立代表国家意志的权威性微电子领导机构,集中负责,具体领导和协调国家组织的研发-生产全过程,重点扶持,克服地方部门分割的弊病,统筹合理使用资金和人才。

发展战略不能流于一般号召和思路,在充分论证的基础上,作好中长期微电子跨越发展的科学规划(具有前瞻性的科技规划、产业建设、市场扩张)。要提高决策水平和反应速度。半导体更新换代快,计划要求不断滚动调整,现有五年计划方法需要改进。

半导体产业与其他产业最明显不同的一个特点,是技术进步和产业应用具有相当清楚的路线图和时间表,因此,我们的微电子科技规划必须具有和产业发展规划相对应的切入点和结合点的时间表,以及明确的产业应用目标和相应的成果转化应用政策与机制。

要充分利用外商投资半导体热潮这一良机,加强引进消化,逐步提高产业的自主创新和自主发展能力。

制定切实可行的市场战略,从中低端产品起步。作为长期目标,则要有占领高端技术和产品的决心和意志,不应放弃。

要配合工艺技术的进步,自主开发关键设备、工具、仪器,最终打破在制造设备上受制于人的被动局面,建立起可以与世界前沿平等交流的技术支撑体系。

抓住当前市场机会,瞄准长期发展方向

我国目前科技水平还不具备占领高端产品的能力,宜从占领低端市场和新兴市场起步,有必要选定一组有市场前途、国际竞争压力较小的品种作为突破口。

当前微电子技术有三个清晰的发展方向:以存储器(DRAM)和微处理器(MPU)为代表的计算机芯片;以系统集成芯片为主流的专用电路(ASIC)各控制应用领域;信息传输技术。

我国目前宜立足于专用集成电路和通信市场寻求发展。尤其通讯领域还没有形成强垄断力量,国内市场潜力巨大,及时抓住民用砷化镓通讯器件及电路的机会,可占领一定的市场份额。在这两个领域积蓄起足够的力量之后,再向主流市场发起攻击,最终占领通用芯片市场。

专用集成电路因应用领域十分广泛,市场空间极大。但这也给企业寻找市场、开发适时产品又提出了严峻的挑战,对企业的营销管理和应变能力有着很高的要求。

依托我国市场优势,将半导体和整机生产结合起来。由国家组织专项重点工程,如高清晰度电视、移动通讯和PC机等,根据我国国情制定标准,建立整机业与芯片业的战略联盟。

发挥政府主导作用,贯彻产业政策

要全面提高我国半导体产业水平,将是一个大规模的系统工程,根据目前国内企业缺乏资金和技术实力的情况下,有必要通过政府作用,发掘和聚合全国有限的科技力量。由于半导体的高强度竞争性质,必须有国家的坚强领导,稍有松懈就会被淘汰。所以对政府的管理水平提出很高的要求。

·在发展规划指导下,促进半导体产业合理布局的形成。

我国半导体产业已经形成了三块主要聚集区。目前许多地方对投资半导体表示极大兴趣,纷纷提出要建设自己的“硅谷”。要协调各方面利益关系,打破部门地区封锁,促进资源的合理配置,防止各地争建“硅谷”、“新竹”,形成新的分散浪费。有必要加强调控,建设几个较集中的微电子园区。鼓励跨省投资,税收政策相应也要调整。

·组织部门地区单位间协作,官产学研联合,组织重点领域及关键设备的攻关,以及推动形成技术共享机制和企业策略联盟。

·鼓励建立区域行业协会,推动企业技术联盟的形成。

·切实落实国家已经颁布的对微电子类企业的各项优惠政策。落实增值税减免政策,提高折旧率、对进口成套设备提供特批关税和增值税豁免等。

放宽企业的融资条件,扩大风险投资基金,或政府直接建立半导体投资基金,或拨出定额的人民币及外汇贷款规模。由于投资所需资金额庞大,政府融资能力有限,要形成多渠道投融资的投资机制,允许半导体企业在国内外资本市场有限融资。给半导体生产企业优先上市权。

·适度市场保护政策。微电子作为国家的命脉,在幼稚阶段必须得到适当保护。要制定法规,涉及国家安全的电子信息系统、身份证IC卡,国家机关使用的电子系统,政府采购要优先使用国产芯片,抵制洋货(上海的公交、社保IC卡已经实行这一办法,应该全国实行),制定我国自己的技术协议及标准。

深化经济体制改革,营造公平竞争环境

处理好微电子战略性和竞争性的关系,正确发挥政府在产业发展中的作用,形成政府-企业间新型互动关系,营造一个“自主经营、自主创新、合理竞争、保障持续增长”的公开有序的市场环境和法制环境,培育灵活高效、能够激励个人和团队创造性的企业管理和激励机制。

鼓励民营、外资等各种经济形式的企业投资半导体。现半导体产业的民间投资出现良好势头,目前主要是民营芯片设计企业,也应鼓励各类经济实体投资半导体制造业,鼓励发展各种技术档次的专用集成电路生产线,占领广大的中低端半导体市场。如上海贝岭80%的产品与整机系统挂钩,效益良好;友旺原是民营Fabless公司,通过租赁国有半导体生产线获得效益,现开始投资新生产线。

促进国企改革与重组,按现代企业运行模式,在管理体制方面加大改革力度。落实企业管理、技术和市场骨干人员的待遇和期股权。

稳定队伍,大力吸引海外优秀人才

高科技人才是半导体产业的根本,要高度重视人才战略。我国十分有限的微电子人才不断外流,多有去无回,损失巨大。

从根本上说,人才战略是要建造一个有利于科技人员发挥创造力、有利于创业创新的制度环境和人文环境。要鼓励公平竞争,改革企业单位内人事制度分配制度。

要制订优惠政策,拿出足够强度的专项经费,稳定并充分发挥现有人才队伍的作用,充分重视海外华裔技术专家的作用,加强与海外技术团体的联系,大力吸引海外微电子高层技术和管理人才,采取特殊措施吸引国外微电子顶尖人才。

加强微电子科研与教育队伍的建设,重视系统设计人员、专用电路设计人员、工艺研究人员、企业管理、营销、项目管理人才的培养。高新科技园区要和人才战略结合起来。营造鼓励创业的政策环境,要突破现行体制的限制,尽快实行期股制度。

充实有关科研机构,从制度上保证半导体企业有条件留够研究开发费用。

几项具体措施的建议:

·促进业内合理分工,鼓励发展设计行业(无生产线公司)

集成电路(特别是专用电路)制造和设计是相辅相成的。IC专业生产厂和分散的无生产线(Fabless)设计公司并存与分工合作,成为世界微电子产业的通行模式。设计业投资小,与市场密切相关,只要有优惠的产业政策和好的人才政策,就可以很快发展壮大。如从专用集成电路方面突破,则大力发展设计行业就更有必要。

设计行业要以部级高档次需求和中低档次并举,建立技术共享机制。

从战略角度看,国家有必要在突破CPU和存储器为代表的核心技术方面,以及对占领市场、扶持产业发展有重大意义的高档产品设计方面(如通讯芯片),发挥组织作用。

要建立技术支援和技术共享环境。为适应系统芯片(SOC)的迅速发展,亟需组织建立部级的有知识产权的设计模块(IP)库,统一规范管理与服务,建立面向全国的调用机制,提高国内设计公司的整体水平。同时,也有必要通过区域性半导体行业协会,促进企业间技术联盟和建立技术共享机制。

·国家牵头,多方筹资,建设几条8英寸以上硅芯片生产线,并掌握其技术、市场和管理的主导权。同时以多元化模式在未来5年内建成6-10条大生产线,形成产业群。由于我国多年来全套引进和国内科研成果的积累,已经具备一定基础,不必再引进全套技术,而是引进单项关键工艺技术专利和有关高技术人才,自主创新,逐步建立自主知识产权。

·尽快建立国家微电子研发中心,加强新一代工艺、设备的研发和前瞻性科研

要摆脱在关键设备和核心工艺技术依赖外国,且一代代被动引进的局面,必须保留并大力加强自己的微电子科研能力,改变当前科研生产严重脱节、各部门间科研力量互相封闭的状态。如果不从现在开始努力加强自己的工艺技术后盾和关键设备研制能力,最终将无法在国际竞争舞台上立足。

参照美日欧行之有效的经验,国家有必要牵头建立微电子研发中心,集中有限的人力财力,把国内有优势的高效和研究所力量更好地组织起来,作为自主研发的基本骨干队伍,并为各部门科研机构。

要开发新一代核心工艺技术以及高档产品;依托现有生产线,购置部分先进设备,以最快的速度用自主科研成果提升生产线的技术,在开发新一代工艺的基础上开发关键设备。

要抓紧研发新一代关键设备。光刻机是限制我国微电子制造技术的瓶颈,要组织力量,集中投资,瞄准193纳米准分子激光投影光刻机为重点的专用设备中的关键技术并达到实用化。现有光学曝光技术已接近极限,国际上正在开展电子束和X射线光刻及新型刻蚀机的研究,我国有必要加大力量开展这一方面的技术攻关。(工程院)

同时,针对中长期我国微电子产业的需求,开展新一代系统芯片中新工艺、新器件和新结构电路的前瞻性、战略性研究,以及承担各研究机构的验证集成和中试任务,最终发展成自主知识产权的源泉。

