循环冷却水系统合集12篇

时间:2022-12-17 16:06:06

循环冷却水系统

循环冷却水系统篇1

引言

随着国民经济的发展,使用集中式空调系统的建筑越来越多,能耗也随之增大。作为空调系统中循环冷却水系统,虽然水量较小,设备为定型产品,水质要求较低,季节性运转等,但设计中对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题,甚至由于空调冷却水系统的结垢、腐蚀和藻类滋生造成循环水系统管道的堵塞和腐蚀。为有效解决上述问题,下面从冷却塔选型,循环水的处理,系统管道的布置几个方面进行分析。

1循环冷却水系统设备的合理选型

1.1注重设计基础资料

为保证冷却塔的冷却效果,必须注重气象参数的收集, 气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(Pa),夏季主导风向,风速或风压,冬季最低气温等。

根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。

1.2循环冷却水量确定

确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q=0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0-1.1)RT 。

1.3冷却塔选型

民用建筑冷却塔选型一般选超低噪音逆流冷却塔,逆流塔冷却水与空气逆流接触,热交换率高,当循环水量容积散质系数βxv相同,填料容积比横流式要少约20%-30%,对于大流量的循环系统,可以采用横流塔,横流塔高度比逆流塔低,结构稳定性好,有利于建筑物立面布置和外观要求。

冷却塔选型时应考虑一定余地,我们在工程设计时,一般按制冷机样本所提供的冷却循环水量的110%-115%进行选型。防止由于环境,管道结垢等原因影响冷却水系统的效率。

2 循环冷却水处理

冷却水的处理方法可分为化学法和物理法。

2.1化学法。目前,大型冷却水系统多采用化学方法,为此必须在冷却水中加入阻垢剂、缓蚀剂、杀菌灭藻剂及其配套的清洗剂等,从而形成了冷却水的全套水处理技术。可供设计大型空调冷却水处理的参考。由于阻垢可保证传热效果(节能),级蚀剂、杀菌灭藻剂可减少设备腐蚀,延长设备寿命均属正效益,所以被世人所关注。

2.2物理方法:是近几年开始普遍广泛使用的一种方法,该方法运行费用低、使用方便、易于控制、无污染是一种比较理想的水处理方法,实际上国外早在60年代便把注意力由化学方法转移到物理方的开发上来。目前,应用的物理方法有磁力法、电解法、超声法、静电法等。

电解法能抑制水垢的附着,但是除垢不彻底,且具有电解孔蚀的危险 ;早期应用的磁力法稳定性比较差,长时间使用不能控制积垢,必须定期清扫积聚在控制器中的氧化铁;而静电法则克服了上述诸方法的缺点,并且,除了防垢和溶垢外,还有显著的杀菌灭藻的效能。但是静电法和电子水处理法缓蚀作用较专用的化学缓蚀略低,在一般空调冷却水系统内可不考虑采用其它缓蚀方法。而在一些对缓蚀要求较高的系统最好同时适量添加一些缓蚀剂,可获得更好效果。

3冷却水系统的管道布置

冷却水系统的管道布置虽然比较简单,但如果考虑不周,也会出现一些问题。由于循环冷却水系统是开式系统,如果冷却塔集水盘容积小或冷却塔距水泵距离太远及并联运行的冷却塔出水管阻力平衡严重失调,就会使空气混入水中,进入水泵并压入管道中,引起严重的水锤致使水泵出水管及其管件损坏。所以,冷却水系统应注意下列几个问题:

3.1冷却塔并联使用时管道阻力平衡,冷却塔与泵的距离不能太远;泵应布置在冷水机组的前边(即将冷却水压入冷水机组中);并且,泵应作成自灌式;避免泵的吸水管上下翻弯。另外,冷却泵、冷水机组、冷却塔宜做成一一对应,以便于调节和流量平衡,如果不能实现上述控制时,应采用自动控制系统,冷却塔的进出口处均应设电磁阀,且应同步开、关。或在每台冷却塔的进、出水管上设置平衡阀以保证每台冷却塔的进水量满足其额定流量。为提高吸水管的集水量,设计吸水管时可适当加大吸水管的管径。

3.2选择冷却塔时首先应注意产品样本给出的性能参数与该产品实际性能的差距。其中包括产品样本的不实及工程建设地点的气象条件与产品标定性能的测试条件不同等因素。要按照工程地点的气象条件进行校核。并应根据该产品的工程应用经验采取相应的调整措施。有时不得不采用较大的裕量系数。

3.3冷却塔一般安装在高层建筑的裙房屋面。因距离主楼较近,所以尚应考虑冷却塔的吸风距离、防火、噪声、漂雾等问题。

3.4选择冷却水泵时要根据冷却水系统的循环阻力,输水高差及自由水头决定,不宜富裕过多。水泵的流量应按校核后的冷水温差决定。多台泵并联工作时要按并联曲线进行计算和校核。不能盲目地按台数进行水量叠加。

3.5关于冷却水系统的集水池,以往在设计冷却水设备时,其集水池的容积大多按冷却水量的10%设置(见空调制冷手册)。这一要求在选用集水型冷却塔时已不适用。集水型冷却塔带有自身的集水箱,其容量较小,但实际证明亦能满足冷却水泵工作的需要。目前的空调冷却水系统,白于受建筑条件的限制,多数无法设置大型、符合10%冷却水要求的集水他。所以,依靠冷却塔本身的集水箱并做好水位保持及补水即可。有关资料推荐,集水箱的容积一般为冷却水量的2%一3%,建筑条件许可增设水池,其容量也不宜过大,不需要按冷却水量的10%设置。只要能容纳冷却水系统的水量,能够保证冷却水泵正常起动和工作即可。

4结束语

透过分析我们知道,冷却循环水系统运行使用的关键在于正确选择设计参数,必要的水处理措施以及系统管道布置的是否合理,使之节能,高效地行,满足现代建筑功能的需求。

参考文献:建筑学生联盟&Z8 T e f3gZ

循环冷却水系统篇2

中图分类号:TU991.41 文献标识码:A 文章编号:

一、前言

以水作为冷却介质,并循环使用的一种水系统称为循环冷却水系统。目前,节约用水是全世界都在关注的话题,工业企业一直是用水领域的大户,大部分工业企业目前采用敞开式循环冷却水系统作为节约用水的手段,其特点是冷却水流过生产设备升温后,经管路重新流回冷却设备使水温回降,可用泵送回生产设备再次使用,大大节约了水资源。但是敞开式冷却水在循环过程中会接触空气并蒸发浓缩,因此结垢、腐蚀及微生物滋生成为敞开式循环水系统的三大问题。为保证生产设备长周期安全稳定运行,必须选择一种经济实用的循环水处理方案。这也成为许多水工作者重点研究的课题。

