现代电力电子技术范文

时间:2023-09-25 11:08:00

现代电力电子技术

篇1

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.电力电子技术的应用

2.1一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2.2交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

2.3电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

篇2

现代电力电子技术经过不断的发展以后,已经实现了多种功能,如节能、自动化和智能化、机电一体化等,电力电子正在朝更高端的技术、绿色化的性能方向发展。电源技术则是充分利用用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。电源技术是电力电子技术内容的具体延伸,在电源中起到了关键作用,为电源的质量、效率和可靠性提供了良好的保障。

1 电力电子技术的发展

电力电子技术起始于上个世纪50年代末,80年代末则逐步向现代电力电子技术发展。电力电子的发展是从低频技术处理到高频技术处理问题的逐步转变,实现了从传统电力电子学到现代电力电子学的过渡。无论是最初的硅整流器件,还是如今的大功率半导体复合器件,都充分表明了现代电力电子技术正在以蓬勃向上的姿态发展。

1.1 整流器时代

20世纪60年代至70年代,电解、牵引、直流传动是整流器时代衍生的领域。大功率硅整流器把工频电流转为直流电,这三大领域就是通过直流电进行消费的。大功率硅整流管和晶闸管在当时非常流行,备受重视,电力电子技术已经开始受到人们的关注。

1.2 逆变器时代

由于能源危机,整流器时代逐渐不再适合20世纪70年代的发展现状,此时变频调速技术开始进入人们的视线,人们利用此技术来进一步缓解当年的能源危机。80年代以后,变频调速装置开始普及,各种电力电子器件成为当时非常普遍的器件,如大功率逆变用的晶闸管、巨型功率晶体管等。此时的电力电子技术还并没有达到先进的状态,可以实现整流和逆变。

1.3 变频器时代

80年代以后,大规模和超大规模集成电路技术闪亮登场,这些技术与高压大电流技术经过有效的融合后,就诞生了各种全控型功率器件,从功率M0SFET到绝缘门极双极晶体管的相继问世,颠覆了传统电力电子技术的领域,为现代电力电子技术的发展奠定了良好的基础,实现并推动了高频化的发展。

2 现代电力电子的应用领域

2.1 计算机高效率绿色电源

计算机技术的发展促进了电源技术的发展,也促使这个时代转变为信息化时代。计算机完成电源换代以后,对于开关电源又有了新的要求。绿色电脑和绿色开关是针对保护环境而提出的,绿色电源与绿色电脑搭配,成为一种高效节能、对环境无污染的绿色产品。绿色电源可以有效减少电能损耗,提高工作效率。

2.2 通信用高频开关电源

目前,高频小型化的开关电源技术正在不断的发展,高频开关电源广泛地应用在通讯领域中,其代替了相控式稳压电源,通过开关的控制和高频化工作,体现了高频小型化开关电源的优势。由于通讯设备的电源电压不同,通常采取高频高密度的隔离电源模块经母线电压转化成直流电压,这种方式操作方便、灵活,还可以减少能源的损耗。

2.3 直流-直流(DC/DC)变换器

直流-直流(DC/DC)变换器主要应用于无轨电车、地铁列车、电动车的无级变速和控制,其工作原理就是将直流电压从固定变为可以变换的电压,起到节省电能的作用。直流斩波器具备调压和抑制噪声的作用,而且同样能起到节省电能的效果。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机和通信系统中的一种重要的电源,这种可靠性极强、性能极高的电源普遍采用了脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,大大减少了电源的噪声,并提高了其可靠性和安全性。不间断电源的容量最大可以达到600kVA,并通过微处理器软硬件技术的管理,实现UPS智能化管理和维护。UPS也正在朝小型和超小型发展,功能更加强大。

2.5 变频器电源

这种电源主要应用于交流电机的变频调速,并具备超强的节能效果。变频器电源已经受到国际的关注,如日本将变频调速技术应用到空调中,这种空调不仅舒适,而且还充分节能。

2.6 高频逆变式整流焊机电源

这种电源有着非常广阔的应用前景,焊机电源通常处于极其恶劣的环境中开展工作,因此对于高频逆变式整流焊机电源的工作是否能够可靠也是人们最为关心的问题。利用微处理器来处理信息,这样就可以提前知晓系统工作状态,根据状态及时调整,提高了高频逆变式整流焊机电源的可靠性和安全性。

除此之外,还有大功率开关型高压直流电源、电力有源滤波器、分布式开关电源供电系统等相关电源,这些电源不断推动着现代电力电子技术的发展,在不同的领域中具备广泛的应用前景。

3 高频开关电源的发展趋势

高频开关电源与传统电源相比,更加精致,还可以提高电源的利用率。

3.1 高频化

高频可以用于减少电气设备的体积和重量,调快频率进行工作对于用电设备而言均可以利用这一原理进行自身的改造,从而达到节省材料和节省电能的目的。对电镀、电解、电加工等各种直流电源也可以改造成类似这样的电源,会受到良好的效果。

3.2 模块化

模块化分为功率器件和电源单元的模块化。一些智能化的功率模块应运而生,节省了许多制作材料。模块化可以进一步提高系统的可靠性,利用多个模块并联工作,可以有效分担电流,提高器件容量。这样即使模块发生故障,也不会影响整个系统的正常运行,保持了系统的可靠性。