有所为有所不为

所谓追赶战略,不会是直线式的发展,需要技术、经济实力的逐步积累。关键在于提供好的环境,促进产业生态的成长,坚持数年,积累能量,终会有爆发式的进步。

作为发展中国家,我们不可能在各个高科技领域样样去追赶,要“有所为有所不为”。但是,鉴于微电子在科技及高新技术产业中的中心地位,鉴于微电子技术对提高国民经济整体效益、增强综合国力的无可替代的的基础作用和国防意义,微电子技术/产业在“有所为”的领域中,应当和软件产业一样,是无可争议的首选。这是国家的根本性的战略问题。至于在“敌”强我弱的形势中如何保存发展自己,在一个历史时段中采取什么样的竞争策略和方式,则是战术问题。

所以,首要的问题,还是在“全球化”浪潮中,树立民族自尊心,敢于搏击国际竞争、充当强者的决心和魄力。

“创新是一个民族进步的灵魂,是国家兴旺的不竭动力。如果自己的创新能力上不去,一味依靠技术引进,就永远难以摆脱技术落后的局面”(95年江泽民同志在全国科技大会上的讲话)。

注释:

[1]《关于加快我国微电子产业发展的建议》,2000年。

参考文献

1《关于加快我国微电子产业发展的建议》,工程科技与发展战略报告集,2000年。

2《高技术发展报告》,中国科学院2000年。

3《中国高新技术产业发展报告》 科技部 1999年。

4《中国科技发展研究报告》 中国科技发展研究报告课题组 2000年。

5马宾:《电子信息产业的作用与发展》 电子工业出版社,1995年,1997年

6许居衍:《市场竞争下的战略工业——对微电子工业的一点认识》电子展望与决策 2000年第3期。

7马庆国:《我国微电子产业振兴之路》 中经网, 2000年。

8陈文化:《中国半导体产业的发展趋向》 陈文华1998年。

9陈文鸿、朱文晖:《台湾资讯产业发展及其对中国大陆的启示》 战略与管理,1997年。

10胡启立:《抓住机遇发展我国半导体产业》 中经网 2000年。

11曲维枝:《努力营造产业环境,加速发展我国集成电路产业》 中经网2000年。

12王阳元:《21世纪微电子技术发展的主要趋势和方向》 王阳元 中经网2001年。

13《两岸三地信息产业发展研讨会纪要(半导体篇)》 产业论坛,1998年第16期。

14林毅夫:《信息产业发展与比较优势原则》2001年。

半导体制造技术篇9

Foundational Technology of Energy-Saving & Emission Reduction ――Power Semiconductor Devices and IC’s

ZHANG Bo

(State key Laboratory of Electronic Thin Films and Integrated Devices,

University of Electronic Science and Technology of China, Chengdu 610054,China)

Abstract: Power semiconductor devices and IC’s, an important branch of semiconductor technology, are a key and basic technology for energy-saving and emission reduction with the wide spread use of electronics in the consumer, industrial and military sectors. The development,challengeand market of power semiconductor devices are discussed in this paper. The future perspectives and key development areas of power semiconductor devices and IC’s in China are also described.

Keywords: Energy-saving; Emission reduction; Power semiconductor device

1引言

功率半导体芯片包括功率二极管、功率开关器件与功率集成电路。近年来,随着功率MOS技术的迅速发展,功率半导体的应用范围已从传统的工业控制扩展到4C产业(计算机、通信、消费类电子产品和汽车电子),渗透到国民经济与国防建设的各个领域。

功率半导体器件是进行电能处理的半导体产品。在可预见的将来,电能将一直是人类消耗的最大能源,从手机、电视、洗衣机、到高速列车,均离不开电能。无论是水电、核电、火电还是风电,甚至各种电池提供的化学电能,大部分均无法直接使用,75%以上的电能应用需由功率半导体进行变换以后才能供设备使用。每个电子产品均离不开功率半导体器件。使用功率半导体的目的是使用电能更高效、更节能、更环保并给使用者提供更多的方便。如通过变频来调速,使变频空调在节能70%的同时,更安静、让人更舒适。手机的功能越来越多,同时更加轻巧,很大程度上得益于超大规模集成电路的发展和功率半导体的进步。同时,人们希望一次充电后有更长的使用时间,在电池没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。正是由于功率半导体能将 ‘粗电’变为‘精电’,因此它是节能减排的基础技术和核心技术。

随着绿色环保在国际上的确立与推进,功率半导体的发展应用前景更加广阔。据国际权威机构预测,2011年功率半导体在中国市场的销售量将占全球的50%,接近200亿美元。与微处理器、存储器等数字集成半导体相比,功率半导体不追求特征尺寸的快速缩小,它的产品寿命周期可为几年甚至十几年。同时,功率半导体也不要求最先进的生产工艺,其生产线成本远低于Moore定律制约下的超大规模集成电路。因此,功率半导体非常适合我国的产业现状以及我国能源紧张和构建和谐社会的国情。

目前,国内功率半导体高端产品与国际大公司相比还存在很大差距,高端器件的进口替代才刚刚开始。因此国内半导体企业在提升工艺水平的同时,应不断提高国内功率半导体技术的创新力度和产品性能,以满足高端市场的需求,促进功率半导体市场的健康发展以及国内电子信息产业的技术进步与产业升级。

2需求分析

消费电子、工业控制、照明等传统领域市场需求的稳定增长,以及汽车电子产品逐渐增加,通信和电子玩具市场的火爆,都使功率半导体市场继续保持稳步的增长速度。同时,高效节能、保护环境已成为当今全世界的共识,提高效率与减小待机功耗已成为消费电子与家电产品的两个非常关键的指标。中国目前已经开始针对某些产品提出能效要求,对冰箱、空调、洗衣机等产品进行了能效标识,这些提高能效的要求又成为功率半导体迅速发展的另一个重要驱动力。

根据CCID的统计,从2004年到2008年,中国功率器件市场复合增长率达到17.0%,2008年中国功率器件市场规模达到828亿元,在严重的金融危机下仍然同比增长7.8%,预计未来几年的增长将保持在10%左右。随着整机产品更加重视节能、高效,电源管理IC、功率驱动IC、MOSFET和IGBT仍是未来功率半导体市场中的发展亮点。

在政策方面,国家中长期重大发展规划、重大科技专项、国家863计划、973计划、国家自然科学基金等都明确提出要加快集成电路、软件、关键元器件等重点产业的发展,在国家刚刚出台的“电子信息产业调整和振兴规划”中,强调着重从集成电路和新型元器件技术的基础研究方面开展系统深入的研究,为我国信息产业的跨越式发展奠定坚实的理论和技术基础。在国家中长期科学和技术发展规划纲要(2006-2020年)中明确提出,功率器件及模块技术、半导体功率器件技术、电力电子技术是未来5~15年15个重点领域发展的重点技术。在目前国家重大科技专项的“核心电子器件、高端通用芯片及基础软件产品”和“极大规模集成电路制造装备及成套工艺”两个专项中,也将大屏幕PDP驱动集成电路产业化、数字辅助功率集成技术研究、0.13微米SOI通用CMOS与高压工艺开发与产业化等功率半导体相关课题列入支持计划。在国家973计划和国家自然科学基金重点和重大项目中,属于功率半导体领域的宽禁带半导体材料与器件的基础研究一直是受到大力支持的研究方向。

总体而言,从功率半导体的市场需求和国家政策分析来看,我国功率半导体的发展呈现以下三个方面的趋势:① 硅基功率器件以实现高端产品的产业化为发展目标;② 高压集成工艺和功率IC以应用研究为主导方向;③ 第三代宽禁带半导体功率器件、系统功率集成芯片PSoC以基础研究为重点。

3功率半导体技术发展趋势

四十多年来,半导体技术沿着“摩尔定律”的路线不断缩小芯片特征尺寸。然而目前国际半导体技术已经发展到一个瓶颈:随着线宽的越来越小,制造成本成指数上升;而且随着线宽接近纳米尺度,量子效应越来越明显,同时芯片的泄漏电流也越来越大。因此半导体技术的发展必须考虑“后摩尔时代”问题,2005年国际半导体技术发展路线图(The International Technology Roadmap for Semiconductors,ITRS)就提出了另外一条半导体技术发展路线,即“More than Moore-超摩尔定律”, 如图1所示。

从路线图可以清楚看到,未来半导体技术主要沿着“More Moore”与“More Than Moore”两个维度的方向不断发展,同时又交叉融合,最终以3D集成的形式得到价值优先的多功能集成系统。“More Moore”是指继续遵循Moore定律,芯片特征尺寸不断缩小(Scaling down),以满足处理器和内存对增加性能/容量和降低价格的要求。这种缩小除了包括在晶圆水平和垂直方向上的几何特征尺寸的继续缩小,还包括与此关联的三维结构改善等非几何学工艺技术和新材料的运用等。而“More Than Moore”强调功能多样化,更注重所做器件除了运算和存储之外的新功能,如各种传感功能、通讯功能、高压功能等,以给最终用户提供更多的附加价值。以价值优先和功能多样化为目的的“More Than Moore”不强调缩小特征尺寸,但注重系统集成,在增加功能的同时,将系统组件级向更小型、更可靠的封装级(SiP)或芯片级(SoC)转移。日本Rohm公司提出的“Si+α”集成技术即是“More Than Moore”思想的一种实现方式,它是以硅材料为基础的,跨领域(包括电子、光学、力学、热学、生物、医药等等)的复合型集成技术,其核心理念是电性能(“Si”)与光、力、热、磁、生化(“α”)性能的组合,包括:显示器/发光体(LCD、EL、LD、LED)+LSI的组合感光体、(PD、CCD、CMOS传感器)+LSI的形式、MEMS/生化(传感器、传动器)+LSI等的结合。

