时间:2023-05-24 08:47:51
引言:寻求写作上的突破?我们特意为您精选了4篇初中数学概念课教学范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

复习引入:
问:反比例函数的解析式为?
师:这节课,我们研究在直角坐标平面中反比例函数的图像和性质。
出示课题:反比例函数的图像和性质(1)
(一)三个操作,确定观察实例
(1)列表 (2)描点 (3)连线
师:按照自变量从小到大,即按点从左到右,用光滑的曲线连接,并向两方伸展。所画图像向两方延伸,会不会与坐标轴相交?
小结:根据解析式,如果x所取值的绝对值越来越大,那么y的对应值的绝对值越来越小;而x所取值的绝对值越来越小(不为零),则y的对应值的绝对值越来越大。由此可知,图像向右或向左延伸,与x轴越来越靠近;图像向上或向下延伸,与y轴越来越靠近,但都不会与坐标轴相交。
操作2(师生同步画图)
类比操作1,画反比例函数的图像。
(1)列表 (2)描点 (3)连线
师:对学生画图中出现的问题进行白板讲评,引导学生小结画反比例函数图像应注意的事项。
3.操作3(学生独立画图)
画反比例函数的图像。
(老师示范 自变量x的取值、描点)
(二)三次类比,分析本质属性
师:我们前面研究正比例函数是通过图像得到性质,这里我们同样通过函数图像来归纳反比例函数的性质。
问:正比例函数的图像是什么?那么反比例函数的图像是什么?(投影表格)
完成正反比例函数图像部分的填写
1.类比思考
问:正比例函数有哪些性质?
师:观察、比较上面四个函数的图像,类比正比例函数性质的研究,请各小组从”图像的位置分布、函数的增减性”几个方面讨论反比例函数有哪些性质。
讨论参考问题:
(1)函数的图像分别位于哪几个象限内?
(2)随着图像上的点的横坐标x逐渐增大,纵坐标y是怎样变化的?
(3)图像的每支都向两方无限延伸,它们可能与x轴、y轴相交吗?为什么?
2.类比归纳
反比例函数(k是常数,k)的性质:
(边归纳边完成表格)
分组讨论,修正性质
师:以函数为例,若在第一象限的分支上取两点,如A(1,6),B(3,2),可知自变量x的值逐渐增大,y的值随着逐渐减小;若在第三象限的分支上取两点,如C(-1,-6),D(-3,-2),可知自变量x的值逐渐增大,y的值随着逐渐减小。但如果,分别在第一、三象限各取一点,如A(1,6),D(-3,-2),是否符合这一增减性规律?
生:应该加上“在每个象限内”或“在对于每个分支而言”或“当x>0或x
3.类比小结
对照表格,谈谈正反比例函数图像和性质的异同点。
(三)三层练习,进行巩固运用
(1)比例系数k分别是多少?
(2)图像分别在哪些象限?
(3)图像在每个象限内,y的值随x的值的变化而怎样变化?