3.3 数字化

随着现代电力电子技术的不断发展,数字化成为这个时代的标志之一。在计算机的处理过程中,数字信号处理技术主要可以增强抗干扰性、避免信号失真等功效。

3.4 绿色化

绿色化主要体现在节电和节能上。环境污染日益严重,尤其是各大发电站对环境的影响危害极大,绿色化电源系统可以减少发电对环境造成的影响。而一些节电设备却很容易污染电网,使电网不能正常运行。

4 结束语

综上所述,现代电力电子技术是开关电源技术发展的基础,而现代电源技术更需要与时俱进,按照技术的发展和社会的需要不断更新换代,并应用到更多的领域当中。

随着开关电源技术的不断更新,这一技术已经充分体现了高效率和高性能,其高频化、模块化、数字化、绿色化等特征,是对现代电力电子技术最好的证明。在国内通信行业中,开关电源技术吸引了大批人士的目光,并对其进行深入开发和研究,开关电源技术存在着巨大的市场潜力和需求,因此只有不断的发展和研究,才能摸索出更多、更先进的技术。

参考文献:

[1]张新文、张杰飞,论现代电子技术在汽车智能管理系统中的应用研究[J].才智,2010年,03期.

篇3

1. 电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1 整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2 逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显着而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3 变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2. 现代电力电子的应用领域

2.1 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2 通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3 直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,

另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。 现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5 变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6 高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7 大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8 电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9 分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3. 高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1 高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显着节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2 模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块,它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微

电子中的用户专用集成电路。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。 3.3 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4 绿色化

篇4

    1. 电力电子技术的发展

    现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

    1.1 整流器时代

    大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

    1.2 逆变器时代

    七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

    1.3 变频器时代

    进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

    2. 现代电力电子的应用领域

    2.1 计算机高效率绿色电源

    高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

    计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

    2.2 通信用高频开关电源

    通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

    因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

    2.3 直流-直流(DC/DC)变换器

    DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

    通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

    2.4 不间断电源(UPS)

    不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

    现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

    目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

    2.5 变频器电源

    变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

    国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

    2.6 高频逆变式整流焊机电源

    高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

    逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

    由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

    国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

    2.7 大功率开关型高压直流电源

    大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

    自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

    国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

    2.8 电力有源滤波器

    传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

    电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

    2.9 分布式开关电源供电系统

    分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

    八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

    分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

    3. 高频开关电源的发展趋势

    在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

    3.1 高频化

    理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

    3.2 模块化

    模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

    3.3 数字化

    在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

    3.4 绿色化

篇5

1、整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

2、逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

3、变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

二、电力电子技术的应用

1、一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2、交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。3、电力系统

电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。

在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。

4、电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

5、家用电器

照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

篇6

中图分类号:F062.9 文献标识码:A文章编号:1007-9599 (2011) 17-0000-01

Modern Power Electronics Technology Application and Prospects Analysis

Liu Jianjun

(Information Engineering,Zhengzhou University,Zhengzhou450001,China)

Abstract:Modern power electronics technology is a high-tech knowledge-based knowledge-intensive technology,power electronics and microelectronics technology with technology has become mainstream.Therefore,its production and life will be like as microelectronics technology plays a transformative role.It will revolutionize the power supply and power system changes.

Keywords:Electronic;Technology;Applications;Development

一、现代电力电子技术

将实现高品质与高效率用电作为目标的现代电力电子技术,采用电力半导体器件、电磁技术、计算机(微处理技术)、综合自动控制技术等进行功率处理,达成电能的传输、获取、变化与利用。采用电力电子半导体器件、电磁技术、计算机(微处理技术)、综合自动控制技术等多学科交叉技术的现代电源技术,是现代电力电子技术的具体应用,在保证高可靠性、高效、高质量的电源的供应中发挥着关键作用。以功率IGBT与MOSFET为代表的、集大电流、高压与高频于一体的功率报道提复合器件,将传统的电力电子技术引入了现代电力电子技术时代中。因为MOSFET、IGBT等新型的电力电子器件具有显著的节能和功能驱动作用,具有先进的性能,所以新型的电力电子器件在绿色电源、电动交通工具、新型家电、感应加热、变频调速以及通信与计算机电源等领域均有着广泛的应用前景。

二、现代电力电子技术的应用

(一)高频开关整流器。具有效率高、重量轻、体积小等特点的高频开关整流器从各种仪器仪表、计算机、电视机等小功率的应用上推广到电力工程直流电源系统、通信基础电源、CT机、X光机和照明等特种电源领域。高频开关电源又可以称之为开关型整流器,其通过IGBT或MOSFET的高频工作,一般将开关频率控制子50~200KHZ的范围之内,进而实现小型化和高效率等目标。目前,高频开关整流器的功率容量一直都在增加,单模块容量从几十瓦、上百瓦快速提升到15KW。德国BENNING公司出产的Tebechop15000系列的整流模块的质量只有39KG,然而容量却已经到达了15KW(48V/225A)。TYCO公司出产的GALAXY系列的整流模块的质量只有30KG,容量却达到了12KV(48V/200A)。