在功能多样化的“More Than Moore”领域,功率半导体是其重要组成部分。虽然在不同应用领域,对功率半导体技术的要求有所不同,但从其发展趋势来看,功率半导体技术的目标始终是提高功率集成密度,减少功率损耗。因此功率半导体技术研发的重点是围绕提高效率、增加功能、减小体积,不断发展新的器件理论和结构,促进各种新型器件的发明和应用。下面我们对功率半导体技术的功率半导体器件、功率集成电路和功率系统集成三个方面的发展趋势进行梳理和分析。

1) 功率半导体(分立)器件

功率半导体(分立)器件国内也称为电力电子器件,包括:功率二极管、功率MOSFET以及IGBT等。为了使现有功率半导体(分立)器件能适应市场需求的快速变化,需要大量融合超大规模集成电路制造工艺,不断改进材料性能或开发新的应用材料、继续优化完善结构设计、制造工艺和封装技术等,提高器件功率集成密度,减少功率损耗。目前,国际上在功率半导体(分立)器件领域的热点研究方向主要为器件新结构和器件新材料。

在器件新结构方面,超结(Super-Junction)概念的提出,打破了传统功率MOS器件理论极限,即击穿电压与比导通电阻2.5次方关系,被国际上誉为“功率MOS器件领域里程碑”。超结结构已经成为半导体功率器件发展的一个重要方向,目前国际上多家半导体厂商,如Infineon、IR、Toshiba等都在采用该技术生产低功耗MOS器件。对于IGBT器件,其功率损耗和结构发展如图2所示。从图中可以看到,基于薄片加工工艺的场阻(Field Stop)结构是高压IGBT的主流工艺;相比于平面结结构(Planar),槽栅结构(Trench)IGBT能够获得更好的器件优值,同时通过IGBT的版图和栅极优化,还可以进一步提高器件的抗雪崩能力、减小终端电容和抑制EMI特性。

功率半导体(分立)器件发展的另外一个重要方向是新材料技术,如以SiC和GaN为代表的第三代宽禁带半导体材料。宽禁带半导体材料具有禁带宽度大、临界击穿电场强度高、饱和电子漂移速度高、抗辐射能力强等特点,是高压、高温、高频、大功率应用场合下极为理想的半导体材料。宽禁带半导体SiC和GaN功率器件技术是一项战略性的高新技术,具有极其重要的军用和民用价值,因此得到国内外众多半导体公司和研究结构的广泛关注和深入研究,成为国际上新材料、微电子和光电子领域的研究热点。

2) 功率集成电路(PIC)

功率集成电路是指将高压功率器件与信号处理系统及接口电路、保护电路、检测诊断电路等集成在同一芯片的集成电路,又称为智能功率集成电路(SPIC)。智能功率集成作为现代功率电子技术的核心技术之一,随着微电子技术的发展,一方面向高压高功率集成(包括基于单晶材料、外延材料和SOI材料的高压集成技术)发展,同时也向集成更多的控制(包括时序逻辑、DSP及其固化算法等)和保护电路的高密度功率集成发展,以实现功能更强的智能控制能力。

3)功率系统集成

功率系统集成技术在向低功耗高密度功率集成技术发展的同时,也逐渐进入传统SoC和CPU、DSP等领域。目前,SoC的低功耗问题已经成为制约其发展的瓶颈,研发新的功率集成技术是解决系统低功耗的重要途径,同时,随着线宽的进一步缩小,内核电压降低,对电源系统提出了更高要求。为了在标准CMOS工艺下实现包括功率管理的低功耗SoC,功率管理单元需要借助数字辅助的手段,即数字辅助功率集成技术(Digitally Assisted Power Integration,DAPI)。DAPI技术是近几年数字辅助模拟设计在功率集成方面的深化与应用,即采用更多数字的手段,辅助常规的模拟范畴的集成电路在更小线宽的先进工艺线上得到更好性能的电路。

4我国功率半导体发展现状、

问题及发展建议

在中国半导体行业中,功率半导体器件的作用长期以来都没有引起人们足够的重视,发展速度滞后于大规模集成电路。国内功率半导体器件厂商的主要产品还是以硅基二极管、三极管和晶闸管为主,目前国际功率半导体器件的主流产品功率MOS器件只是近年才有所涉及,且最先进的超结低功耗功率MOS尚无法生产,另一主流产品IGBT尚处于研发阶段。宽禁带半导体器件主要以微波功率器件(SiC MESFET和GaN HEMT)为主,尚未有针对市场应用的宽禁带半导体功率器件(电力电子器件)的产品研发。目前市场热点的高压BCD集成技术虽然引起了从功率半导体器件IDM厂家到集成电路代工厂的高度关注,但目前尚未有成熟稳定的高压BCD工艺平台可供高性能智能功率集成电路的批量生产。

由于高性能功率半导体器件技术含量高,制造难度大,目前国内生产技术与国外先进水平存在较大差距,很多中高端功率半导体器件必须依赖进口。技术差距主要表现在:(1)产品落后。国外以功率MOS为代表的新型功率半导体器件已经占据主要市场,而国内功率器件生产还以传统双极器件为主,功率MOS以平面工艺的VDMOS为主,缺乏高元胞密度、低功耗、高器件优值的功率MOS器件产品,国际上热门的以超结(Super junction)为基础的低功耗MOS器件国内尚处于研发阶段;IGBT只能研发基于穿通型PT工艺的600V产品或者NPT型1200V低端产品,远远落后于国际水平。(2)工艺技术水平较低。功率半导体分立器件的生产,国内大部分厂商仍采用IDM方式,采用自身微米级工艺线,主流技术水平和国际水平相差至少2代以上,产品以中低端为主。但近年来随着集成电路的迅速发展,国内半导体工艺条件已大大改善,已拥有进行一些高端产品如槽栅功率MOS、IGBT甚至超结器件的生产能力。(3)高端人才资源匮乏,尤其是高端设计人才和工艺开发人才非常缺乏。现有研发人员的设计水平有待提高,特别是具有国际化视野的高端设计人才非常缺乏。(4)国内市场前十大厂商中无一本土厂商,半导体功率器件产业仍处在国际产业链分工的中低端,对于附加值高的产品如IGBT、AC-DC功率集成电路,现阶段国内仅有封装能力,不但附加值极低,还形成了持续的技术依赖。

笔者认为,功率半导体是最适合中国发展的半导体产业,相对于超大规模集成电路而言,其资金投入较低,产品周期较长,市场关联度更高,且还没有形成如英特尔和三星那样的垄断企业。但中国功率半导体的发展必须改变目前封装强于芯片、芯片强于设计的局面,应大力发展设计技术,以市场带动设计、以设计促进芯片,以芯片壮大产业。

功率半导体芯片不同于以数字集成电路为基础的超大规模集成电路,功率半导体芯片属于模拟器件的范畴。功率器件和功率集成电路的设计与工艺制造密切相关,因此国际上著名的功率器件和功率集成电路提供商均属于IDM企业。但随着代工线的迅速发展,国内如华虹NEC、成芯8英寸线、无锡华润上华6英寸线均提供功率半导体器件的代工服务,并正积极开发高压功率集成电路制造平台。功率半导体生产企业也应借鉴集成电路设计公司的成功经验,成立独立的功率半导体器件设计公司,充分利用代工线先进的制造手段,依托自身的销售网络,生产高附加值的高端功率半导体器件产品。

设计弱于芯片的局面起源于设计力量的薄弱。虽然国内一些功率半导体生产企业新近建设了6英寸功率半导体器件生产线,但生产能力还远未达到设计要求。笔者认为其中的关键是技术人员特别是具有国际视野和丰富生产经验的高级人才的不足。企业应加强技术人才的培养与引进,积极开展产学研协作,以雄厚的技术实力支撑企业的发展。

我国功率半导体行业的发展最终还应依靠功率半导体IDM企业,在目前自身生产条件落后于国际先进水平的状况下,IDM企业不能局限于自身产品线的生产能力,应充分依托国内功率半导体器件庞大的市场空间,用技术去开拓市场,逐渐从替代产品向产品创新、牵引整机发展转变;大力发展设计能力,一方面依靠自身工艺线进行生产,加强技术改造和具有自身工艺特色的产品创新,另一方面借用先进代工线的生产能力,壮大自身产品线,加速企业发展。

5结束语

总之,功率半导体技术自新型功率MOS器件问世以来得到长足进展,已深入到工业生产与人民生活的各个方面。与国外相比,我国在功率半导体技术方面的研究存在着一定差距,但同时日益走向成熟。总体而言,功率半导体的趋势正朝着提高效率、多功能、集成化以及智能化、系统化方向发展;伴随制造技术已进入深亚微米时代,新结构、新工艺硅基功率器件正不断出现并逼近硅材料的理论极限,以SiC和GaN为代表的宽禁带半导体器件也正不断走向成熟。