课堂小结
谈谈你学习的收获和体会
(学生没有提到的部分,老师通过引导直接讲解,帮助学生进行小结)
师:同学们回答的很好,这节课我们不仅学习了画反比例函数的图像,还研究了它的性质,更重要的是我们感受了学习知识的方法。上节课我们学习了反比例函数的概念,这节课我们学习了如何画反比例函数的图像,归纳得出了反比例函数的性质,下节课我们将运用这些性质来解决一些问题。
二、对数学概念课教学设计的几点思考
“反比例函数图像和性质”的内容教学,学生在前面已经学习了正比例函数的解析式、图像和性质,反比例函数的解析式。本节课的教学重难点有两个:一是会用描点法画反比例函数的图像;二是结合图像分析归纳反比例函数的基本性质,并掌握这些性质。
反比例函数的图像和性质较正比例函数而言,较难操作画图,比较抽象,不易理解。这堂课力求在学生已有知识结构的基础上,让学生在动手操作、性质比较、自主探究的过程中不断地发现新知识,从而促进学生对有关反比例函数图像和性质的知识构建。
(一)注重两种数学概念学习形式的有机结合
数学概念学习主要有两种形式:一是数学概念形成,二是数学概念同化。数学概念形成需要的是对物体或事件的直接经验,从这些物体或事件中抽象出它们的共同属性。而在数学概念同化的过程中,重点在于学生把新知识与头脑中已有的有关知识联系起来。但两者不是互相排斥的,在数学教学中可以把这两种数学概念学习形式有机的结合起来,常常能收到较好的效果。
本例中设计了三个操作、三次类比、三层练习,让学生经历了“观察操作实例——分析本质属性——修正本质属性——练习简单运用”等几个阶段,这里运用的是数学概念形成的学习形式。本例从具体的操作实例出发,对反比例函数从k>0和k
通过数学概念形成和数学概念同化两种学习形式的结合运用,学生对“反比例函数的图像和性质”既有感性认识又有理性认识,从具体到抽象,符合人的认识规律,提高了教学效率,使学生能够在较短的时间内正确理解数学概念所反映的事物的本质属性。
(二)注重数学思想方法的渗透
对数学而言,知识的发生过程,实际上也就是思想方法的发生过程。因此,概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程等都是向学生渗透数学思想方法的极好机会。
本例的一个重难点是“理解和掌握反比例函数的图像和性质”。在性质归纳中设计了“类比思考”、“类比归纳”、“类比小结”三个环节,对正反比例函数进行充分的类比,让学生更好的体会利用函数图像来研究函数性质的研究方法,降低学习难度,对反比例函数的图像和性质的掌握会更好。另外,本课将反比例函数分成“k>0”和“k
数学的概念、性质和定理等知识都明显地写在教材中,是有“形”的,而基本的数学思想方法却隐含在知识的教学过程中,是无“形”的,并且不成体系散见于教材各章节中。在概念课的教学过程中,我们老师应注意把握好数学思想的渗透时机,寻找适合学生的认知发展水平的渗透方法。
(三)注重数学概念的过程教学
数学知识的发生、发展、形成和应用的过程,是课程目标内容,也是课程学习内容。在数学概念课教学中,要抓住数学概念的本质属性及其内部联系,结合学生的能力状况及知识水平,采用多种方式,组织学生参与概念的分析、概括、形成过程,变“成果教学”为“过程教学”。
例如在“反比例函数增减性”的教学中,不是直接给出“在每一象限内”这一前提,而是先由学生类比得出“k>0时,y的值随x的增大而减小;k
学生在这一讨论后,提出了不同的修正方案,有“对于每一个分支而言”、“对于每个象限”而言、“当x>0时”等。这一开放性的教学策略,为学生提供更多的机会和时间,让学生提问和质疑、尝试和探究、讨论和交流、归纳和总结,使课堂成为学生能动地、创造性的生成过程,避免了把数学概念绝对化,让学生形成“正确的答案可能不止一个”的认识。