(二)直流-直流(DC/DC)变换器。直流-直流变换器能够将固定的直流电压转换成可变的直流电压,广泛地应用与电动车、无轨电车、地铁列车的无级变速与控制领域,能够实现具有快速响应、加速平稳等性能的控制,并同时达到节约电能的目的。用直流斩波器取代变阻器能够节约20%~30%的电能。直流斩波器不但可以进行调压,还能够显著地消除电网侧谐波电流噪声。在通信电源领域的二次电源直流-直流模块已经商品化,采用高频PWM技术等模块具有5~20W/in3的功率密度,500KHZ左右的开关频率。

(三)不间断电源(UPS)。不间断电源普遍采用了功率IGBT、MOSFET等电力电子器件和脉宽调制技术,能够有效地降低电源的噪声,显著地提高可靠性与效率。DSP技术和微处理技术的实现了远程诊断、远程维护以及不间断电源的智能化管理。近年来,不间断电源的最大容量已经高达800KVA,而且能够利用多机并联的方式,获得超大容量的不间断电源系统。

(四)大功率开关型高压直流电源。大功率开关型高压直流电源的电流能够达到0.5A以上,电压能够达到50KV~159KV,电流能够达到100KV。大功率开关型高压直流电源在医用CT机、医用X光机、水质改良和静电除尘等大型设备上有着广泛的应用。国内研制了静电除尘高压直流电源,将市电转化成直流,将直流电压逆变成高频电压,通过高频变压器进行升压,接着整流成直流高压。通常,在电阻负载的情况下,输出直流电流可达15mA,直流电压能够达到55KV,工作频率是25.6KHZ。

(五)高压直流输电系统。适合于大容量输电、远距离输电、跨海输电、大区交流电网互联的直流输电方式是除了交流输电方式外的另一种有效的输电方式。直流输电需要安装换流桥阀和换交流变压器等主要的换流设备,需要在受电端和送电端建设换流站,以解决交流电和直流电之间的转换问题。在送电端换流站安装使用电力电子装置将交流电转换为直流电,使用直流输电线路将直流电输送到受电端换流站。安装使用电力电子装置在受电端换流站将直流电逆变为交流电。

(六)电力有源滤波器。电力有源滤波器能够对幅值与频率变化的谐波进行补偿的电力电子装置,其基本原理为在补偿对象中进行谐波电流检测,再由补偿装置产生一个和谐波电流极性相反、电流大小相等的补偿电流,使电网电流只含有基波分量。电力有源滤波器在补偿时不受电网阻抗的干扰,已经左键在国内推广使用。

(七)静止无功功率补偿装置(SVC)。目前,国内最有效的无功补偿装置是静止无功补偿装置。静止无功补偿装置一般使用晶闸管控制电抗器加固定电容器的方式,能够进行补偿装置无功功率的连续调节。目前,静止无功补偿装置主要运用与轧机、电弧炉等设备的无功补偿当中,容量能够到达±50VA,能够直接用于10KV、35KV等级的电压母线。

三、现代电力电子技术的发展

近年来,电力电子技术的发展具有以下特点:不断地提高原有的各种类型的电力电子器件的额定参数;电力电子技术进一步结合用用微电子技术,电力电子器件不断地朝着智能化、大容量的方向迅速发展,电力电子技术从全控型器件、半控型器件时代迈入了智能型器件时代。与多种学科相互渗透的电力电子技术创新不断渗透到多种相关的工业领域。电力电子技术和国家基础产业的关系也越来越密切,电力电子技术的发展和创新是可持续发展的重要环节。加强现代电力电子技术的不断创新和应用力度,是推动我国工业领域技术创新,形成高科技产业链的必由之路。

篇7

电力电子技术是职业教育中电气类专业的一门重要课程,研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域――电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。

1、一般工业

工业中大量应用各种交直流电动机。直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来,由于电力电子变频技术的迅速发展,使得交流电机的调速性能可与直流电机相媲美,交流调速技术大量应用并占据主导地位。大至数千kW的各种轧钢机,小到几百W的数控机床的伺服电机,以及矿山牵引等场合都广泛采用电力电子交直流调速技术。一些对调速性能要求不高的大型鼓风机等近年来也采用了变频装置,以达到节能的目的。还有些不调速的电机为了避免起动时的电流冲击而采用了软起动装置,这种软起动装置也是电力电子装置。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电镀装置也需要整流电源。电力电子技术还大量用于冶金工业中的高频、中频感应加热电源、淬火电源及直流电弧炉电源等场合。

2、交通运输

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

3、电力系统

电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔流输电(FACTS)也是依靠电力电子装置才得以实现的。无功补偿和谐波抑制对电力系统有重要的意义。晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)都是重要的无功补偿装置。近年来出现的静止无功发生器(SVG)、有源电力滤波器(APF)等新型电力电子装置具有更为优越的无功功率和谐波补偿的性能。在配电网系统,电力电子装置还可用于防止电网瞬时停电、瞬时电压跌落、闪变等,以进行电能质量控制,改善供电质量。 在变电所中,给操作系统提供可靠的交直流操作电源,给蓄电池充电等都需要电力电子装置。