半导体制造技术篇10

中华民族有着伟大的创新竞争能力。我国两弹一星的成功是一个辉煌例证,台湾半导体的崛起也是一个例证。但20多年来,由于外部内部的种种原因,我们半导体产业的这种创造力被遏制而得不到发挥,从而在国际竞争中长期处于下风,事实上已被“锁定”在国际半导体产业链条的低端。我们面临被国际水平越拉越远的现实威胁。

按“比较优势论”,这是客观经济规律所决定的必然结果,不值得大惊小怪,更没有必要勉强“赶超”。中国面临的发展问题太多,高科技我们玩不起;老老实实遵照国际分工格局,当好小伙计也能发家致富。

我们不能指望近期就能赶上或超过美国、日本今天的微电子科技水平。中学生一般是没有实力考博士的。但这里讨论的,是我国微电子领域的“追赶”问题。逆水行舟,不进则退。所谓追赶,就是以自己现有实力为基础,努力追踪国际微电子进步潮流,力图缩小差距(至少不要再扩大),建设起自己能够控制的技术/产业体系。当今的“全球化”,是经济、科技的世界性战场,一个大国,在电子领域中连印度、新加坡都赶不上,终有一天难免被开除“球籍”。所以:

我国加速发展半导体产业的必要性——基于国家总体战略的需要;

加速发展半导体产业的可能性——台湾人也是中国人,他们能成功,我们也不孬。况且海峡两岸的半导体经济圈,正在形成。

现实的追赶战略,基本的原则还是坚持开放政策,在力求高水平的引进中,走出“模仿-创新”的发展道路。

实现追赶战略的基本条件

通过对韩国、台湾和我国大陆半导体发展经验的研究可知,尽管但后进国家(地区)面临的外部环境及条件不同,发展半导体产业的路径和机制各有不同,但要有效实现追赶战略,必须克服资金、技术(人才)、管理和市场这些共同障碍。由此,以下几个要素是必不可少的:

·政府的主导作用。对微电子的重视和实现追赶的决心,以及积极进取而合理的规划和政策,至关重要。后进国家财力有限,科研实力弱,仅靠民间企业和科研机构层次的决策,门坎过高,无力承受风险。政府的支持不仅在财力方面,也有必要在技术路线的层面参与战略规划。

·明确的技术进步目标和路线。一般来说,高强度的引进消化吸收是缩短技术差距的基本途径。人才的国际化竞争是电子行业的突出特点,需要在创业条件、企业制度、收入水平等方面实行“综合治理”,创造足以吸引人才的环境。

·进入半导体制造业,意味着大规模的风险投资,需要灵活的筹资机制和融资环境。

·要求政府运作和企业经营管理的灵活高效。在某种意义上可以说,后进国家挤进“微电子俱乐部”的竞争,是经济运行效率的竞争。

要做到这一切,决非单项措施可以奏效。需要国家意志和组织作用,需要完整的发展战略和政策,更需要各层次组织的高度经济活力。由于半导体产业的全球高度市场性和战略性,需要政府、企业功能的正确定位,以及高水平的管理。

“未来10年将是我国微电子发展的关键时期。目标是通过10年左右的努力:掌握集成电路设计、生产的关键技术和自主知识产权,大大缩短生产工艺技术水平与世界的差距,提高国内市场的自给率并积极开拓国际市场,满足国防和信息安全的需求;形成能够良性循环的科研生产体系。”[1]

若干需要在业内讨论清楚的问题

但是,由于微电子科学技术的复杂性,我们的半导体产业的发展战略,还有许多根本性的、基于专业技术判断基础上的问题,首先需要在业内讨论清楚,试举出如下几项:

市场定位问题:日本在起步时期曾把工业控制和消费类芯片作为主攻方向,韩国则把DRAM芯片的设计、制造工艺作为突破口。今天世界市场的芯片,按大类可分为消费类IC、投资类IC、通讯类IC;投资类IC又可分为专用芯片和通用芯片(DRAM/CPU)两大类。我们要自主发展半导体科技,重点主攻方向在哪里?业内的意见,多数集中在专用芯片和通信类芯片(通信产品是近年来发展最快的市场),特别是以砷化镓为基片的通讯类集成电路,我国已有一定基础,和国外水平相差不太远,是一个很好的切入点。另有相当多的人主张,不能放弃占市场2/3以上的通用芯片。这恐怕是要分清近期重点和中远期重点的。

技术路线:业内公认,预计再过10年,摩尔定律将失效,国际半导体界正在加紧新材料、新设计、新加工技术、新设备的研究。我们已经被动跟进了20年左右了。要实现追赶战略,是循现有硅技术跟进,还是走“拦截”道路(如放弃硅加工技术的追赶,从纳米技术开始)?主张放弃硅加工技术、专攻纳米级加工技术的声音在管理部门占有一定席位。但科学界很多人认为,21世纪以硅技术为中心的半导体加工技术仍占主流(见本文第二部分)。

投资体制:鉴于我国现有国家投资的先进生产线多数没有自己的控制权,是否还有必要以国家为主体投资3-5条先进生产线,包括砷化镓生产线?由于所需投资额要以百亿人民币计算,国家在“十五”期间似无此打算。但如果真是关系到全局利益,是否有必要再提出议论?等等,

实施半导体产业追赶战略的讨论

国家有关机构及业内已经就加快我国半导体产业发展制定了规划、政策,现在很多情况下是如何落实的问题。在这里,作者提出经过考虑认为是必要的措施:

需要国家层次的决心和指挥,制定积极可行的发展规划

首先要组织落实。成立代表国家意志的权威性微电子领导机构,集中负责,具体领导和协调国家组织的研发-生产全过程,重点扶持,克服地方部门分割的弊病,统筹合理使用资金和人才。

发展战略不能流于一般号召和思路,在充分论证的基础上,作好中长期微电子跨越发展的科学规划(具有前瞻性的科技规划、产业建设、市场扩张)。要提高决策水平和反应速度。半导体更新换代快,计划要求不断滚动调整,现有五年计划方法需要改进。

半导体产业与其他产业最明显不同的一个特点,是技术进步和产业应用具有相当清楚的路线图和时间表,因此,我们的微电子科技规划必须具有和产业发展规划相对应的切入点和结合点的时间表,以及明确的产业应用目标和相应的成果转化应用政策与机制。

要充分利用外商投资半导体热潮这一良机,加强引进消化,逐步提高产业的自主创新和自主发展能力。

制定切实可行的市场战略,从中低端产品起步。作为长期目标,则要有占领高端技术和产品的决心和意志,不应放弃。

要配合工艺技术的进步,自主开发关键设备、工具、仪器,最终打破在制造设备上受制于人的被动局面,建立起可以与世界前沿平等交流的技术支撑体系。

抓住当前市场机会,瞄准长期发展方向

我国目前科技水平还不具备占领高端产品的能力,宜从占领低端市场和新兴市场起步,有必要选定一组有市场前途、国际竞争压力较小的品种作为突破口。

当前微电子技术有三个清晰的发展方向:以存储器(DRAM)和微处理器(MPU)为代表的计算机芯片;以系统集成芯片为主流的专用电路(ASIC)各控制应用领域;信息传输技术。

我国目前宜立足于专用集成电路和通信市场寻求发展。尤其通讯领域还没有形成强垄断力量,国内市场潜力巨大,及时抓住民用砷化镓通讯器件及电路的机会,可占领一定的市场份额。在这两个领域积蓄起足够的力量之后,再向主流市场发起攻击,最终占领通用芯片市场。

专用集成电路因应用领域十分广泛,市场空间极大。但这也给企业寻找市场、开发适时产品又提出了严峻的挑战,对企业的营销管理和应变能力有着很高的要求。

依托我国市场优势,将半导体和整机生产结合起来。由国家组织专项重点工程,如高清晰度电视、移动通讯和PC机等,根据我国国情制定标准,建立整机业与芯片业的战略联盟。

发挥政府主导作用,贯彻产业政策

要全面提高我国半导体产业水平,将是一个大规模的系统工程,根据目前国内企业缺乏资金和技术实力的情况下,有必要通过政府作用,发掘和聚合全国有限的科技力量。由于半导体的高强度竞争性质,必须有国家的坚强领导,稍有松懈就会被淘汰。所以对政府的管理水平提出很高的要求。

·在发展规划指导下,促进半导体产业合理布局的形成。

我国半导体产业已经形成了三块主要聚集区。目前许多地方对投资半导体表示极大兴趣,纷纷提出要建设自己的“硅谷”。要协调各方面利益关系,打破部门地区封锁,促进资源的合理配置,防止各地争建“硅谷”、“新竹”,形成新的分散浪费。有必要加强调控,建设几个较集中的微电子园区。鼓励跨省投资,税收政策相应也要调整。

·组织部门地区单位间协作,官产学研联合,组织重点领域及关键设备的攻关,以及推动形成技术共享机制和企业策略联盟。

·鼓励建立区域行业协会,推动企业技术联盟的形成。

·切实落实国家已经颁布的对微电子类企业的各项优惠政策。落实增值税减免政策,提高折旧率、对进口成套设备提供特批关税和增值税豁免等。

放宽企业的融资条件,扩大风险投资基金,或政府直接建立半导体投资基金,或拨出定额的人民币及外汇贷款规模。由于投资所需资金额庞大,政府融资能力有限,要形成多渠道投融资的投资机制,允许半导体企业在国内外资本市场有限融资。给半导体生产企业优先上市权。