二、循环冷却水现状及存在问题

循环冷却水由泵送往冷却系统中各用户,经换热后温度升高,被送往冷却塔进行冷却。在冷却塔中热水从塔顶向下喷淋成水滴或水膜状,空气则逆向或水平交流流动,在气水接触过程中,进行热交换。水温降至符合冷却水要求时,继续循环使用。空气由塔顶溢出时带走水蒸气,使循环水中离子含量增加,因此必须补充新鲜水,排出浓缩水,以维持含盐量在一定浓度,从而保证整个系统正常运行。补充水的量应弥补系统蒸发、风吹(包括飞溅和雾沫夹带)及排污损失的水量。循环水与补充水中含盐量之比,即为该循环水系统的浓缩倍数。在一定的循环冷却水系统中,只要改变补充水的含盐量,就可以改变循环水系统的浓缩倍数,而提高浓缩倍数是保证整个循环冷却水系统经济运行的关键。

1、水垢附着

循环冷却系统中,大量设备是由金属制造,长期使用循环冷却水,会发生腐蚀穿孔。这是由多种因素造微生物(厌氧菌、铁细菌)引起的腐蚀等。设备管壁腐蚀穿孔,会形成渗漏,或工艺介在循环冷却水系统中,碳酸氢盐的浓度随蒸发浓缩而增加。当其浓度达到过饱和状态,或经过传热表面水温升高时,会分解生成碳酸盐沉积在传热表面,形成致密的微溶性盐类水垢,其导热性能很差(≤1.16W/(m·K),钢材一般为45W/(m·K))。因此,水垢附着,轻则降低换热器传热效率,严重时,使换热器堵塞,系统阻力增大,水泵和冷却塔效率下降,生产能耗增加,产量下降,加快局部腐蚀,甚至造成非正常停产。

2、设备腐蚀

冷却水中溶解氧引起的电化学腐蚀;冷却水渗入工艺介质,影响产品质量,造成经济损失,影响安全生产。

3、微生物的滋生与粘泥

在循环冷却水系统中,由于养分的浓缩,水温升高和日光照射,给细菌和藻类的迅速繁殖创造了条件。细菌分泌的黏液使水中漂浮的灰尘杂质和化学沉淀物等黏附在一起,形成沉积物会堵死管道,迫使停产清洗。

三、循环水处理的新技术

循环水处理的新技术包括两个方面:一是新的水质稳定技术,二是新的现场监测技术。

水质稳定技术

目前广泛使用且较成熟的技术为化学药剂处理,大部分循环水系统均采用“缓蚀阻垢剂+氧化性杀菌剂+非氧化性杀菌剂”的处理方案,由于目前国家对环境要求越来越高,水体富营养化严重等原因,药剂处理也得到发展,由以前的无机磷处理发展到有机磷处理及全有机处理方案。

化学处理方法

开发应用低磷、低锌、无铬环保性水处理药剂,在监测技术允许的情况下甚至尽量使用无磷药剂。

物理处理方法

物理处理方法不仅具有除垢、防垢、缓蚀和杀菌灭藻等多种功能,更主要的是能有效的降低环境污染。虽然目前实际应用走在了理论研究的前面,技术相对不够完善,应用上受到了一定的限制,但随着各项技术的发展必然会作为水处理技术的一个新的发展方向,将会越来越受到人们的重视和运用。

①循环水的磁化处理

利用磁场效应对水进行处理,称为水的磁化处理。作用原理是磁场对水及其中的离子进行磁化,形成定向移动改变了结垢离子的结合能力,降低结垢几率,同时钙镁碳酸盐和其它无机盐的溶解度在磁处理后的活性水中得到提高,同时水中的结垢物晶体在通过磁场时其表面的电荷分布在磁场的影响下发生了变化,形成一种松散的晶体团,不会粘附在管壁或其它物体表面,可通过定期排污来除去;水流经过磁化后,水中的溶解氧被磁化水分子包围,成为“惰性氧”切断循环水中金属腐蚀的主要根源;对微生物而言,水经过磁化后破坏了生物细胞的离子通道,改变了水中微生物的生长环境,使其丧失了生存条件,从而起到杀菌灭藻的作用。

②高压静电水处理

阻垢机理:强制水中离子在静电场的影响下形成定向移动,无法结合且不可能靠近器壁,阻止了钙镁等阳离子不致趋向器壁,从而达到防垢、除垢的目的;而且能起到剥落水垢的作用,在结垢系统中能破坏垢分子之间的电子结合力,改变晶体结构,促使硬垢疏松,使已经产生的水垢逐渐剥蚀、脱落;控制腐蚀原理:经静电处理后,水中将产生活性氧,跟电解类似,这种活性氧氧化性较强,故它能在清洁的金属表面产生一层微薄氧化薄膜防止腐蚀;杀菌灭藻机理:干扰微生物的生物电流,破坏其生存环境达到杀灭作用。缺点仍是处理效果不够稳定,理论基础薄弱。

③低压电子水处理

作用原理:电子发生器产生电子场,流经电子水处理器的冷却水在微弱电流的作用下,水分子受到激发而处于高能状态,水分子电位下降,使水中溶解盐类的离子或带电粒子因静电引力减弱,使之不能相互集聚并失去化合力,从而抑制了水垢的形成。受到激发的水分子还可吸收水中现有的沉积物和积垢的带负电荷的粒子,使积垢疏松,逐渐溶解并最终脱落。水分子的电位下降使水分子与器壁间电位差减小,抑制了金属器壁的离解,起到缓蚀作用。微电流及电子易被水中的溶解氧O2吸收生成O2-和H2O2等物质,这些物质都是氧化性杀菌剂,杀生能力比氯气还强,使微生物细胞破裂原生质流出,影响细菌的新陈代谢,从而起到杀菌、灭藻的作用。

④超声波处理

作用原理:延长晶体形成的诱导期,从而阻止水垢形成;超声波在水体中形成大量的微小气泡,这些气泡有很高的爆发力、冲击力,不断冲击还未稳定的晶核,阻碍晶核达到稳定态从而得到生长点,或者使稳定生长源的数量大大减少,导致诱导期的延长,无法形成大量致密的垢。

循环水现场监测技术的新发展

循环水水质监测可以及时反映系统内部的运行情况,方便有效的监测技术可以快速准确的体现出换热器内部的真实情况,因此,冷却水系统日常的腐蚀、沉积物和微生物的现场监测对于保证冷却水系统的优质运行,对于了解冷却水处理方案的效果及指导冷却水系统的日常运行是必不可少的。

腐蚀的现场监测技术

①试片法

目前最简便、最经济、使用最广泛的腐蚀监测方法,可以同事监测腐蚀速度、蚀孔深度及观察腐蚀形态,有助于现场方便的找出产生腐蚀的原因;缺点是所测出的腐蚀速率为一段时间的均匀腐蚀、监测周期长,不易发现冷却水系统中瞬时出现的急剧变化。

②试验管法

以金属试验管替代腐蚀试片的方法。更接近于换热器管子的真实情况,比试片法准确度稍高一些,缺点仍是监测周期长。

③极化电阻法

通过金属电极直接测定换热器管子的极化电阻。该方法的优点是安装简单、能测量出金属的瞬间腐蚀速度、可输出数据实现在线监测;缺点是其所提供的腐蚀信息也是金属均匀腐蚀的信息,因此最好与试片法或试管法结合使用。