4、电子装置用电源

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

5、家用电器

照明在家用电器中占有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为"节能灯",它正在逐步取代传统的白炽灯和日光灯。变频空调器是家用电器中应用电力电子技术的典型例子。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

篇8

1概述

电力电子技术分为电力电子器件技术、变流技术两个分支。一般认为,1957年美国通用电气公司研制出的第一个晶闸管是电力电子技术产生的标志,此后,电力电子技术逐渐成熟和发展。而今的电力电子技术是建立在电工原理、电子学、自动化控制三大学科上的一门新兴学科,属于电工类范畴,其内容主要包括电力电子电路、电力电子器件、电力电子装置及其系统,并且在一般工业、电力系统、电子装置电源、交通运输和家用电器等领域得到了广泛的运用,极大的推动了我国经济的进步与发展。

2电力电子技术在现实社会中的运用

我国正在由“工业经济”模式向“信息经济”模式转变,在转变中电子技术的发展将起到了基石的作用。因为高新技术的发展需要电子技术。它将传统产业和信息产业结合起来,促进了信息业的飞速前进。如今,很多高性能的电力变流装置已经被人们接纳,并且广泛的投入使用。这不仅促进电子行业的发展,而且还有利于促进其他相关行业发展,比如前面所讲的自动控制技术,就能够为其发展提供便利。未来的电力电子技术的应用领域还会拓宽,并将在经济发展中占据不可忽视的地位。下面,笔者将从四个方面分析电力电子技术在现实社会中的应用。

2.1传统改造业

在传统产业的环境中,有很多不利于人体健康的因素,人们往往要在恶劣的环境中进行高强度的工作。电力电子技术的出现大大的改善了这一状况,它能把电能转化成劳动力,把智能工作室带进工厂,减轻工人们的工作负担。像化石燃料电站类的行业,工人们通常都是在危险的环境中作业,电力电子行业的出现,给此类行业的工作带来了极大的便利。

2.2家用电器

电力电子技术也逐渐的普及到各家各户中,如变频空调、荧光灯等等。这些家用电器为家庭生活带来极大的便利的同时,也相对的节约了家庭开支。比如,变频空调能够节约百分之三十的电量。除了这些之外,居民家中的电器,比如冰箱等都需要电力电子技术。电力电子技术为人们带来更多的空余时间去享受生活。

2.3交通运输

交通运输系统很庞大,我们享受到便利的交通正是由电力电子技术支持的,比如交通中采用直流机,采用变频装置的交流机车,就能够为交通运输带来与传统交通所不同的优势。除了机车外,还有飞机轮船等也需要通过电力电子技术的支持。就算是如今各大高楼林立中的电梯也都采用交流变频调速。在交通运输界,电力电子技术已经毫不意外的成了一颗众家热捧的“新星”。

2.4电力系统

电力系统的发展能够推动国家的发展,电力系统也需要电力电子技术,所以,当前的电力系统广泛采用该技术。配电系统的不稳定为我们带来很大的烦恼,电力电子装置可以在发生意外的情况下有效的控制电能质量,达到改善电力系统供电质量的目的。

2.4.1高压直流输电(HVDC)

高压直流输电是利用稳定的直流电,具有无感抗、无同步问题等优点而采用的大功率远距离直流输电,输电过程为直流。常用于海底电缆输电,非同步运行的交流系统之间的连络等方面。不增加系统的短路容量,便于实现两大电力系统非同期联网运行和不同频率电力系统的联网;利用直流系统的功率调制能提高电力系统的阻尼,抑制低频振荡,提高并列运行的交流输电线的输电能力。它的主要缺点是直流输电线路难于引出分支线路,而绝大部分只用于端對端送电。

2.4.2柔性输电技术(FACTS)

柔性交流输电系统又称为灵活交流输电,能有效提高交流系统的安全稳定性。柔性交流输电技术的设备可分为串联补偿装置、并联补偿装置和综合控制装置。其主要内容是在输电系统的主要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行灵活快速的适时控制,以期实现输送功率合理分配,降低功率损耗和发电成本,大幅度提高系统稳定和可靠性。

3应用展望

在今后现代电力电子技术应用过程中,需要重视以下几个方面的问题:首先,需要对节能和环保给予充分的重视,通过完善控制设备和设计专用的电机来有效地提高电机系统的使用性能和效率;其次,为了实现节能和环保,则需要使用中高压直流转电系统,使其实现低能耗及低污染;最后,需要加快解决电力系统中储电装置的设置问题,需要电力系统设计者从控制技术等方面来制定切实可行的解决方案,从而对电能储备中存在的问题进行有效解决,更好地推动电力系统的持续、稳定发展。

篇9

1 电力电子的发展及发展趋势

电力电子技术是利用电力电子元件对电能进行控制和转换的学科。电力电子技术已经与其他技术相结合成为一门交叉的科学,它经历了三个阶段:整流器时期、逆变器时期、变频器时期,随着电力电子器件和技术的更新,使得其在很多领域都得到应用。