·适度市场保护政策。微电子作为国家的命脉,在幼稚阶段必须得到适当保护。要制定法规,涉及国家安全的电子信息系统、身份证IC卡,国家机关使用的电子系统,政府采购要优先使用国产芯片,抵制洋货(上海的公交、社保IC卡已经实行这一办法,应该全国实行),制定我国自己的技术协议及标准。

深化经济体制改革,营造公平竞争环境

处理好微电子战略性和竞争性的关系,正确发挥政府在产业发展中的作用,形成政府-企业间新型互动关系,营造一个“自主经营、自主创新、合理竞争、保障持续增长”的公开有序的市场环境和法制环境,培育灵活高效、能够激励个人和团队创造性的企业管理和激励机制。

鼓励民营、外资等各种经济形式的企业投资半导体。现半导体产业的民间投资出现良好势头,目前主要是民营芯片设计企业,也应鼓励各类经济实体投资半导体制造业,鼓励发展各种技术档次的专用集成电路生产线,占领广大的中低端半导体市场。如上海贝岭80%的产品与整机系统挂钩,效益良好;友旺原是民营Fabless公司,通过租赁国有半导体生产线获得效益,现开始投资新生产线。

促进国企改革与重组,按现代企业运行模式,在管理体制方面加大改革力度。落实企业管理、技术和市场骨干人员的待遇和期股权。

稳定队伍,大力吸引海外优秀人才

高科技人才是半导体产业的根本,要高度重视人才战略。我国十分有限的微电子人才不断外流,多有去无回,损失巨大。

从根本上说,人才战略是要建造一个有利于科技人员发挥创造力、有利于创业创新的制度环境和人文环境。要鼓励公平竞争,改革企业单位内人事制度分配制度。

要制订优惠政策,拿出足够强度的专项经费,稳定并充分发挥现有人才队伍的作用,充分重视海外华裔技术专家的作用,加强与海外技术团体的联系,大力吸引海外微电子高层技术和管理人才,采取特殊措施吸引国外微电子顶尖人才。

加强微电子科研与教育队伍的建设,重视系统设计人员、专用电路设计人员、工艺研究人员、企业管理、营销、项目管理人才的培养。高新科技园区要和人才战略结合起来。营造鼓励创业的政策环境,要突破现行体制的限制,尽快实行期股制度。

充实有关科研机构,从制度上保证半导体企业有条件留够研究开发费用。

几项具体措施的建议:

·促进业内合理分工,鼓励发展设计行业(无生产线公司)

集成电路(特别是专用电路)制造和设计是相辅相成的。IC专业生产厂和分散的无生产线(Fabless)设计公司并存与分工合作,成为世界微电子产业的通行模式。设计业投资小,与市场密切相关,只要有优惠的产业政策和好的人才政策,就可以很快发展壮大。如从专用集成电路方面突破,则大力发展设计行业就更有必要。

设计行业要以部级高档次需求和中低档次并举,建立技术共享机制。

从战略角度看,国家有必要在突破CPU和存储器为代表的核心技术方面,以及对占领市场、扶持产业发展有重大意义的高档产品设计方面(如通讯芯片),发挥组织作用。

要建立技术支援和技术共享环境。为适应系统芯片(SOC)的迅速发展,亟需组织建立部级的有知识产权的设计模块(IP)库,统一规范管理与服务,建立面向全国的调用机制,提高国内设计公司的整体水平。同时,也有必要通过区域性半导体行业协会,促进企业间技术联盟和建立技术共享机制。

·国家牵头,多方筹资,建设几条8英寸以上硅芯片生产线,并掌握其技术、市场和管理的主导权。同时以多元化模式在未来5年内建成6-10条大生产线,形成产业群。由于我国多年来全套引进和国内科研成果的积累,已经具备一定基础,不必再引进全套技术,而是引进单项关键工艺技术专利和有关高技术人才,自主创新,逐步建立自主知识产权。

·尽快建立国家微电子研发中心,加强新一代工艺、设备的研发和前瞻性科研

要摆脱在关键设备和核心工艺技术依赖外国,且一代代被动引进的局面,必须保留并大力加强自己的微电子科研能力,改变当前科研生产严重脱节、各部门间科研力量互相封闭的状态。如果不从现在开始努力加强自己的工艺技术后盾和关键设备研制能力,最终将无法在国际竞争舞台上立足。

参照美日欧行之有效的经验,国家有必要牵头建立微电子研发中心,集中有限的人力财力,把国内有优势的高效和研究所力量更好地组织起来,作为自主研发的基本骨干队伍,并为各部门科研机构。

要开发新一代核心工艺技术以及高档产品;依托现有生产线,购置部分先进设备,以最快的速度用自主科研成果提升生产线的技术,在开发新一代工艺的基础上开发关键设备。

要抓紧研发新一代关键设备。光刻机是限制我国微电子制造技术的瓶颈,要组织力量,集中投资,瞄准193纳米准分子激光投影光刻机为重点的专用设备中的关键技术并达到实用化。现有光学曝光技术已接近极限,国际上正在开展电子束和X射线光刻及新型刻蚀机的研究,我国有必要加大力量开展这一方面的技术攻关。(工程院)

同时,针对中长期我国微电子产业的需求,开展新一代系统芯片中新工艺、新器件和新结构电路的前瞻性、战略性研究,以及承担各研究机构的验证集成和中试任务,最终发展成自主知识产权的源泉。

有所为有所不为

所谓追赶战略,不会是直线式的发展,需要技术、经济实力的逐步积累。关键在于提供好的环境,促进产业生态的成长,坚持数年,积累能量,终会有爆发式的进步。

作为发展中国家,我们不可能在各个高科技领域样样去追赶,要“有所为有所不为”。但是,鉴于微电子在科技及高新技术产业中的中心地位,鉴于微电子技术对提高国民经济整体效益、增强综合国力的无可替代的的基础作用和国防意义,微电子技术/产业在“有所为”的领域中,应当和软件产业一样,是无可争议的首选。这是国家的根本性的战略问题。至于在“敌”强我弱的形势中如何保存发展自己,在一个历史时段中采取什么样的竞争策略和方式,则是战术问题。

所以,首要的问题,还是在“全球化”浪潮中,树立民族自尊心,敢于搏击国际竞争、充当强者的决心和魄力。

“创新是一个民族进步的灵魂,是国家兴旺的不竭动力。如果自己的创新能力上不去,一味依靠技术引进,就永远难以摆脱技术落后的局面”(95年江泽民同志在全国科技大会上的讲话)。

注释:

[1]《关于加快我国微电子产业发展的建议》,2000年。

参考文献:

1《关于加快我国微电子产业发展的建议》,工程科技与发展战略报告集,2000年。

2《高技术发展报告》,中国科学院2000年。

3《中国高新技术产业发展报告》 科技部 1999年。

4《中国科技发展研究报告》 中国科技发展研究报告课题组 2000年。

5马宾:《电子信息产业的作用与发展》 电子工业出版社,1995年,1997年

6许居衍:《市场竞争下的战略工业——对微电子工业的一点认识》电子展望与决策 2000年第3期。

7马庆国:《我国微电子产业振兴之路》 中经网, 2000年。

8陈文化:《中国半导体产业的发展趋向》 陈文华1998年。

9陈文鸿、朱文晖:《台湾资讯产业发展及其对中国大陆的启示》 战略与管理,1997年。

10胡启立:《抓住机遇发展我国半导体产业》 中经网 2000年。

11曲维枝:《努力营造产业环境,加速发展我国集成电路产业》 中经网2000年。

12王阳元:《21世纪微电子技术发展的主要趋势和方向》 王阳元 中经网2001年。

13《两岸三地信息产业发展研讨会纪要(半导体篇)》 产业论坛,1998年第16期。

14林毅夫:《信息产业发展与比较优势原则》2001年。

半导体制造技术篇11

我国历年对半导体产业的总投入约260亿元人民币(含126亿元外资)。现有集成电路生产技术主要来源于国外技术转让,其中相当部分集成电路前道工序和封装厂是与美、日、韩公司合资设立。其中三资企业的销售额约占总销售额的88%(1998年)。民营的集成电路企业开始萌芽。

设计:集成电路的设计汇集电路、器件、物理、工艺、算法、系统等不同技术领域的背景,是最尖端的技术之一。我国目前以各种形态存在的集成电路设计公司、设计中心等约80个,工程师队伍还不足3000人。2000年,集成电路设计业销售额超过300万元的企业有20多家,其中超过1000万的约10家。超过1亿的4家(华大、矽科、大唐微电子和士兰公司)。总销售额10亿元左右。年平均设计300种左右(其中不到200种形成批量)。

现主要利用外商提供的EDA工具,运用门阵列、标准单元,全定制等多种方法进行设计。并开始采用基于机构级的高层次设计技术、VHDL,和可测性设计技术等先进设计方法。设计最高水平为0.25微米,700万元件,3层金属布线,主线设计线宽0.8-1.5微米,双层布线。[1]目前,我国在通信类集成电路设计有一定的突破。自行设计开发的熊猫2000系列CAD软件系统已开发成功并正在推广。这个系统的开发成功,使我国继美国、欧共体、日本之后,第四个成为能够开发大型的集成电路设计软件系统的国家。目前逻辑电路、数字电路100万门左右的产品已可以用此设计。

前工序制造:1990年代以来,国家通过投资实施“908”、“909”工程,形成了国家控股的骨干生产企业。其中,中日合资、中方控股的华虹NEC(8英寸硅片,0.35-0.25微米,月投片2万片),总投资10亿美元,以18个月的国际标准速度建成,99年9月试投片,现已达产。该工程使我国芯片制造进入世界主流技术水平,增强了国内外产业界对我国半导体产业能力的信心。

在前8家生产企业中,三资企业占6家,总投资7.15亿美元,外方4.69亿美元,占66%.目前芯片生产技术多为6英寸硅片、0.8-1.5微米特征尺寸。7个主干企业生产线的月投片量已超过17万片,其中6~8英寸圆片的产量占33%以上。

目前这些企业生产经营情况良好。2000年,七个骨干企业总销售额达到56亿元人民币,利润7.5亿元,利润率达到13%.同年全国电子信息产业总销售额5800亿元人民币,利润380亿,利润率6.5%.