④监测换热器法

模拟换热器真实运行情况的小型换热设备。优点是有一个换热面,可以真实模拟系统换热器情况,能监测传热面上腐蚀和沉积的情况。这种监测方法为目前新建厂矿普遍采用的方法。其最大的特点是能同时完成腐蚀及沉积的监测。 (2)沉积物的现场监测技术

①监测换热器法

与腐蚀的现场监测为同一设备,通过剖管观察其中沉积物的沉积情况,在线监测冷却水系统中运行时的污垢热阻值。

②电热式污垢监测仪法

换热器在线监测仪的升级产品,它既保持了原产品测试准确、性能可靠等优点,又增加了许多新的功能。是实现工业循环水现场监测现代科学管理的有效手段。这类污垢监测仪具有小巧、简便、直读的优点。

③微生物的现场监测技术

包括微生物测定及粘泥量的测定,其中微生物测定仍是以实验室测定为主,而粘泥量测定主要是依靠生物过滤网现场采集,均为目前的常用方法,在此不再赘述。

结语

综上所述,循环冷却水水质处理技术的整体发展方向是明确的,即高效、易于管理、经济及环保。但是工厂设计应按照工厂本身的具体情况而综合考虑。任何水质稳定技术,只要被合理的采用,都可以达到较为理想的效果。

参考文献:

循环冷却水系统篇3

中图分类号: TL503.91 文献标识码: A 文章编号:

1循环冷却水系统

冷却水换热并经降温,再循环使用的这样的供水模式,我们把它叫做冷却水系统[1-3]。

1.1直流冷却水系统

该系统主要由以下设备组成:水泵和管道和冷却设备。冷水流过需要降温的生产设备(常称换热设备,如换热器、冷凝器、反应器)后,温度上升,水经过换热器而后又被排放出来,这样的系统需要很大的水量。在水中的各种离子含量基本上维持平衡,虽然该系统所用的设备少,操作也很方便,但是所消耗的水量太大,与当前提倡的节水节能、以及我国的水资源现状及其不相符合。

1.2循环冷却水系统

上面简单介绍了直流冷却水系统,其中冷却设备有封闭式和敞开式之分,因而循环冷却水系统也存在这两种系统模式[3]。

(1) 封闭式循环冷却水系统

该系统用封闭式冷却设备,循环水在管中流动,管外通常用风散热。与直流冷却水所不同的是用过后的水可以再次被使用。该系统需要使用硬度比较低的水质,且冷却水是处在设备之内的循环,不与空气接触,因此,该系统无论在消耗水量还是系统的腐蚀结垢现象,均发生较少。

(2) 敞开式循环冷却水系统

在该系统中,循环使用的水,温度会升高,而后通过冷却塔进行水的冷却,在此过程中,冷却水要不断与暴漏的空气进行接触,水流速度的变化,水的蒸发和空气中杂物的引入,各种无机离子和有机物质的浓缩,这些会加重冷却水系统的腐蚀、结垢、微生物故障,威胁和影响生产设备和装置长周期的安全运行。为了防止发生这些故障,可以在循环冷却水中投加各种水处理剂,以使循环水水质保持和稳定在一个良好的水平上。此循环冷却水系统是现在应用范围最广、类型最多的一种冷却系统。该系统水是在高浓缩下运行,实现了冷却水的高度重复利用。

2.设计案例及运行

2.1 水处理设备简介

辽宁省能源研究所是一家大型的水处理机构,其内设有大型的工业循环冷却水系统,该装置主要元件如图一所示:

1. 储水槽2. 阀门3. 循环磁力泵4. 玻璃转子流量计5. 磁水器

6. 电加热元件 7. 模拟换热器8. 喷头9. 交流接触器及电子温度调节仪

图1磁化水实验装置

此装置是由储水槽、循环磁力泵,玻璃转子流量计,磁水器,电加热元件,模拟换热器、交流接触器及电子温度调节仪等组成。设备在管材上的选择,常采用HDPE管或玻璃纤维增强热固性塑料管,这种材料强度高、重量轻、耐腐蚀、内面光滑比阻小,在安装及使用性能方面都具有相当优越性。

内部装有一个小型的磁化水处理器,该设备可以将普通水转化为磁化水,其阻垢能力比普通水好,该循环水冷却系统省却了冷水池,补水直接进入储水池,使水质不易污染,且水量损失比较少。系统最低处设置放空排污阀,便于排放污水。水泵前后管道上均设置了压力表。为保护主机,其进水管上设置了水流指示器。该装置智能化控制,操作方便,调节简单。

2.2 系统控制

本设备的开机的顺序是:电源开关、循环磁力泵、玻璃转子流量计、电加热元件、模拟换热器及电子温度调节仪温度、磁水器,停机的顺序则相反。根据外界环境气候设定调节水泵功率,节能效果更好。

2.3 水质稳定处理效果及调试运行

传统的加药法操作复杂, 费用高, 技术要求较高, 特别要注意药剂对系统材料的腐蚀性。 目前,水处理行业主要以采用这种产品为主。通过形成高频电磁场产生防垢、除垢、缓蚀、杀菌、灭藻、防锈等多功能于一体,该系统出现问题时,检修也非常的方便。

系统调试运行前,先将管道进行清洗放空,水泵应先手工盘动,加油, 测试绝缘电阻和电路,先点动,再慢慢加长时间, 观察各相电流及电机运转有无异样。系统清洗应该每三天一次,正常运行时也应定期检测水质,适当排污,浓缩倍数控制在10以下。

运行时调试运行中的一个问题是塔水位平衡及系统进气。喷头和储水槽之间的水位很难平衡,反应出口的水深不够,连通管管径过小,水位自平衡效应差, 最好能另设一条管径不小于回水总管的水位平衡管。进气是个大问题,调试运行时,考虑主机冷却水入口处的水压力,如果系统内进入了大量的空气,则实验无法进行,因此在设置时上设排气闸阀。磁水泵的合理安装对于运行稳定及降噪很有帮助。应尽量选择高效节能泵,低转速、立式、单级泵噪音较低,设置地点刚性越大越好,应采用钢混基座,并设置隔震垫、橡胶软接头和弹性支座。水泵进出水方向最好呈一致。管道安装不得造成水泵受力。水泵出口应设微阻缓闭消声止回阀。阀门的设置应考虑设备器材检修时的需要。

2.4 磁化与化学加药联合水处理效果与效益分析

通过向能源所相关实验人员请教得知:启用该设备将磁化与化学加药联合水处理装置,将之安装在一套循环水量为600t/h的冷却水系统上,在安装本设备前,循环水系统补充水量为15万t/a,排污水量为5万t/a,加药量为7.8t/a,的浓缩倍数为2.5,。使用此设备后,补充水量为12万t/a,排污水量为3.5万t/a,加药量为6.5t/a,循环水系统的浓缩倍数为3.5。每年节水达3万t,减少排污水量为1.5万t,减少药剂用量1.3t,节约成本达10万元,具有很好的经济效益和环境效益[4]。

参考文献:

循环冷却水系统篇4

中图分类号:P339 文献标识码:A 文章编号:

1循环冷却水运行过程中问题产生的机理

1.1冷却水中附着物的形成

循环冷却水系统中附着物的组成通常很复杂,可把附着物分为水垢和污泥。水垢是以盐类化合物组成的沉积物,其组成主要是一些难溶性的化合物,如碳酸钙、硫酸钙、磷酸镁和硅酸镁等。污泥可以遍布冷却水系统的各个部位,尤其是水流滞缓的部位,例如冷却塔水池底部。

1.2冷却水中悬浮物的形成

冷却水中的悬浮物主要成因:水源沉清处理的效果不佳,以致泥沙、氢氧化铝、铁的氧化物等悬浮物进入循环冷却水系统;冷却水系统运行时处理的工艺条件不当;水通过冷却塔时,将空气中的杂质带入冷却水系统。

1.3冷却水系统中微生物的滋长

冷却水系统中真菌大都属于藻状菌纲,大量繁殖后形成棉团状物附着在金属表面上,影响换热器热交换、堵塞管道。影响微生物在冷却水系统中的因素主要有温度、换热管洁净程度和光照情况。多数微生物的繁殖生长温度为20℃左右,如高于30℃,大部分常见微生物就会死亡。在洁净的换热器管路中,微生物也不易生长。光照对水中藻类的繁殖和生长也有很大关系,即光照越强,藻类越容易繁殖,所以藻类易于在冷却塔内出现。

1.4腐蚀问题的产生

循环冷却水系统中的悬浮物是加速冷却设备腐蚀的重要因素。由于回用污水中的有机物、氨氮、硫化物、含盐量、氯离子、硫酸根离子等物质的浓度比新鲜水高,循环冷却水在系统循环浓缩后,对水质稳定性产生了较大的影响,腐蚀性大大增强,同时对微生物繁殖提供了更加有利的条件。目前,国内外对于局部腐蚀形成机理的研究,大部分都认为点蚀形成的原因一是与腐蚀产物膜的不均匀致密有关;二是与流体流动对腐蚀产物膜的破坏有关。在不同流速的作用下,腐蚀产物膜薄弱的地方先出现破损,露出没有腐蚀产物膜保护的基体,这部分将会有较高的腐蚀速率。

2解决办法

2.1水垢的控制

循环水系统中最易生成的是碳酸钙,水垢控制即是防止碳酸钙的析出,一般采用以下几类法:

(1)从补充冷却水中除去成垢的钙、镁离子。目前常用的软化方法有两种:一是离子交换树脂法,该法适于补充水量小的循环水系统用;二是石灰软化法,即投加石灰。该方法成本低,适于原水(尤其是暂时硬度大的结垢型原水)钙含量高,补充水量较大的循环冷却水系统。

(2)加酸或通入CO2气体,低pH值稳定重碳酸盐。使下列平衡左移。

加酸法目前仍有使用,关键是控制好加酸量,否则酸量过多会加速设备腐蚀。通CO2气体同样应注意控制好pH值,否则循环水通过冷却塔时,由于CO2溢出,CaCO3在塔内结晶,堵塞填料,形成钙垢转移现象。

(3)投加阻垢剂:在循环水中投加阻垢剂,破坏的结晶增长过程,以达到控制水垢形成的目的。目前常用的阻垢剂有聚磷酸盐、有机多酸盐、有聚磷酸盐、聚丙烯酸盐等。

2.2悬浮物的控制

(1)对循环水进行预处理

清洗和预膜工作被称为循环水系统化学处理的预处理。对于新系统,主要是清除设备和管道中的碎屑、杂物和尘土以及冷却设备的锈蚀和油污,以便提高预膜效果,减少腐蚀和结垢。对于老系统,主要是清除冷却设备中的垢、黏泥和金属腐蚀产物。循环水系统的预膜是为了提高缓蚀剂的成膜效果,常在循环水系统开车初期投加较高的缓蚀剂量,待成膜后再降低药剂浓度维持补膜。

(2)增大浓缩倍数

在敞开式循环冷却水系统,由于蒸发、风吹,系统中的一部分不含盐分的水会损失掉,导致系统循环水中的各种矿物质和离子浓度越来越大。为了使循环水中的含盐量维持在一定的范围,必须不断地补充新鲜水,排出浓缩水。提高循环冷却水浓缩倍率的途径主要有水质稳定剂处理法、加酸降碱度法、旁流过滤法、补充水石灰处理法、补充水弱酸阳床处理法和补充水反渗透膜法。

(3)投加分散剂

将粘合在一起的泥团杂质等分散成微粒悬浮于水中,随水流流动而不沉积,从而减少污垢对传热的影响,部分悬浮物还可随排污排出。

(4)增加旁滤设备

旁滤水处理目的是保持循环水水质,使循环水系统在满足浓缩倍数条件下有效和经济地运行。循环冷却水处理系统设计中有下列情况时,应考虑设置旁滤水处理设施:设定的浓缩倍数超过允许指标;存在外界污染(如空气中飘尘);工艺物料泄漏及其他污染物;需要去除下列杂质的一项或几项的:悬浮物、生物粘泥;含其它有害污染物质和油类污物等。

2.3循环冷却水系统金属腐蚀的控制

循环冷却水系统金属腐蚀的控制方法常用的有以下四种:

(1)添加缓蚀剂

缓蚀剂是一种用于腐蚀介质中抑制金属腐蚀的添加剂,不改变腐蚀介质的性质,不需特殊投加设备和对设备表面进行处理,因此使用缓蚀剂是一种经济效益高且适应性较强的金属防护措施。缓蚀剂的作用机理主要有钝化作用和吸附成膜作用两种。钝化作用是指改变金属表面元素的结构及化学性质,从而起到保护作用。吸附成膜是利用缓蚀剂和金属之间的吸附作用,使其沉积在金属表面,形成一层保护膜,阻止腐蚀性介质和金属表面的接触,降低腐蚀速率。

(2)提高循环水的pH值

提高循环水的pH值是使金属表面生成氧化性保护膜的倾向增大且易于钝化,从而控制设备腐蚀。但提高循环水的pH值后,循环水水垢倾向增大、设备腐蚀速度下降,以及导致某些缓蚀剂失效。目前可通过添加专门为碱性冷却水处理开发的复合缓蚀剂来解决。

(3)选用耐腐蚀材料的换热器

比如聚丙烯换热器或石墨改性聚丙烯换热器,但由于换热效果差,很少使用。

(4)用防腐涂料涂覆,通过防腐涂料的屏蔽、缓蚀、阴极保护及PH值缓冲作用来保护设备不受腐蚀。

(5)杜绝设备泄漏,避免氨对冷却水的污染

实践证明,循环水中含有3~5 mg/L的氨对水质影响不大,但是当超过10 mg/L时水质就容易恶化。对所有接触氨的水冷器和氨冷器进行重点监测。氨泄漏严重时应及时停车补漏;但如果在运行中泄漏量减小,可就地排放,以减少对整个水系统的污染。此外可适当加大循环水排污量,增加新鲜水量来降低冷却水中氨量。