为了使学生牢固掌握数学概念,并能灵活、正确运用概念,在教学中应采取多种形式并通过多种途径引导学生充分发挥概念在运算、推理和证明中的作用,教学可以通过以下几方面进行:
(一)及时巩固所学的新概念
1.对于新授课,给出了概念之后,要及时采取多种形式的变式,提高学生对概念的认识。比如在学习了《三角形的高》之后,就要运用“变式”提供给学生各种典型的直观材料,或者不断变换“高”所呈现的形式,通过不同的形式反映其本质属性。如图:是三种不同三角形的“高”的不同位置,通过这几种形式的变换,三角形各边的高是“从三角形的一个顶点向它的对边所在的直线作垂线,顶点与垂足之间的线段叫作三角形的高”这一本质属性就正确地揭示出来了,这样获得的概念更精确。
2.数学教学离不开解题,在正确阐明概念的本质属性后,让学生做一些巩固练习,通过学生的练习,初步培养了学生运用概念作简单判断的能力,每做一次判断, “概念的本质属性”就在学生头脑里重复一次,这不仅巩固了所学的知识,加深了对概念的理解,也大大提高了学生学习的积极性,因此,教师应该多给学习提供练习的机会。但是如果只是反复操练,学生学习概念比较厌烦反而起不到应有的效果。因此可以通过游戏或者竞赛的方式解题,提高学生灵活应用概念的能力。在学习《同底数幂的乘法(2)》我采用游戏打擂台的方法让学生在游戏中巩固数学概念。游戏规则如下:本游戏有三档题,分别为20分档题,30分档题,50分档题,全班同学分成两队,分别为猫队和老鼠队,首先由猫队同学派代表选题给老鼠队同学做,老鼠队同学想好了答案马上举手回答,遇到困难的时候还有一次机会向本组的同学请求援助,答对的同学有资格给另一组选题,选过的题不能再选,从低档题开始选,积分最多的组为获胜组。
转贴于
(3)(4)若,则。
总之要同时呈现多种例子更有助于学生理解掌握概念,让学生在变式中思维,更好地掌握概念。
(二)密切联系实际,灵活运用所学的概念
数学概念是人脑对现实事物的一种反映,学习数学概念的目的,就是用于实践。因此要让学生通过实际操作去掌握概念、升华概念。概念的获得是由个别到一般,概念的应用则是从一般到个别。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化具体化,而且能使学生对概念的理解更全面、更深刻。
Abstract: This paper talks about some attempts on the concept of junior high school math teaching in these 3aspects: the mathematical concepts,mathematical concepts, teaching mode, the mathematical concept of the basic teaching strategies.
Key words: mathematical concepts, mathematical concepts,teaching, pattern, strategy
中图分类号:G623.5文献标识码:A 文章编号:
数学概念是构成数学教材的基本结构单位,不仅是数学基础知识的重要组成部分,也是学生学习的核心知识。目前初中数学教材约有400个概念,这些概念是数学应用及学生进一步学习其它数学知识的基础。学生只有正确、清晰、完整地学习了这些概念,才能牢固地掌握数学的基础知识,有效提高解决问题和分析问题的能力。因此概念教学是初中数学教学中至关重要的一项内容,是基础知识和基本技能教学的核心。数学概念本质上是一种数学观念,是分析、处理问题的一种策略与方法,一个数学概念的背后往往蕴含着丰富的数学思想,理解、掌握蕴含于数学概念中的思想,是一个长期的探究过程,因此数学概念的教学要十分重视概念的发现和形成过程。下面就如何进行有效的数学概念教学,谈谈个人的一些体会。
1. 数学概念获得的方式