封装:由于中国是目前集成电路消费大国,同时国内劳动力、土地资源价格相对便宜,许多国外大型集成电路生产企业在中国建立了合资或独资集成电路封装厂。

国内现有封装企业规模都不大,而且所用芯片、框架、模塑料等也主要靠进口,因此大量的集成电路封装产品也只是简单加工,技术上与国际封装水平相差较远。主要以DIP为主,SOP、SOT、BGA、PPGA等封装方式国内基本属于空白。

集成电路封装业在整个产业链中技术含量最低,投入也相对较少(与芯片制造之比一般为10:1)。我国目前集成电路年封装量,仅占世界当年产量的1.8%~2.5%,封装的集成电路仅占年进口或消耗量的13%~14.4%,即中国所用85%以上的集成电路都是成品进口。

2000年,我国集成电路封装业的销售收入超过130亿元,其中销售收入超过1亿元的14家,全年封装电路近45亿块,其中年封装量超过5亿块的5家。

材料、设备、仪器:围绕6英寸芯片生产线使用的主要材料(硅单晶、塑封料、金丝、化学试剂、特种气体等)、部分设备(单晶炉、外延炉、扩散炉、CVD、蒸发台、匀胶显影设备、注塑机等)、仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)、部分仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)国内已能提供。

芯片制造设备,我国只具备部分浅层次设计制造能力,如电子45所已有能力制造0.5微米光刻机等。

半导体分立器件:2000年,全年分立器件的销售额60亿,产量341亿只。

供需情况和近期发展形势

20世纪90年代,我国集成电路产业呈加速发展趋势,年均增长率在30%以上。2000年,我国集成电路产量达到58.8亿块,总产值约200亿人民币(其中设计业10亿,芯片制造56亿,封装130亿)。如果加上半导体分立器件,总产值达到260亿元。预计2001年,集成电路产量可达70亿块。

2000年,全球半导体销售额达到1950亿美元,我国半导体生产从价值量上看,占世界半导体生产的1.6%(含封装、设计产值),从加工数量看占全世界份额不足1%(美国占32%,日本占23%)。

从需求方面看,据信息产业部有关人员介绍,2000年,国内集成电路总销售量240亿块,1200亿人民币。业内普遍估计,今后10年,半导体的国内需求仍将以20%的速率递增,估计2005年,我国集成电路国内市场的需求约为300亿块、800亿元人民币;2010年,达到700亿块、2100亿元人民币。

从近几年统计数字分析看,国内生产芯片(包括外商独资企业的生产和在国内封装的进口芯片)占国内需求量的20%~25%,但国内生产部分的80%为出口,按此计算,我国集成电路产业的自给率仅4%~5%.但是,有两个因素影响了对芯片生产自给率的准确估计。首先是我国集成电路的产品销售有很大一部分通过外贸渠道出口转内销,据信息产业部估计,出口转内销约占出口量的一半。如此推算,国内半导体生产满足国内市场的实际比重在12%~15%.实际上,国内生产的芯片质量已过关,主要是缺乏市场信任度,而销售渠道又往往掌握在三资企业外方手中。

但芯片走私的因素,可能又使自给率12%~15%的估计过分夸大。台湾合晶科技公司蔡南雄指出:官方统计,1997年中国大陆进口集成电路和分立器件约50亿美元,但当年集成电路进口实际用汇达95.5亿美元。[2]近几年大力打击走私,这一因素的作用可能有所减弱。但无论如何,我国现有半导体产业远远落后于国内需求的迅速增长则是不争的事实。

由于核心部件自给能力低,我国的电子信息产业成了高级组装业。著名的联想集团,计算机国内市场占有率是老大,利润率仅3%.我国电子信息制造业连年高速增长,真正发财的却是外国芯片厂商。

由此,进入1990年代以来,我国集成电路进口迅速增长。1994~1997年,集成电路进口金额年均递增22.6%;97年进口金额为36.48亿美元,96.06亿块。[3]1999年,我国集成电路进口75.34亿美元,出口(含进料、来料加工)18.89亿美元。

2000年6月,国家《软件产业和集成电路产业的发展的若干政策》(国发18号文件)。在国家发展规划和产业政策的鼓舞下,各地政府纷纷出台微电子产业规划,其中上海和北京为中心的两个半导体产业集中区,优惠力度较大,投资形势也最令人鼓舞。目前累计已开工建设待投产的项目,投资总额达50亿美元,超过我国累计投资额的1.5倍,未来2-3年这几条线都将投入量产。

·天津摩托罗拉:外商独资企业,总投资18亿美元,在建。2001年5月试投产,计划11月量产。

·上海中芯:1/3国内资金,2/3台资(第三国注册)。投资14亿美元。2001年11月将在上海试投产。

·上海宏立:预计2002年一季度投入试运行,16亿美元。

·北京讯创:6寸线,投资2亿美元。

·友旺:在杭州投资一条6寸线,10亿人民币左右,已打桩。

目前我国半导体产业和国际水平的差距

总体上说,我国微电子技术力量薄弱,创新能力差,半导体产业规模小,市场占有率低,处于国际产业体系的中下端。

从芯片制造技术看,和国际先进水平的差距至少是2代。[4]尽管华虹现已能生产0.25微米SDRAM,接近国际先进水平(技术的主导权目前基本上还在外方手中),国内主流产品仍以0.8-1.5微米中低端低价值产品为主。其中80%~90%为专用集成电路,其余为中小规模通用电路。占IC市场总份额66%的CPU和存储器芯片,我国无力自给。

我国微电子科技水平与国外的差距,至少是10年。[5]现有科技力量分散,科技与产业界联系不紧密。产业内各重要环节(基础行业、设计、制造工艺、封装),尚未掌握足以跨国公司对等合作的关键技术专利。

半导体基础(支撑)行业落后:目前硅材料已有能力自给,各项原料在不同程度上可以满足国内要求(材料半数国产化,关键材料仍需进口)。

但如上所述,几乎所有尖端设备,我们自己都不能设计制造,基本依赖进口。业内认为我国半导体基础行业和国际水平差距约20年。

一般地说,西方对我引进设备放松的程度和时机,取决于我国自身的技术进展,所以我国半导体设备技术的进步,成为争取引进先进设备的筹码(尽管代价高昂)。如没有这方面的工作,设备引进受到限制,连参与设备工艺的国际联合研制的资格也没有(韩台可以参与)。

已引进的先进生产线,经营控制权不在我手中,妨碍电路设计和工艺自主研发现有较先进的集成电路生产线(包括华虹NEC、首钢NEC),其技术、市场和管理尚未掌握在中国人手中。其原因是“自己人”管理,亏损面太大。现有骨干企业不是合资就是将生产线承包给外人,技术和经营的重大决策权多在外方代表手中。经营模式还没有跳出“两头在外”模式。

这也说明,我国现有国有企业经济管理机制,尽管有了很大进步,但还没有真正适应高科技产业对管理的苛刻要求,高级技术人才和营销人才更是缺乏。

“某厂…最赔钱的×号厂房,包出去了。这也怪了。台湾人也没有带多少资金技术,还是原来的设备和技术,就赢利。

“我问承包人,人还是我们的人,厂房技术还是我们的,为什么你们一来就行了?他说”体制改变了“。我问体制改了什么,是工资高了?也不是。他们几个人就是搞市场。咱们中国市场之大,是虚的。让人家占领的。

“10多年前我在美国参观,他们的工厂成品率是90%多,我们研究室4K最高时成品率50%多,当时这个成绩,全国轰动。我参观时问,你们有什么诀窍做到90%多?美国人说没有什么诀窍,就是经常换主管,新主管要超过上一任,又提高一步。主管到了线里,就是general,…说炒就炒。咱们国家行吗?我们这些领导都是孙子…半导体的生产求非常严格的纪律。没有这个东西绝对不行。你想100多道工艺,每一道差1%,成品率就是零。所以这个体制,说了半天没有说出来,一是市场,一是管理。”[6]但无论如何,我们半导体产业的“管理”和“市场”这两大门坎,是必须跨过去的。深化国企改革、发挥非国有经济的竞争优势,在半导体领域同样适用。

由于没有技术和经营控制权,导致我们的半导体产业遇到两方面困难。首先,国内单位自行设计的专用电路上线生产,必须取得生产厂家的外方同意,有的被迫转向海外代工,又多一道海关的麻烦;关系国家机密的芯片更无法在现有先进生产线加工(或者是外方以“军品”为名拒绝加工,或者是我方不放心)。