避免氨对冷却水的污染,还应加强水源及环境的防范。禁止废氨水向水源的排放,消除一切氨的跑冒滴漏,尽量避免循环冷却水受到氨的污染。

2.4循环冷却水系统微生物的控制

微生物大量繁殖会产生微生物黏泥沉积在换热器管的表面,从而降低工厂产量。流体流动可以供给微生物养分,并移走产生的废物。增加流速可使紧靠生物黏泥的流体层流底层变薄,从而使养分的传递速率及废物的移出速率增大,使生物黏泥增厚。综合考虑流速对腐蚀结垢的影响,循环水的流速宜选择在1.0m/s,此时的瞬时污垢热阻值、沉积率、垢层厚度达到最低值。温度对生物膜的生长也具有很大影响。对循环水系统中的微生物引起的腐蚀、粘泥的控制方法有:选用耐腐蚀设备;控制循环水中的含氧量、PH值、悬浮物和微生物养料等指标;在防腐涂料中添加杀生剂,抑制微生物的生长;采取冷却水水池加盖等措施,防止阳光照射;设置旁流过滤设备;对补充水进行混凝沉淀预处理,以及颇有前途的噬菌体法等。

3结论

循环冷却水占整个工业用水的80%左右,且对水质要求并不苛刻,将深度处理后的污水回用于冷却水系统具有很大的潜力。在实际应用中需要根据原水水质、循环水量级温升、补水水质和价格、使用循环水的换热器设备材质等实际情况,综合考虑经济效益和环境效益,选择适宜的措施,制定出经济、实用、可行的循环水处理方案。但这些传统的方法,有时不能从根本上解决盐浓缩引起的问题,且投加各种水处理剂的操作复杂、药剂费用高,使循环水浓缩倍数不高,运行管理成本较高,还需要我们进一步的研究和探讨。

参考文献

[1]周菊芬.工业循环冷却水系统旁滤水量的确定[J].科技创新导报,2011(27).

循环冷却水系统篇5

改造前冷却水系统全部采用水库的水直流供水或以水库为冷却水池循环供水。供水通过地下水泵房8台循环水供水泵将水库水输送到供水闸门井,再通过两根供水母管供给8台汽轮发电机组冷却用水;回水是通过两根回水母管回至明渠,再用10台排水泵将明渠回水送回到水库。在灌溉期,当农灌用水等于或大于A发电公司的直流冷却水量时,排水经排水明渠排往下游农灌水渠。当农灌用水小于A发电公司的直流冷却水量时,排水经排水明渠部分排往下游农灌水渠,部分排往排水泵房,由排水升压泵送回水库循环利用。非灌溉期,全部冷却水经排水明渠排往排水泵房,由排水升压泵送回水库循环利用。

1.2存在的主要问题

原有的进排水系统路径长,进水隧道及管路长约3.5km,排水明渠长5km,已经运行30多年,系统漏损水量较大。特别是5km的排水明渠,蒸发及渗漏损失均很大,导致A发电公司的耗水量远比正常发电用的耗水量大,既浪费了可贵的水资源,又增加了该公司的水费负担。近年随着国家用水政策的变化,水价不断上涨,公司支付的水费也不断上涨。

1.3改造方案

改造后的循环供水系统主要包括一个补给水泵房、两个循环水泵房和两个冷水塔。补给水泵房是在原地下水泵房基础上改造而成,将原来的8台循环水供水泵改造为4台补给水泵,重新敷设两根DN1200补给水母管,废除原来的两根供水母管、明渠及10台排水泵。两个循环水泵房和两个冷水塔均为新建项目,并在每个循环水泵房内分别安装两台轴流式循环水泵。改造后的循环水系统运行方式,由补给水泵房4台补给水泵,通过两根补给水母管,分别作为两个冷水塔的补充水源、5~8号机夏季参混水水源及至1~4号机的DN800补水管。1号循环水泵房向1号循环水母管供水,该母管主要向每台机的1号凝汽器及8号机2号凝汽器供水。2号循环水泵房向2号循环水母管供水,该母管主要向除8号外的每台机的2号凝汽器及8号机3号凝汽器供水。各机组循环水回水,1~4号机回至#1冷水塔;5~8号机回至#2冷水塔。为保证20MW机组夏季冷却水需求,在5~8号机侧新装两台兑水泵,以便在循环水温度过高时使用。

2冷却水系统改造后的经济效益分析

2.1耗水量及水费

A发电公司共安装8台汽轮发电机组,装机容量为1250MW。以项目确定前的2003年为例,则全年机组的利用小时数平均为5547.41小时,全年缴纳水费4217万元,按单价为0.52元/m3计算,相当于耗水量8109.615×104m3。冷却水系统改造后,实测补水流量为0.97m3/s,折合全年(按365天,每天24小时计算)耗水量为3058.99×104m3,按单价为0.52元/m3计算,全年水费为1590万元。与2003年相比节约水费2627万元。

2.2冷却水系统电耗

以项目确定前的2003年为例,全年取排水泵及5号机组循环水泵合计用电量为9456×104kWh,排水站发电量为894.06×104kWh,冷却水系统实际用电8562×104kWh。系统改造后,转三台循环水泵时实测循环水泵耗电量8160kWh/h,补水泵耗电量为110kW/h,转4台循环水泵时实测循环水泵耗电量11640kWh/h,补水泵耗电量为110kW/h,按设计每年5个月4台循环水泵运行,7个月3台循环水泵运行,则改造后每年耗电量为8522×104kWh,改造后每年用电量与2003年相比减少40×104kWh,按税后上网电价0.19689元/kWh计算,每年节约电费7.8万元。

2.3对煤耗的影响

冷却水系统改造后,按2~8号7台机组年利用小时5500小时计算,在凝汽器端差与2003年保持一致的情况下,在设计工况下7台机组年增加标准煤耗量20607t。标准煤价按2003年的278元/t计算,则改造后每年增加煤耗费用573万元。

循环冷却水系统篇6

大型空分设备用户是能源消耗大户,蕴藏着巨大的节能潜力,其主要关键设备的节能技术已不断取得发展,而循环冷却水系统的节能优化,空分行业对此研究较少。近年来,杭氧对空分项目的循环冷却水系统的节能从理论到实践进行了全面、系统的研究,认为空分项目的循环冷却水泵的扬程余量太大(大部分扬程为45~60m,而实际只需30~35m),余量达到29%~71%,因此仅合理配置水泵扬程,平均就有30%左右的节能空间;同时,由于冷却水流量安全系数重复考虑,造成确定的水泵流量不合理,虽然换热设备冷却水供、回水温差设计值为8~10℃,但实际运行时温差大多为4~6℃,有的更小。尽管有些企业已经实施了一些节能改造,但大多从表象出发,没有抓住本质,盲目性大,因而节能不彻底,效果欠佳。空分项目的循环冷却水系统庞大,其节能空间相当可观。循环冷却水系统的节能工作,需要创新设计,只有在正确、系统的理论指导下,从设计源头入手,才能少走弯路。