1.1 整流器时期

随着美国通用电气研制了第一个工业用的晶闸管,从而开启了整流器时代。上个世纪50年代工业用电基本上是50HZ的交流电,但是像电解、牵引、直流传动都需要直流电提供动力,于是基于晶闸管基础上的硅整流器就应运而生了,它能把工频交流电转化为直流电,极大的促进了工业的发展。

1.2 逆变器时期

由于20世纪70年代出现了世界性的能源危机,晶闸管作为半控型器件,不能自动断开,因此也不能适应企业的需要。交流电机变频调速因节能效果显著而迅速发展,这些自开断的全控型器件也得到了极大的发展,但是由于技术限制,发展也有限。

1.3 变频器时期

在八十年代随着电力电子技术的发展,大规模和超大规模的集成电路的发展标志着现代电力电子时代的来临,其中以MOSFET和IGBT为代表。它们的出现使得电频从低频向高频转化,同时也使设备向小、轻等方面发展。

现代电力电子技术的研究核心任然是电源技术,目前现代电力电子技术正向规模化和集成化发展;现代电力电子技术正从低频向高频发展;现代电力电子技术向全控化和数字化转变;现代电力电子技术正向着绿色化转变。

目前我国政府和企业都在强调创新的作用,现代电力电子技术的发展使得其与多个领域的科学相结合,其发展创新将会惠及多个领域,目前现代电力电子技术也是向着智能化和绿色化的方面去发展。这样的发展不仅能够为我国工业发展提高效率而且能够带来环境方面的保护。

2 电源技术的发展及发展趋势

开关电源的前身是线性稳压电源。电源的种类按照不同的分类标准来看,主要有以下几种:按输入-输出分为AC-AC、AC-C、DC-C、DC-C;按同负载连接稳压方式分为串联型稳压电源、并联型稳压电源;按工作状态分为线性电源、开关电源、二极管稳压电源。在我们生活中,大多数电子装置、电气控制设备的工作电源是直流电源。随着计算机等电子装备的集成度的增加,体积越来越小而功率却越来越大来取代了体积庞大的线性电源开关。新型的电力电子技术给电源开关的发展提供了物质基础,20世纪60年代末,高耐压、大电流的双极型电力晶体管的出现,使得采用高工作频率的开关电源得以问世。

开关频率的提高有利于开关电源的体积减小、重量减轻。最早期的开关频率仅仅是几千赫兹随着电力电子技术的发展开关的频率逐渐提高,当频率达到10kHz左右时,变压器、电感等磁性元件发出很刺耳的噪声。为了降低噪声,科研人员不断研发最终使得开关频率突破了人耳听觉极限的20kHz,随着电力MOSFET的应用,开关电源和开关频率进一步提高,使得电源体积更小,重量更轻,功率密度进一步提高。IGBT可以看成是MOSFET和GTR复合而成的器件。IGBT的出现,使得开关电源的容量不断增大。另外,为了解决开关频率的提高也使得电源的电磁干扰问题,20世纪80年代出现了采用准谐振技术的零电压开关电路和零电流开关电路,这种电路利用以谐振为主的辅助换流手段,使开关开通或关断前的电压、电流分别为零,解决了电路中的开关损耗和开关噪声问题,使开关频率可以大幅度提高,从而,使开关电源进一步向体积小、重量轻、效率高、功率密度大的方向发展。电力电子技术随着需要会不断的向前发展和创新,新的产品会不断的更新换代去适应企业的发展需求,目前无论是国外还是国内都有极大的需求量,而电源技术会不断向高频、小体积方面发展。

3 电力电子技术在电源领域方面的应用

3.1 计算机绿色高效率电源

计算机能够为人类的工作生活带来方便,但是过去计算机的体积庞大,在八十年代,计算机率先采用了电源开关,促使更多的电子设备采用电源开关。计算机换取了电源开关之后,为省电、环保方面做出了贡献。

3.2 高频开关电源

通信业的快速发展促使电源行业的快速发展,目前频率高体积小的电源是通信业的主流。通信设备中所用的集成电路种类繁多,电源电压要根据不同的情况使用有所不同,在 通 信 供 电 系 统 中 采 用 高 功 率 密 度 的 高 频 DC-DC隔离电源模块可以减小损耗、方便维护和安装。

3.3 直流-直流变换器

DC/DC 变化器可以将固定的直流电压转变为可变的直流电压,可以再无轨电车、地铁等行业进行应用,可以使的加速平稳,得到快速的响应,别且能够节约电能。同时 DC/DC二次电源已近商品化,一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

3.3.1 不间断电源

不间断电源(UPS)是计算机 、通信系统以及要求提供不 能中断场合所必须的一种高可靠、高性能的电源。现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,微处理器软硬件技术的引入使得其实现了对UPS的智能化管理。

3.3.2 变频器电源

变频器电源主要用于交流电机的变频的调速,随着日本东芝的将这种技术应用于空调技术中,国内90年代开始应用这种变频技术,极大的节省了电能。

3.3.3 高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于电焊机工作环境恶劣,电焊机频繁的出现一些问题,高频逆变式整流焊机电源的出现解决了常出现的问题,提高了焊机工作的可靠性。

4 结语

本文笔者通过分析电力电子的发展和电源技术的发展及电力电子技术在电源领域的应用,来揭示未来电力电子的发展趋势,鼓励更多的科研人员能够敢于想象,发挥自己的创造力研发出更多适合工业和能源需求的电源。

参考文I

[1]韦和平. 现代电力电子及电源技术的发展[J]. 现代电子技术,2005,18:102-105.