其次,妨碍了产学研结合、自主设计和研发工艺设备。例如中国科学院微电子中心已达到0.25微米工艺的中试水平,但因先进工厂的经营权不在自己手中,无法将自有工艺研究成果应用于大线试生产。

工艺技术是集成电路制造的关键技术。如果我方没有自主设计工艺的技术能力,即使买了先进生产线也无法控制。目前合资企业中,中方职工可以掌握在线的若干产品的工艺技术,但无法自主开展工艺技术研究。5年后我方将接管华虹NEC,也面临自己的工艺技术能否顶上去的问题。工艺科研领域目前所处的困境如不能及时摆脱,则仅有的研究力量也会逐渐萎缩,如果不重视工艺技术能力的成长,我们就无法掌握芯片自主设计生产能力。

设计行业处于幼稚阶段由于专业电路市场广阔,目前国内各种类型的设计公司逐渐增加。但企业普遍规模偏小、技术水平较低,缺乏自主开发能力。

由于缺乏技术的积累,我国还远没有形成具有自主知识产权的IP库,与国外超大规模IC的模块化设计和S0C技术差距甚远。设计软件基本用外国软件,即使设计出来,也往往因加工企业IP库的不兼容而遭拒绝。

集成电路的设计与加工技术是相互依存的。因为我国微细加工工艺水平落后,人才缺乏,目前不具备设计先进电路的水平,更没有具备设计CPU及大容量存储器的水平。也有的客户眼睛向外,不愿意在国内加工,但到国外加工还要受欺负。尽管我们花了100%的制版费,板图也拿不回来。

超大规模集成电路的设计,难度最大的是系统设计和系统集成的能力,最需要的人才是系统设计的领头人,这是我国最缺的人力资源。国内现有人才多数是设计后道的能力,做系统的能力差。国内现有环境,培养这样的人才比较难。

国内的设计制造行业,就单个企业来说很难开发需要高技术含量的超前性、引导性产品。多数民营中小企业只能跟在别人后面走仿制道路(所谓反向设计)。反向设计只能适应万门以下电路的设计开发。故目前还无法与国外先进设计公司竞争。

缺乏市场信任度由于总体技术水平低,市场多年被外国产品占领,自己的供给能力还没有赢得国内市场的信任,以致出现外商一手向国内IC厂定货,再转手卖给国内用户的现象。这是当前外(台)商大举在国内投资集成电路生产线的客观背景。

国内设计、制造的产品往往受到比国外产品更严格的挑剔,要打开市场需要更多的时间和精力,这就难免被国外同行抢先。半导体市场瞬息万变,竞争十分残酷,而我国对自己的半导体产业,似取过分自由放任态度,几乎完全暴露在国际竞争中。有必要对有关政策上给以重新评估。

我国电子整机厂多为组装厂,自己设计开发芯片的极少,由于多头引进,整机品种繁多,规格不一,批量较小,成本高。另外,象汽车电子、新一代“信息家电”等产品市场很大,但需要高水平且配套的芯片产品,而我国单个电路设计企业无力完成,设计和生产能力还尚待磨合。如欲进军这方面的市场,需要高层有明确的市场战略和行业级的协调。我国微电子行业目前因技术能力所限,可适应市场领域还比较狭窄,又面临着国际市场的巨大压力。要争得技术和资本的积累期和机会,必须有政府的组织作用。

还没有形成完整的产业体系从整体看,我国半导体产业还没有形成有机联系的生态群,或刚刚处于萌芽状态,产业内各环节上下游间互补性薄弱。目前少数先进生产能力,置于跨国公司的全球制造~营销体系内,外(台)商做OEM接单,来大陆工厂生产,国内芯片厂商被动打工。国家体制内的科研力量和现有生产体系的结合渠道不顺畅,国内科技型中小型民营(设计)企业和大型制造企业的互补关系正在建立中。

“集成电路设计与生产都需要有很强的队伍,能够根据国内整机的需要设计出产品,按照我们的工艺规则来生产。他的设计拿过来我们能做,做好了能够测试,测试以后能够用到整机单位去应用。这条路要把它走通。另外还有一批人能够打开市场。其他的暂时可以慢一点。”[7]所以,目前我国微电子领域与国际水平的差距,并非单项技术的差距,而是包括各环节在内的系统性的差距。单从技术和资金要素来看,“908”“909”工程的实践,可以说是试图以类似韩国的大规模投资来实现生产技术的“跨越”。但实践证明,单项发展,不足以带动一个科技-产业系统的整体进步。不仅要克服资金、人才、市场的瓶颈,也要克服体制、政策的瓶颈,非此不能吸引人才,不能调动各方面的积极性。

我国半导体产业发展的现有条件

经过20年的发展和积累,特别是近年来我国电子信息产业的高速发展,半导体产业在我国经济、国防建设中的重要地位,以及加快发展的必要性,已基本形成共识。应该说,我国已经在多方面具备了微电子大发展所必须的条件。

首先是经过多年的引进和国家大规模投资,已形成一定产业基础,初步形成从设计、前工序到后封装的产业轮廓。广义电子产业布局呈现向京津地区、华东地区和深穗地区集中的态势,已经形成了几个区域性半导体产业群落。这对信息知识的交流,技术的扩散,新机会的创造,以及吸引海外高级人才、都十分重要。

技术引进和国内科研工作的长期积累,也具备了自主研发的基础。“909”工程初步成功,说明投资机制有了巨大进步,直接鼓励了外商投资中国大陆的热情。尤其在通讯领域,国内以企业为主导的研发机制取得了可喜发展。

其次,国内投资环境大幅度改善。尤其是沿海经济发达地区,市场经济初见轮廓,法制和政策环境日益改善,人才和资金集中,信息基础设施完备,各种类型的民营企业已开始显现其经营管理能力,已有问鼎高效益高风险的微电子领域的苗头,各种类型的设计公司正在兴起。

近两年来,海外半导体产业界已经对我国大陆的半导体业投资环境表示了极大兴趣。外(台)商对大陆的半导体投资热,虽然并不能使我们在短期内掌握技术市场控制权(甚至可能对我人才产生逆向吸附作用),但有助于形成、壮大产业群,有助于冲破西方设备、技术封锁。长远看是利大于弊。

人才优势。国内软件人才潜力巨大,而软件设计和芯片设计是相通的。这是集成电路设计业的有力后盾。

再次是随着国内电子产品制造业的飞速发展,半导体产业市场潜力巨大。1990年代,我国电子产品制造业产值年均增长速度约27%,1999年为4300亿元人民币,2000年达5800亿(总产值1万亿)。其中,PC机和外部设备年增率平均40%以上,某些产品的产量已名列世界前茅;互联网用户和网络业务的年增率超过300%;公用固定通讯交换设备平均每年新增2000万线,预计2005年总量将超过3亿线;手机用户数每年增长1500-2000万户,2001年已突破1亿户。各类IC卡的需求量也猛增。据信息产业部预计,我国电子产品制造业未来5年平均增长率将超过15%(一般电子工业增长率比GDP增长率高1倍)。预计2005年,信息制造业的市场总规模达到2万亿。

最后是国家对半导体产业十分重视。官方人士多次表示:要想根本改变我国的电子信息产业目前落后状况,需要“十五”计划中,把推进超大规模集成电路的产业化作为加速发展信息产业的第一位的重点领域。并相应制定了产业优惠政策。这些政策将随着产业的发展逐步落实并进一步完善。[8]

注释:

[1]陈文华,1998年。

[2]《产业论坛》1998年第18期。

[3]陈文华,1998年。

[4]《关于加快我国微电子产业发展的建议》,工程科技与发展战略报告集,2000年。

[5]叶甜春,2000年。

半导体制造技术篇12

半导体是现代科技产业的标志,大规模集成电路(Integrated Circuit,IC)出现大大改变了整个工业发展的进程,半导体器件被誉为现代工业的“血液”。从1958年第一块集成电路在德州仪器(Texas Insmtments,TI)问世以来,半导体产业已经走过了近70年的风风雨雨。

随着中国国民经济的发展和现代化进程的加快,以Ic(集成电路,芯片)为主导的半导体行业市场规模不断扩大,已经成为国民经济的重要支柱行业之一。半导体行业处于电子行业的最上游,是整个行业受经济波动影响最大的一个行业。

1半导体产业及其分销商现状

半导体器件主要是以硅为原料,制造出硅晶片,然后再加工成各种各样集成电路,俗称芯片。现在几乎所有的电子产品都有各种芯片的使用,半导体已经和人们的生活息息相关。大到飞机、航空母舰,小到身份证、交通卡,这些产品都离不开半导体产品的使用。常见的应用产品领域有:手机、PC、家电、医疗器械、电动自行车、照明、汽车电子、工业控制、机器人、新能源、航空航天等。

1.1半导体行业现状

全球半导体市场在2014年9.9%的高速增长后,2015年全球半导体市场出现下滑,根据美国半导体协会(SlA)公布的数据,2015年全球半导体市场销售额3352亿美元,同比下降0.2%。全球半体市场下滑的主要原因是PC销售下降和智能手机增速放缓。受到国内“中国2025制造”、“互联网+”等新世纪发展战略的带动,以及外资企业加大在华投资影响,2015年中国集成电路产业保持高速增长。根据中国半导体行业协会(CSIA)统计,2015年中国集成电路产业销售额为3609.8亿元,同比增长19.7%。对于整个产业来说,中国虽然目前是世界上最大的半导体购买国,但是国产半导体厂商所占的比例还很小,市场上主要还是以欧美、日本、韩国的厂商为主。