1传统循环冷却水系统设计和运行中存在的问题

1.1盲目选择水泵扬程。长期以来,空分行业以产品技术附件中的“供水压力0.4MPa,回水压力0.25MPa”等内容为依据来确定循环冷却水泵的扬程,大部分选45~60m。理论上,这个做法是一大误区,水泵扬程的确定应根据流体力学基本原理对具体的工程进行详细水力分析计算后确定。实际上,这样确定的水泵扬程余量太大,表现为:如果所配电机功率比较小,则管路上的阀门就不能完全打开(一般只能开30%),需要人为增加阻力损失才能安全运行;如果所配电机功率比较大,水泵就会在超大流量工况下运行,不仅水泵效率低,而且易产生叶轮汽蚀、噪声大、振动大等不利安全运行的问题,同时,如果超额的流量对传热影响不大,本身就是浪费。总之,盲目确定水泵扬程,既浪费投资又使运行能耗增高。1.2缺少必要的水力分析计算。除了水泵扬程的选择缺少必要的水力分析计算外,各换热设备支路也没有经过水力平衡分析设计,阻力损失小的支路实际流量大大超过设计流量,造成流量浪费;阻力损失大的支路实际流量小于设计流量,造成冷却效果不理想,这时只能通过关小阻力损失小的支路上的阀门,提高整个系统的阻力,来调节流量平衡。如果某个支路的阻力损失特别大,这种做法就更不合理。而且,如果没有经过必要的水力分析计算,循环冷却水供水干管在空冷塔位置的压力就没有数据,空冷塔常温水泵和冷却水泵的扬程确定必然盲目,要么过高,要么过低。如果循环冷却水系统变流量运行,更会出现这种情况。1.3不恰当地应用变频调速技术。先盲目增加水泵扬程或流量的余量,再增设变频调速装置,将扬程或流量降下来。这种做法不可取:不仅要增加一大笔投资,而且水泵不可能在高效区工作,变频系统本身也有一定的能量损失,附属装置增加,故障率和维修量均增大。应用变频调速技术的目的是在变工况时调节流量。一台工频泵和一台变频泵联合工作,当变频泵改变流量时,工频泵的流量朝与其相反的方向改变,不能充分发挥变频调速的作用。同时变频泵不可能频率降得很低,否则,变频泵提供的压力比工频泵的低得多,变频泵就泵送不了水。1.4对变频调速系统盲目采用压力自动控制。在市政供水和采暖空调供水系统中,当流量改变时常采用压力自动控制方式,有其具体原因。而盲目地将这种压力自动控制方式应用到空分项目,就会人为增加系统阻力,不利节能。1.5为达到运行工艺要求人为增大阻力损失。受产品技术附件中“供水压力0.45MPa,回水压力0.25MPa”等内容的影响,很多用户都认为“只要压力上去就好”“只要水回得去就好”,一旦回水压力低,水回不去,就去关小回水管阀门。这是运行中的一大误区。循环水泵供水的目的是供给换热设备冷却水流量而不是压力,应该是流量达到要求就好。对一个水力性能可调系统,流量与压力没有直接关系,而换热设备进、出口压差与该设备的流量有直接对应关系(换热设备水力性能已固定),设计和运行时希望系统阀门全开,各点的压力最低,而流量恰好满足要求。1.6不合理确定水泵流量。确定水泵流量的各环节都考虑安全系数,造成重复考虑;工程设计时没有确切的换热设备水流量作为依据,更没有相应的水阻力损失可参考,得出的总流量是个大概数,因此多数情况下所配水泵流量远大于换热设备的设计流量,水泵扬程偏高使实际运行流量进一步增大。实际运行中又认为流量大总是好的,流量大可以使压缩机级间冷却器的空气温度降得更低,可以降低压缩机的功耗。这些都造成水泵流量确定不合理,使大流量、小温差运行成为一种习惯。1.7通过关小水泵进水管阀门来调节水流量。大流量运行对水泵节能和运行不利,所以有的企业采用关小水泵进水管阀门的办法。这种方法操作快,节能效果明显。但是,增加水泵进水管阻力,很容易使叶轮汽蚀,进而使水泵运行效率降低、振动大、噪声大等。1.8不考虑实际湿球温度,冷却塔出水温度一律定为32℃如青海省西宁市的夏季空气调节室外计算湿球温度只有16.6℃,而冷却塔的进、出水温度依然设定为42、32℃。本来可以充分利用气候条件,有效降低压缩机能耗,却被不合理的设计人为抹杀。

2通过创新设计实现先天节能

循环冷却水系统节能改造已形成一个产业,改造规模大且节能效果明显。空分行业传统地以“供水压力0.4MPa,回水压力0.25MPa”、《氧气站设计规范》(GB50030—2013)标准要求压缩机等设备用冷却水水压宜为0.15~0.50MPa等为依据确定循环水泵扬程,已不能适应节能减排、企业增收节支的需要,设计方法要创新。2.1合理确定水泵流量。首先要合理确定设计工况时的冷却水流量,即夏季装置满负荷运行时所需冷却水流量。冷却水流量大小影响水泵与压缩机、汽轮机的综合能耗,冷却水流量大,对降低压缩机、汽轮机能耗有利,而对降低水泵能耗不利;反之,则对降低压缩机、汽轮机能耗不利,而对降低水泵能耗有利。因此,需要确定一个使压缩机、汽轮机能耗与水泵能耗之和最小的合理流量。根据传热学传热系数公式可以看出,在放热侧的传热系数一定的情况下,在水流速比较小时,换热器的总传热系数随水流速增大明显增大,但当水流速增大到一定程度以后,传热系数就基本不变。因此,流量大到一定程度后,再增大流量,只会增加水泵能耗,不会降低压缩机、汽轮机能耗,这部分流量完全浪费。而处于对总传热系数有影响的流量范围,杭州杭氧制氧机研究所有限公司已有初步研究结论:加大流量后,水泵增加的能耗比压缩机减少的能耗多;并建议供、回水温差在8~10℃运行比较合理,水泵流量安全系数的选择由工程设计统一考虑,其他环节不考虑。2.2科学确定水泵扬程。在合理确定水泵流量的基础上,科学确定水泵扬程。即先合理布置总图,综合考虑投资与运行费用、操作与维修便利性等因素,合理设计管路系统,经反复验算,力求各环路水力平衡、总体阻力损失最小。再计算最不利环路所有局部、沿程阻力损失和净扬水高度(循环水池液面至冷却塔喷头的高度差),作为确定水泵扬程的依据(对个别阻力特别大的换热设备支路要单独考虑增压);并根据伯努利能量方程计算出供水干管在水冷塔、空冷塔位置的压力,作为空冷塔选取增压泵和判断水冷塔能否直接供水的依据。由上述2点可以确定系统基本水泵的配置,这是最根本的。之后,在固定工况下,系统运行时一次性调节好支管流量平衡阀门,其他阀全开,流量恰好满足要求,系统阻力处于最小状态,平时不用调节阀门、关注压力,操作简化。2.3合理采用变工况时的流量调节措施。循环冷却水系统管道按设计工况即最大流量设计,在科学确定基本水泵配置的基础上,在生产负荷变小或冬季环境温度降低需要降低流量时,要充分利用流体力学原理:“对已定型的系统,流量与水泵功率接近成三次方关系”,水泵功率随流量快速下降,可以在减小流量时取得更可观的节能效果。应根据具体条件采用恰当的辅助手段,如更换叶轮、大小泵搭配(小泵扬程也小)、改变运行台数、双速电机、变频调速、永磁耦合调速和大型水泵采用汽轮机拖动等来减小供给流量,实现变工况时的流量调节。变频调速应用在需要经常频繁调节流量的场合最合适。如果采用变频器调速,建议最好采用所有工作泵同时变频,增加的投资与减少的能耗成本相比微不足道。变频器的调节,在不低于最小流量的前提下,通过观察工艺冷却效果,采用人工调节就可以。设计和运行时要尽可能使阀门全开,尽可能减小系统阻力损失,使流量减小时压力自然降低。2.4合理确定冷却塔出水温度。在不超出常规冷却塔投资的前提下,对夏季湿球温度低的地区,充分利用环境温度优势,降低冷却塔设计出水温度(如西宁市可设定为22℃),很小的代价(冷却塔投资没有节省)就可取得降低压缩机能耗的大效果。2.5选用高效节能型设备和阀门。选用高效节能型水泵固然重要,但工程设计时要保证所选水泵能在高效区运行。如果所选水泵性能与实际装置管路水力性能偏差太大,即使所选水泵效率很高,实际运行时效率也会很低。选择传热系数大、阻力损失小的换热设备和止回阀等,对空分项目循环冷却水系统的节能同样十分重要。