[2]陈晓东.现代电力电子及电源技术的发展[J].科技信息,2010,01:1015-1016+1082.

篇10

【摘要】电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。

关键词 电力电子技术;发展

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展?

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

2.现代电力电子的应用领域?

2.1计算机高效率绿色电源。?

(1)高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。?

(2)计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星”计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。?

2.2通信用高频开关电源。?

(1)通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。?

(2)因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。?

2.3直流-直流(DC/DC)变换器。?

(1)DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。?

(2)通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。?

2.4不间断电源(UPS)。?

(1)不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。?

(2)现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。?

(3)目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。?

2.5变频器电源。?

(1)变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。?

(2)国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。?

2.6高频逆变式整流焊机电源。?

(1)高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。?

(2)逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。?

(3)由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。?

(4)国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29Kg。?

2.7大功率开关型高压直流电源。?

(1)大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100KW。?

(2)自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。?

(3)国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。?

2.8电力有源滤波器。?

(1)传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。?

(2)电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。?

2.9分布式开关电源供电系统。?

(1)分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。?

(2)八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。?

(3)分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势?

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。?

3.1高频化。

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。?

3.2模块化。?

(1)模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。?

(2)由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。?

3.3数字化。

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。?

3.4绿色化。?

(1)电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。?

(2)现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

篇11

关键词:电子技术;现状;电力应用

中图分类号:F406文献标识码: A

一、前言

电子技术应用于电力系统,是把电力变换当成研究对象,并对电能进行控制的科学技术。电子技术在电力系统的应用,能够使得电能更好地为人们提供服务。

二、电子技术发展概述

1、和能源相结合的电子电力技术

“科学发展观”的提出使得人们愈加关注经济的可持续发展,通过运用电子电力技术来实现对风能、谁能、太阳能等自然能源向电能的转化,不仅大大提高了能源的利用效率还有效改善了我国资源短缺的窘境,通过这些能源发电将在今后成为电子电力技术的主要发展趋势。电力节能技术的研究和发展大幅度提高了我国的能源节约效率,国家也一直关注和支持着这方面技术的研究和应用

2、机电一体化的不断发展和应用

通过电子电力技术来实现对电能的科学控制和管理已成为当前主流的研究方向,相关资料研究显示在将来全国几乎全部的电能都需要通过电子电力技术的进一步处理后才能够投入使用。近些年来,我国机电一体化的进程也在不断加快,这为电子技术的深入发展和应用打造了良好的基础。

3、智能技术的推广

电子计算机、人工智能等理论和技术的研究的不断深入为实现电力控制系统的智能化创造了有利条件。通过智能技术的应用,使设备或者系统具备一定的自适应、自控制能力,对工作过程中的相关操作或者出现的一些故障能够做出准确的判断、分析和处理将能够全面提升电力行业的管理水平和服务质量,这也将成为电子电力技术的一个重要的研究方向之一。

三、电力技术的应用对于电力系统产生的意义

电力技术是最近几年发展起来的应用于电力行业的一种新型技术,这种技术通过计算机技术、半导体元件、电子信息技术等来完成对电力系统及设备的控制。研究电力技术的主要目的是为了实现有效利用电力资源以及提升电力行业服务的质量。尽管电力技术的发展历程还很短暂但它的发展速度却是十分的迅速,当前已经拥有了一套比较系统、完整的体系。电力技术应用于电力系统产生的重要意义包括以下几点:

增强电力行业的经济效益

电力技术的广泛应用能够有效改善系统和设备的工作效率,提高利用资源的效率,降低管理成本和人力成本。此外,它还可以不断促进完善系统和系统的功能,从而使电力行业朝着更加低能耗、高效率的发展方向前进。

调整产业结构

电力技术的应用与发展使得电力行业加入到了新兴产业的行列中来。加快机电一体化进程还可以促使电力行业积极的引入电子技术,从而提升电力企业的整体实力。

四、电子技术在电力系统中的应用

1、电子技术在发电环节的使用现状

发电环节作为电力系统中最为核心的部分,其涉及到庞杂、多样的机器设备,一旦没有进行有效管理将会直接影响到电力系统的正常运行。电子技术在发电环节的运用,主要变体现在对不同设备运行特性的有效控制、改善上。

(1)运用静止励磁实现对大型发电机的控制。由于采用结构简易、稳定性好、成本较低的晶闸管整流自并励方式,该控制方法被电力系统的大部分企业积极采用。励磁机环节的有效省略,为快速地进行发电过程调节,提供了十分高效的技术保障。