数学概念获得的过程实质上是理解和掌握某一类数学对象共同的关键属性的过程,其基本方式是概念的形成和概念的同化。
1.1 概念形成
概念的形成一般是针对由弱抽象形成的概念。如果某些数学对象的关键属性主要是在对大量同类数学对象的不同例证进行分析、类比、猜测、联想、归纳等活动的基础上,独立概括出来的,那么这种概念获得的方式就叫做概念形成。这一过程主要涉及以下相关因素:① 感知、辨别各种刺激模式。②抽象出各刺激模式的共同属性,并提出假设。③在特定的情境中修正、检验假设,形成概念。④把新概念一般化,并用数学的语言符号表达。
为达到数学概念学习的要求,教学中要尽可能采用适当的方法促进学生用概念形成方式学习概念。因此,教师在概念教学时,不能直截了当就定义而讲定义,要精心设计教学环节,更多地从概念的产生和发展过程中为学生提供思维情景,预设学生可能出现的各种“新知冲突”,让他们观察、比较和概括由特殊到一般,由具体到抽象的过程,不断在解决冲突中体验概念的形成。这样不仅可以帮助学生理解和掌握新概念,而且也使他们的思维得到全面的发展。
1.2 概念同化
概念的同化一般是针对由强抽象形成的概念。如果学习过程是已定义的方式直接向学生呈现概念的关键特征,实际上是新的数学概念在已有概念的基础添加其他新的特征性质而形成,这时学生利用自己的认知结构中已有的相关知识对概念进行加工、改造,从而理解新概念的意义,这种获得概念的方式就叫做概念同化。
2.概念教学的模式
按照教育心理学的学习原理,概念学习一般有概念形成和概念同化两种基本方式,因此概念教学的模式也有这对应的两种模式。模式框架如下:
概念形成的教学模式
以变量与函数概念的教学为例来说明概念形成的教学模式。
① 以提问的方式为学生提供熟悉的具体例证,引导学生分析总结每个例证的本质属性。
问题一:(首先显示)水波纹动画(一系列同心圆)
(再显示解说词)一块石头落在平静的湖面上
(最后显示)圆的面积公式s =πr2,请取r的一些不同值,算出相应的s的值
问:在计算半径不同的圆的面积的过程中,哪些量在改变?哪些量不变?生:r,s在改变,π不变。
t(小时) 1 2 3 4 5
s(千米)
问题二:汽车在以50千米/时的速度匀速行驶,行驶的路程为s千米,行驶的时间为t小时,请填写下表:
师:这个问题中有哪些量?生:速度、路程、时间。师:在这些量中,哪些量数值发生变化,哪些量数值不发生变化?生:路程s,时间t是变化的量,速度50千米/时是不变的量。
②抽象出本质属性,形成初步概念
教师以提问的方式引导学生分析。师:以上两个问题不同,但是他们有一个共同的本质属性,你能对以上的两个问题中涉及的量进行适当分类吗?你分类的依据是什么?生:按照量是否发生变化,可分为两类。师:很好,在一个变化的过程中,我们把数值发生变化的量叫做变量,如以上例子中的r,面积s,,路程s,时间t。把数值始终不变的量叫做常量。如π,速度50千米/时。接着教师板书给出定义。
③概念的深化
抽象出本质属性后,学生的认知还不深刻,此时可以做些对应练习对概念做进一步深化。并在此基础上提问:同一个问题中的两个变量之间有什么联系呢?请同学们交流一下。生:一个量变化了,另一个量也随之变化。一个量确定了,另一个量也随之确定了。师:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一的值与其对应,那么我们就说x是自变量,y是自变量的函数。(着重强调 “唯一”)练习:下列是指中,y是x的函数吗?为什么?(1)y=3x-5(2) (3)y2=x(4)y= —2x+3
④概念的应用
通过概念的应用加深学生的印象,并解决实际问题。
用10cm的围成长方形,(1)若长方形一边长为3cm,面积是多少?(2)若长方形一边长为xcm,面积是sm2,使用含x的式子表示s。(3)s是x的函数吗?为什么?