3对已建项目进行节能改造

从长期运行考虑,对已建项目进行节能改造的原则同样遵循新项目设计的思路。对于已经投入运行的循环冷却水系统,都可以通过调整管路上阀门的开度直接读出压力,经过简单计算,就可以确定系统在设计流量下实际所需扬程。如果能根据每个换热设备在设计流量下的阻力进行水力分析计算,进一步验证所测扬程是否可靠,可靠性就更高。3.1对基本配置水泵的改造。基本配置水泵的本质问题是扬程过高、流量偏大,为尽可能一劳永逸、一劳永利,改造方案首选是更换叶轮。如果原叶轮在该型号水泵中属没切割过或切割很少,应首先考虑原型叶轮切割,或者选用改型叶轮。这是最经济、最方便的改造措施。其次,更换泵头,改造内容稍多,需更换水泵进、出口短接头,地脚螺栓孔有时也要调整,投资成本稍高。最后才是更换水泵,工作量大,投资成本最高。3.2变流量时的辅助手段改造。在对基本配置水泵进行改造的基础上,如果要根据生产负荷变小或冬季环境温度降低来减小供给流量,同样可以根据具体条件采用恰当的辅助手段,如更换叶轮、大小泵搭配、改变运行台数、采用双速电机、变频调速等。

4实施节能技术后的经济效益

采用节能技术后,新建项目如不设变频调速装置,投资成本有所降低;对已建项目进行改造,即使更换新泵,半年内也可收回投资成本。因此,其投资成本基本可以忽略。据气体分离设备行业统计,截至2016年,我国深泠分离法制空分设备的总规模在3300万m3/h左右,循环水用电功率估计在100万kW左右。根据调查研究分析,如果合理配置水泵扬程,约有30%的节能空间,每年可节电约57.6亿kW•h;而且,空分设备每年以数百万m3/h的规模增加(2014年新增292万m3/h),节能空间非常大。

5建议

5.1明确换热设备的水流阻力损失值。换热设备的水流阻力损失是换热设备的一个重要技术性能参数,不可缺少,它不仅用于工程设计时确定系统总阻力,而且在进行各支路水力平衡、优化供水方案时也不可缺少(对某个阻力损失特别大的换热设备,而流量又占总流量的小部分时,可考虑局部增压)。5.2完善空分设备技术附件的相关内容。如果空分设备由专用的循环冷却水系统独立供水,空分设备技术附件中“供水压力0.4MPa,回水压力0.25MPa”的内容容易造成设计和运行的误区。如果空分设备由大厂的循环冷却水系统集中供水,在每个装置点确实需要提供供水干管的供水压力和回水干管的回水压力,以便合理配置装置内循环水管道。但这两个值不事先规定,而是在对各用水装置水流阻力损失预估的基础上,对整个循环冷却水系统进行合理设计,根据伯努利能量方程计算得到,不同的位置一般不一样。标准GB50030—2013规定的“压缩机等设备用冷却水水压宜为0.15~0.50MPa”的规定不科学。建议标准修订时完善,更好地发挥标准对循环冷却水系统精细化设计、节能减排的指导作用。

6有待进一步研究的问题

6.1开展流量对综合能耗影响的研究。进入冷却器或冷凝器的冷却水流速不同对总传热系数影响不一样,在水流速比较小时,随水流速增大,总传热系数会明显增大;但当水流速增大到一定程度后,传热系数就基本不变。为了合理确定冷却水流量,需要综合水力学(水系统设计)、传热学(换热器设计)、热力学(压缩机、汽轮机运行能耗)3个方面的专业技术,进一步研究在什么流速下水泵、压缩机和汽轮机的能耗之和为最小,什么流速开始对总传热系数没有影响。进一步研究变工况时,合理流量的确定、调节手段的优化。6.2研究优化水泵出口阀门的设置。目前多数设计在水泵出口管路设置止回阀,阻力损失很大,能耗损失可观。需要进一步明确各种止回阀的阻力特性。期盼有真正低阻力的止回阀产品,或者不设置止回阀,仅设置1只因事故停运泵时能自动关闭的蝶阀。

7结论

针对传统的空分设备循环冷却水系统设计和运行中存在的主要问题,创新设计方法,正确运用流体力学基本原理,结合空分工程的具体特点,抓住关键,从设计源头入手,合理确定水泵流量,科学计算水泵扬程,不仅可以大幅度降低空分项目循环冷却水系统的运行能耗,还可以降低投资成本。对已建项目的改造,具体情况不同会产生多少不等的费用,但这些投资相对节省的运行费用微不足道,因此,需要改变管理观念,该更换的应及时更换。发展节能技术是一项增收节支的有效措施,应积极组织实施空分项目循环冷却水系统节能改造,大幅度降低运行成本,提高企业效益。

参考文献:

[1]陈剑荣.空分设备循环水系统精细化设计探讨[M]//边勤.深冷技术:开发研制.杭州:杭州出版社,2015:21-23.

[2]姜乃昌.水泵及水泵站[M].4版.北京:中国建筑工业出版社,1998.