(2)运用变速恒频励磁完成对风力、水力发电机的有效控制。众所周知,风力发电机的发电效率直接与风速的三次方成正相关的关系,在风车发电过程中,其捕捉到的最大风能因风速的不同而相应变化,为了实现有效功率的最大化,可以通过对转子励磁电流的有效调整,达到机组运行能够与转子转速叠加后维持在恒定的输出频率,完成预定目标。同样,水电发电有效率直接受到水头压力以及水流量大小的影响,为使机组的转速能够与水头的变化幅度以及流量的起伏状态契合一致,通过变速电源的控制,一样能够十分准确地完成输出频率恒定的预定目标,实现有效功率最大化的目的。

(3)对发电厂风机水泵的变频调速进行有效干预。据相关资料显示,发电厂的内部电率的均值为8%,风机水泵的耗电量占到火电设备耗电量总数的63%左右。运作效率不高是广大发电企业面临的一大难题,低压以及高压变频器的出现很好地解决了这一历史性难题,通过运用风机水泵的变频以及调速,可以十分有效地达到节能的目标。由于技术水平尚处于起步阶段,高压大容量变频器的生产、设计尚处在较为稀缺的状态,学校与企业联合开发研究的方式正在被积极推广。

2、电子控速技术的推广使用

在工况相对恶劣的作业环境下运用该技术,能够实现电动工具的串激电机额定负载转速与空载转速保持基本一致或者完全统一的效果,这就为广大施工人员在进行作业时,有效降低噪音和震动,实现工作效率的提高并且延长工具的使用期限提供了十分必要的技术支持。

3、电子减速技术的运用推广

施工人员在进行螺钉以及螺栓拆卸过程中,由于工具需要在低转速、大扭矩的条件下进行运作,传统的串激电机扳手或者螺丝刀,难以实现转速、扭矩双双降低的情况下完成螺钉与螺栓的顺利卸载,尤其是生锈现象出现时,卸载就更加不易。通过使用电子减速器,可以实现串激电机负载减压的同时自动将电压进行增大,实现奠基的大扭矩,方便工人进行螺栓以及螺钉卸载。

4、电子扭矩控制技术的有效运用

由于高功率、大扭矩的客观条件,操作人员在用螺丝刀或者把手进行大螺钉、大螺栓的拧紧作业时,往往会出现因扭矩控制不当而出现钻头、螺钉、螺栓断裂的情况,电子扭矩控制技术的出现十分巧妙地解决了这些问题,通过使用电子扭矩控制器,可以对螺丝刀的扭矩值以及无极调节扳手进行有效控制,与此同时,将扭矩的最大值控制在一定的范围内,也是保障流水作业时,操作人员实现装配螺钉、螺栓拧紧程度一致性的重要手段。

5、电子调速技术在电动工具中的推广使用

电子调速技术是电力系统中电动工具领域使用最广泛,也是最早的电子技术。目前基本上所有的品种都采用了该项技术,通过对电动工具的运行速度进行有效设定,可以实现其在不同转速,尤其是低转速水平上的灵活、精准作业,为改善工作质量、提高工作效率创造了十分便利的条件。

6、电子启动电流限制技术在电力系统中的运用

电动工具的启动速度经由限制启动电流控制,这一手段的运用为功率较大的电动工具进行征程作业创造了十分高效的前提条件。继电器与限流电阻各一只组成的电子启动电流限制器,在工具机体内通过对其启动过程中电枢、磁力线的控制,实现工具启动,电流不会出现立刻增大的现象,为其正常、安全运用奠定了极其重要的保证。

7、微机控制技术的应用

在进行微机控制过程中,电动工具机器内部只需要安装空间占用小、价格相对较低的单片机,便可以进行作业。使用该项技术最大的优势,便在于其能够对操作和控制进行自动选择,通过控制屏上的按钮进行工具运作控制,不仅实现了高效作业,更加实现了这一过程中工具完好度的保护。

五、结束语

综上所述,电子技术是实现智能电网的基础和技术保证。随着电网的不断深化发展,电子技术必将获得长足发展,得到更广泛的应用。

篇12

电力电子技术的发展历程可具体划分为三个时期,即整流器时代、逆变器时代和变频器时代。首先,整流器时期的电力电子技术发展主要表现为大规模的工业用电,它的用电来源主要是交流发电机,消费形式以直流电为主,比如有色金属的电解、内燃机车的牵引以及轧钢中的直流电等。硅整流器通过将直流电转化为工业用电而被广泛应用于配电和输电领域,这在六七十年代的中国随处可见。其次,逆变器时代的电力电子技术发展遭遇了严重的能源危机,其波及范围之广使得整流器的发展不再适应电能企业的使用需求,以交流电为主的逆变器时代应运而生。逆变器时代以晶闸管、晶体管以及晶闸管器件作为时展的主流,在高压直流输出的过程中实现了对动态功率的有效补偿。然而这时的使用范围还仅仅局限于中低频领域,使用过程中的效率较为偏低。再者,八十年代的变频器时代实现了大规模和超大规模集成电路的发展与应用,这不仅电子应用领域的显著创新,同时也为后期现代电力电子技术的发展提供了必要的技术借鉴。变频器时代还对电力的精细加工技术进行了完善,全控型功率器件的出现实现了电力电子技术的高频化发展,使得现代电力电子技术转化成为一种可能。功率半导体市场逐渐被变频器件取代,这一革新不仅提升了变频调速的使用频率,在小型轻量化技术装备方面也有了显著进步。