市场上欧美系的主要半导体厂商有:Intel(英特尔),Qualcomm(高通),Micron(美光),TI(德州仪器),Infmeon(英飞凌),ST(意法)等。日韩主要有Samsung(三星),SK Hynix(海力士),Toshiba(东芝),kenesas(瑞萨)等。台系的主要有:MediaTek(联发科),WINBOND(华邦半导体),HT(合泰)等。国产的本土供应商主要有:海思,清华紫光展锐,中兴微电子,华大,大唐等。

1.2半导体产业渠道

对于半导体行业,其产业链有很多种分类方法,根据多年从业经验,我认为以下分类是最具代表性和概括性的。半导体产业的一般渠道分类,传统的供应链系统即:

0阶渠道:半导体制造商 -->代工厂或终端客户(电子产品制造商)

1阶渠道:半导体制造商 -->授权分销商 -->代工厂或终端客户

2阶渠道:半导体制造商 -->授权分销商-->IDH-->代工厂或终端客户

非授权渠道:半导体制造商 -->授权分销商-->贸易商-->代工厂或终端客户

1.3半导体分销商简介

普通消费者几乎每天都离不开包含有半导体器件的电子产品,但是普通消费者也几乎不会直接购买任何半导体器件,而是购买电子产品制造商的产品。可以说,半导体产品的直接购买者就是电子产品制造商,其销售的流程是企业对企业(组织对组织)。

作为带给产业最新元器件及半导体技术的忠实伙伴,分销商在促进电子芯片行业的进步上也是功不可没的。正是有了分销商的不懈努力,不断的将芯片厂商的最新产品和技术推向市场,才更进一步的推动了整个电子产业的繁荣,推动了很多产品在市场上的普及。半导体分销商是电子业中的重要一环,分销商连接了半导体厂商和电子产品制造商,充当了剂的角色。由于国际上电子信息产业发展的不平衡,国际上一些半导体厂商在进入中国的时候,为了避免风险,都不约而同的使用的/分销制度。

半导体产业的终端客户为电子产品制造商,终端客户是由规模及采购量与实际营业额贡献来分类,半导体制造商通常会为第一级大型客户提供各项技术支援,投入现场应用工程师(FAE)、销售/业务(sales)、客服人员/助理(CSR)等。

主要半导体分销商的类型如下:

(1)授权分销商,又称授权分销商、分销商、店等,其英文名称为Distributor。针对半导体全球品牌制造商来说,其授权分销商,比较著名的公司有:艾睿(ARROW)、安富利(AVNET)、易络盟(Elementl 4)、富昌(Future)、武汉力源(P&S)、大联大(WPG)、易登(Edom)、全科(Alltek)、科通、北高智等。其中艾睿、安富利都是全球性的分销商(Global Distributor),而易络盟、富昌、武汉力源则是目录分销商(Online Distributor),大联大、易登、全科、科通、北高智则是专注于亚洲的分销商。这些授权分销商组成了世界半导体大厂在中国市场绝大部分的半导体元器件的商业活动及交易。半导体制造商通常以签订合作协议及合同方式建立授权分销商,知名分销商通常也会为多个世界级大厂分销各种产品,以达到投出产出的最大化。

(2)方案公司(IDH,Independent Design Housel,有些又被成为增值服务商(Value Added R.eseller,VAR),其主要为电子产品制造商设计应用方案,方案商主要和半导体制造商或者指定的授权分销商合作,从方案设计至定单、交货、技术支持、售后服务等提供一条龙服务,适合没有自主研发能力的中小客户或者需要外包研发的品牌电子产品制造商。

(3)贸易商。贸易商因规模小且专注于低买高卖从中获取利润,不会投入应用工程师等资源,通常面向的客户多为中小型客户,并专注于通用器件的交易,服务稳定性差,对市场价格以及品牌形象有较大的影响,是半导体制造商不愿合作的对象,所以通常为非授权渠道。

2半导体分销商所面临的新挑战

随着竞争越来越激烈,分销企业内外环境不断出现新的变化,市场利润不断摊薄,分销商自身也要不断研究自身的营销策略。对分销商来具体说,针对中国大陆的电子产品市场营销有诸多挑战。

2.1市场需求有向弱趋势。

受宏观经济影响,2015年全球半导体市场出现增速下滑,比2014年增速同比下降0.2%,全球半导体销售额为3352亿美元。全球不少半导体厂商感到压力。受此影响,2015-2016年业界出现了并购潮。2015年全球半导体并购交易额达到1200亿美元,是2014年的3.2倍。例如著名的德国半导体厂商英飞凌Gnfineon)以30亿美元收购国际整流器公司(IR),高通(Qual-comm)以470亿美元收购恩智浦(NXP)。

2.2产品利润逐年下降。

下游的众多电子厂商,利润微薄,已经处于微利阶段。分销商在竞争激励的市场中,分到的利润越来越微薄。

2.3库存压力越来越大。

电子产品的生命周期越来越短,不断涌现新的创新产品,而且业界有不断压缩供应链长度和灵敏度的趋势,这就要求分销要有更充足、丰富的库存才能满足电子制造商的需求。另外,制造厂商的账期要求也是逐渐加长,分销商的货款压力也是不断加大。

2.4市场变化快。

产业因为创新和消费者偏好变化比较快,而分销市场更是竞争激烈,分销商也在比拼各自适应市场的速度。

2.5获得渠道资源难。

由于原厂不断在并购重组,渠道管理也在跟着进行整合、优化,对分销商来说,获得优质的供应商资源的难度也越来越大。

总之,分销商早已不是简单的中g商。原厂和客户对分销商的技术支持要求也在不断提高,分销需要投入更多的人力、物力资源去建设技术队伍、累积技术经验,才能使适应市场变化。

3半导体分销商的营销对策的优化

本文基于经典的4P营销理论:即产品(producc),价格(price),渠道(place),促销(promotion)营销组合对目前半导体厂商面临的挑战,提出营销对策优化方案。

基于以上理论,和半导体企业面对的新的挑战,笔者提出以下营销对策来应对此挑战。

3.1重构产品线组合。

采取按照市场中的客户群分类的业务分类,加强专业领域的深耕,有针对性的深入开发整体解决方案(solution),最大限度挖掘客户需求潜力和增加客户粘性,以期增加销售额。

根据不同客户群进行分类,可以根据产品应用大类分为消费类市场、工业品市场、汽车电子市场。消费品市场的特点是研发速度快、器件供应量大、对器件的小型化要求高、供应链反应速度快,此市场利润率低但销售额比较大。工业品市场的特点是量相对比较小,研发周期相对比较长,产品生命周期也相对稳定且比较长,对供应链的要求没那么高,此市场是利润率高但销售额相对比较小。汽车电子市场特点是研发周期超长、对产品的质量要求非常高、产品更新换代很慢、要求供应链要有持续的稳定性,此市场主要的特点是销售低但是利润丰厚。

针对这些细分领域,把业务和业务支持部门按照产品应用(Applica-tion)进行划分,打破以前分销商都是按照品牌或者产品线(ProductLine)进行划分的架构。分销商在每个领域形成一个业务组(Team),包含现场应用工程师(FAE)、销售(Sales)、产品经理(Product Marketing)、业务助理(Assistant)、系统应用工程师(AE)。应用工程师针对每个市场研发对应的解决方案(Solution)和参考设计(Reference Design);产品经理负责协调原厂资源、划定市场及客户范围,并驱使销售来寻找对应客户销售相关产品;业务助理和现场应用工程师负责协助销售对客户进行销售

3.2丰富产品线价格档次。

产业发展迅速,电子产品面临快速降价的压力,为了避免因为价格问题而失去客户,应为客户提供不同价格档次的产品,维持的合理利润空间。

由于不同类型的客户对不同的产品定位不同,对元器件的需求也有所不同。对分销商来说,要提供给客户不同品质、不同价格档次的产品供客户选择。这就要考虑产品的档次搭配,对同一类型的产品考虑不同特色的产品线,以求最大限度满足客户需求,提供给客户价格上的一站式服务。一般来说欧美、日韩半导体产业发达,拥有技术优势,但是其产品定位比较高端,价格比较高。而台系、国产的产品相对来说价格比较优惠,但是其技术不够领先、产品质量可靠性也不是很高。

3.3拓展互联网营销渠道。

近年来,伴随着电子产业的发展,互联网商业也迅猛发展,电子商务已成为企业供应链中的重要一环。为了顺应市场形势变化,半导体分销商也应该发展网络营销手段。例如可以大力发展元器件电商,提供给客户小批量互联网购买渠道,同时以在线技术培训、在线技术研讨会、专业网站宣传等手段广泛选择企业产品,推广产品解决方案。

3.4提升客户服务体验。

由于半导体产品高技术含量产品,客户对芯片的需求,不但有质量、可靠性、功能性等硬件(Harware)方面要求,还要求配合相应的软件的要求,例如开发工具、开发环境、开发软件平台、源代码、算法等。因为快速的市场变化,这就要求电子产品制造商也要相应的提高研发速度、创新速度。半导体分销商要紧跟客户的步伐,提供客户不单单是一个半导体硬件产品,还要提供对应软件服务,以及对创新产品应用的市场敏锐度。

友情链接