《数学新课程标准》中,强调从生活经验出发,将实际问题抽象成数学模型并进行解释与运用。概念形成的教学模式需要对具体的,直接的感性材料进行观察、感知、操作等活动,比较耗时,一般适合概念体系中起着基础和核心作用的少数抽象概念的学习。
概念同化的教学模式
以同类项概念的教学为例来说明概念同化的教学模式。
① 向学生提供概念的定义
同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
② 揭示定义的内在含义,突出概念的关键属性,使学生准确理解概念的内涵。
如概念中的关键字词:“字母相同”,“ 相同字母”,要着重强调使学生加深印象,突出概念的关键属性。
③ 辨别例证,促进迁移
教师应及时提供丰富的概念例证,让学生辨认,巩固概念的关键属性,从而达到理解并掌握的目的。如以下练习:
(1)下列属于同类项的是()
A.3x2y3与8y2x3B.x2yz与 x2y C.23与54D.m2与n3
中图分类号:G632 文献标识码:A 文章编号:1002-7661(2012)18-205-01
概念的课堂教学大致经历以下几个环节:概念的引入、概念的生成、概念的剖析及辨析、相关概念的联系与区别、概念应用举例、概念的巩固练习。
一、概念的引入
概念的引入是概念课教学的起始步骤,是形成概念的基础。在概念课的引入上,要树立起让学生自己去发现的观念,如果能让学生产生认知冲突,对学习新概念的必要性产生需求,并主动发现新概念是最佳途径。对于情境的设计,要结合概念的特点恰当地选取,特点不同,引入形式也就会存在差异:我们提倡借助生动、丰富的实际问题引入概念,能够与学生的生活密切结合,这样往往比较具体、形象,学生容易理解,也比较容易从中提炼出概念的本质属性,下面介绍概念引入的三种想法:
1、联系概念的现实原理引入新概念
2、从具体到抽象引入新概念
例:对于“用字母表示数”的教学,教师展示熟悉的生活实例,确立了一个学生熟悉的认知对象,由学生熟悉的铺地用的各种形状、各种颜色的地砖铺地时的图案入手。让学生初步体会到表示任意性、一般性的问题时需要一个新的表示数的方法,体会到这类问题不用字母表示不行了,为学生创设了一个“字母表示数”的必要性的学习情节,使学生认识到“字母表示数”的重要性,从而激发了学生进一步探索有关内容的欲望,学生自己认为重要的、有用的东西,他们才能百分之百的经历、主动、积极地投入到所要做的事情中来,这样的学习才是最有效果的。
3、用类比的方法引入概念
类比不仅是一种重要形式,而且是引入新概念的重要方法。
二、概念的剖辨
概念生成之后,应用概念解决问题之前,往往要进行概念剖析,即用实例(包括正例与反例)引导学生分析关键词的含义,包括对概念特性的考察,可以达到明确概念、再次认识概念本质的目的,还可以从中体会概念中所呈现的转化问题的方法,这是最基本、最重要的方法。在概念剖析练习中,进一步体会概念的内涵与外延,认识函数的本质。此外,在剖析概念时通常要对概念的多种表示语言进行转化,数学语言主要是文字叙述、符号表示、图形表示,要会三者的翻译,同时更重要的是强调符号感。
三、相关概念异同
数学概念不是孤立存在的,概念间都有着千丝万缕的联系,概念教学还应该承担着建立与相关概念的联系的任务,教学时,要引导学生试着对概念进行适度的联系与发散,努力找出概念间一些体现共性的东西,以使学生形成功能良好的认知结构。
四、概念的例习
概念的形成是一个由个别到一般的过程,而概念的运用是一个由一般到个别的过程,它们是学生掌握概念的两个阶段。通过运用概念解决实际问题,可以加深、丰富和巩固学生对数学概念的掌握,并且在概念的运用过程中培养学生的实践能力。因此在数学教学中不仅要注意概念的形成过程,也要注意概念的应用。根据不同概念的特点,采用恰当的教学手段,激励学生实现对概念的理解,才能使学生学得好、学得牢。这一阶段,主要是选用有代表性的简单例子,使学生形成用概念做判断的具体步骤。
当学生在解决问题的过程中遇到困难时,让学生养成“不断回到概念中去,从基本概念出发思考问题、解决问题”的习惯,另外,加强概念联系性的教学,从概念的练习中寻找解决问题的新思路。
五、概念的背景
数学是人类文化的重要组成部分,数学概念的背景、历史与文化是数学概念教学的组成部分,是向学生渗透德育教育的好载体。许多数学概念都是有其历史背景,都蕴含着悠久的历史与文化,教学中我们要让学生充分受到优秀文化的熏陶,提高学生的数学文化修养和素质。