1.2当前电力电子技术的应用领域

电力电子技术的发展核心控制体系在于电能器件的有效转换,作为一种现代技术,电力电子技术的主要功能不仅包括了逆变、整流、变频等基本方面,除此以外还涉及到斩波和智能开关等方面的内容。通过对电网工频电能的转化来达到不同的使用目的,以此适应现代化生产对电力电子技术的使用需求。具体应用方面,其应用领域主要包括了三大方面:其一,在变频器作用下对微电子技术及控制技术进行有效整合,将固有不变的交流电转变为可换可调的可变式交流电,以此达到无级调速的目的,这对电能资源的节约显然极为有利。其二,在开关电源和供电电源方面现代电力电子技术也有着自身的使用功能,类似变频电源、焊接电源、充电电源、照明电源等都为现代化电力系统的完善提供了切实可行的技术指导。其三,一些发电系统或是交流输电技术也体现出现代电力电子技术的应用意义,水力发电、风力发电、配电与用电系统的完善等都和电子系统的应用之间有着密切联系。

2现代电力电子技术的发展趋势探讨

2.1电力电子技术的发展趋势

电子电子技术归根结底是对电源技术的研究,电源技术不仅是电力电子技术研究的核心,一定程度上开光电源技术的发展也预示着现代电力电子技术今后的发展走向。从发展趋势来看,现代电力电子技术的发展趋势可概括为以下几方面特点:第一,现代电力电子技术的集成化与模块化特征。这一特征主要表现在现代电力电子技术的功率器件和电源单元两个方面,从微小器件组成来实现电子器件的智能化辨别与使用。这样的模块功率不仅有效控制了器件的体积,在设计与制造方面也形成了显著的模块化特征。电力电子技术的模块化发展其核心目的旨在降低器件的电应力,从安全性与可靠性角度提升电力系统的使用性能。第二,现代电力电子技术的高频化特征。从理论分析及实践验证的双重角度不难看出,无论是变压器的电感还是电容体积在供电频率方面都呈现出一定的反比例趋势,因此体积的减小必然会导致电子技术的高频化呈现。从这个角度来看,全控型电子器件的问世已然标志着现代电子与电力技术率先实现了自身的高频化转换。第三,现代电力电子技术的全控化与数字化特征。全控化电力电子技术的革新突破了原有电力电子器件在使用功能方面的限制,降低了关断换流电路可能造成的危险,从根本上保障了电力系统在使用过程中的安全性。数字化特征则主要表现在现代电力电子技术的高频斩波以及谐振变换等方面,从弱电领域拓展了电力电子技术的发展渠道,提前实现了控制技术的集成化。第四,现代电力电子技术的绿色化特征。这里的绿色化特征既包括了环境污染问题的控制,又涉及到必要的电网污染源问题,是当前电力电子技术在发展过程中亟需解决的重要问题。发电容量的控制从根本上减少了发电对环境造成的污染,与此相关的污染过滤器或是电能补偿系统等都是当前电力电子技术向绿色化迈进的有力证据。具体的电力电子技术应用方面,则主要表现为四大革新趋势:其一,太阳能发电技术的应用。太阳能发电技术为普通家庭提供了足够的电能使用空间,成为了可再生资源的有效传播途径之一。其二,燃料电池发电技术。燃料电池的发电装置主要是将其中的化学能转化为可使用的电能,节能省电,鲜少产生环境污染问题。其三,交流输电技术的应用。作为一种新型电力系统出现的交流输电技术实现了对电网资源重新分配与利用,保障了电力系统的稳定性。其四,现代电力电子技术中的储存与质量控制技术。储存技术的使用在于提升电力系统本身的电力储备功能,而质量控制技术则在于从供电质量角度提高电力产品的使用效率。

2.2现代电力电子技术的应用展望

关于现代电力电子技术的应用展望,可从如下几方面得以体现:第一,从节能性角度提升电机系统的使用性能,可从专用电机的设计或是控制设备的完善等方面来提升整体电力系统的使用效率;第二,中高压直流输电系统的运用也是今后电力电子技术发展的必然趋势,这一系统本身就具备了低污染和低能耗的特点;第三,当前社会发展进程中充电站网络的构建或是电动车辆的普及已经逐渐成为现代电力电子技术发展进程中积极完善与改革的内容,以电动汽车为代表的环保电力问题逐渐成为一个时代课题。至于当前城市建设过程中充电网络的配备问题基本尚处于起步阶段,无论是实际应用领域还是理论构建领域都还存在许多值得研究和讨论的问题,但无疑其发展空间是极为广阔的;第四,关于电力系统中电能储备装置的设置与超导线的使用也将成为电力电子技术亟需解决的问题之一,从根本上解决电能储备问题势必将对电力系统的持续发展产生积极而深远的影响。然而面对电能储备过程中存在的诸多问题,电力系统设计者需要从控制技术与存储技术的双重层面来体现储能装置的有效性,对于其中可能存在的不合理问题提出切实有效的解决或改进对策。

友情链接