循环冷却水系统篇7

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)35-8128-02

Key words: vacuum; condensation; filtration; energy conservation

1 真空回潮机简介

1.1结构

如图1所示,真空回潮机由回潮箱1、真空系统(由4、6、8、9及相关管道、仪表、执行器件组成)、加潮系统Ⅰ、液压系统、冷却水循环系统(由2、5、7、10、11、12、13、14等组成)、气动系统、单机电控系统等组成。

1.2原理

真空回潮机是利用真空泵抽吸回潮箱内的空气,使箱内达到预定的真空度,然后由加潮系统将水蒸气和水混合后以低压湿蒸汽的形式输入箱内,被烟叶吸收而回软。

冷却水循环系统在此过程起的作用是:由位于多个真空泵之间的冷凝器将蒸汽冷凝,得到更高的真空度,且减少蒸汽使用量。

其工作流程如下:

2 设备现状及存在问题

真空回潮机在使用一段时间后,出现

1)真空度不稳定甚至达不到真空度要求;2)物料出口水分偏小;

以上现象存在并有差距逐渐拉大的趋势。这样,不利于真空回潮机工艺任务的实现。

3 原因分析

造成真空度不稳定甚至达不到真空度要求,物料出口水分偏小的原因,推断有以下几点:

1)蒸汽压力偏低及压力波动,蒸汽含水量过多:蒸汽压力偏低及压力波动对真空泵的能力有较大影响,因此蒸汽压力不应低于要求的工作压力;而压力波动会引起真空泵性能不稳定。蒸气含水量过大将导致各流量下真空度的波动,造成泵的工作不稳定。

2)蒸汽喷射泵喷嘴磨损或堵塞:蒸汽喷嘴的磨损或堵塞将影响抽真空效果。

3)真空箱体门密封圈密封不好、气动阀不到位、管路连接处或阀类器件损坏而造成的微小泄漏;

以上因素引起的泄露将直接影响到抽真空过程。

4)冷却水水质较差,影响热交换性能,使蒸汽难于冷凝,从而影响真空度;

5)冷却水供水量不足或温度太高:进入冷凝器的冷却水量不足,会使冷凝器中排气温度上升,从而使未冷凝的蒸汽量增多,使下一级蒸汽喷射泵被抽的混合物量增加,导致其吸入压强上升,真空泵能力下降。并且冷却水水温越高,耗用的蒸汽量越多。

4 现象排查

1)对于原因分析中的1:检查气源压力表示数大于0.8Mpa,且示数稳定,未有压力波动;真空回潮入口蒸汽管路疏水良好,是干度较高的工作蒸汽。

2)对于2:检查喷嘴,未出现磨损或堵塞现象。

3)对于3:结果为箱体密封和管路无泄漏、各阀类器件均正常。

4)对于4:将冷凝水循环系统内的冷凝水放干净,人工清理循环水池,重新注入纯净的软化水。经过试机,真空度仍然上不去。

5)对于5:在对进水管道阀类器件法兰端拆卸后,发现存在锈皮、焊渣等杂物。而清理干净后,真空度达到要求,且物料出口水分正常。

因此,判断出,管道堵塞,冷凝水水量不足是造成真空度不达标、蒸汽量消耗增多的原因。

为防止此类问题再次发生,需对冷却水循环系统进行改造。

5 改进措施及方案优点

5.1改进措施

5.2方案优点

1)进水管道加装过滤器,用来消除冷却水中的杂质,使进入冷凝器中冷却水量充足,降低冷凝器的排气温度,减少未冷凝的蒸汽量,实现真空度要求。并在过滤器下方加装蝶阀,便于拆卸清理滤筒。

2)增加自循环水系统,并附加温度检测仪。自循环水系统即:水池循环水系统。当温度超过32°以上,水池循环水系统的水泵自动开启,进入自循环,便于循环水热量能够排出。

3)水箱底部开排污口。定期打开水箱底部排污阀排除水箱底部污垢,便于水箱水泵的正常工作。同时,对水箱进行清洗,保证水质清洁。

6 效果与总结

经过实地改进,并跟踪检测,此项改造取得了良好效果,具体体现在:

冷却水供量充足,冷凝器不再发热,真空度稳定且达到要求;蒸汽的渗透性和烟叶的吸湿性增强,回潮速度快且效果好,保证了工艺质量;如表1所示。

表1

[\&改造前(平均)\&改造后(平均)\&最低真空度\&0.67Kpa\&0.49Kpa\&冷却水进水最高温度\&33.7°\&31.1°\&出口水分\&12.24%\&13.66%\&]

2)冷却水温度降低,使真空泵负荷降低,减少了抽真空所耗用的蒸汽量,一定程度上降低了能耗,为企业的节能减排做出了贡献。

参考文献:

[1] 徐灏.新编机械设计师手册[M].北京:机械工业出版社,1995:368.

循环冷却水系统篇8

1引言

    在我国北方地区,冬季寒冷,气温较低,循环冷却水系统存在冻结的问题,考虑到循环冷却水对工业的重要性,以及用水量大、补水量小的特点,有必要对循环冷却水系统采取防冻措施。本文将结合北方地区的工程应用实例来讨论循环冷却水系统的防冻措施。

2工程背景

    (1)工程一

    该工程为软水闭式循环水系统,位于青海省某地,自然条件如下:位于青藏高原温带半干旱气候区,海拔在25252700 m之间。多年平均气温3.9℃,最热月(七月)平均气温14.6℃,极端最高气温33.4℃,最冷月(一月)平均气温一8.9℃,极端最低气温一33.7℃;最大季节冻土深度130〔二。

    (2)工程二

    该工程为脱盐水闭式循环水系统,位于内蒙古某地,自然条件如下:海拔约1250 m,冬季严寒而漫长,春季干旱少雨且风沙大,年平均气温5.58.0℃X2000年一2010年数据,下同),最冷月(一月)平均气温一10.7℃,极端最低气温一32.3℃,最热月(七月)平均气温21.8℃,极端最高气温38.1℃。最大冻土深度171 cmo

3防冻措施

    循环冷却水系统常用的防冻措施有:放空(辅助吹扫)、保温、伴热。埋地管道(循环水管道除外)通常布置在冻土层以下,管道地点设置放空,放空阀设在保温的阀门井内。地卜的设施,一般系统会在低点设置停车或检修用的放空管和放空阀门,有条件的可以将设备、管路设置在采暖房间内,否则对于放空管和系统中的死水段,需要尽量减小死水段的长度并考虑保温。以循环水的停留时间为不冻结的允许停留时间tFlPtFr〕计算保温层厚度,若计算结果超过保温层的经济厚度,此时尚需设置伴热。伴热方式有蒸汽伴热、热水伴热和电伴热。蒸汽伴热和热水伴热需要铺设较长的管道,管材和安装费较高,伴热的温度不稳定。

    电伴热有两种:恒功率伴热和变功率伴热。前者采用伴热带以电阻丝为发热元件,发热功率恒定不变,配置温控器和温度传感器,温控器根据温度传感器的检测值来控制电路的通断。由于温度传感器检测的只是某点的温度,因此控制存在一定的不精确性,比较适合长输管线的伴热。变功率伴热采用的是自限温伴热带,这种材料具有很高的正温度热敏电阻((PTC)特性,其输出功率能随伴热对象的温度变化自动调节,不仅能控制伴热温度,还能截取任意长度,且安装方便,但价钱比较高,比较适合伴热点多且分散的工程。

3.1给、回水管道及阀门

    明敷管道呈阶梯状布置或带坡布置,尽量避免频繁的高低起伏,管网的低点集中布置,在低点处设置放空管和放空阀,系统停车时集中放空。有条件时尽量布置在采暖的室内以减少全部放空时水量的浪费。埋地敷设的管道带坡敷设,在最低点处设置放空

管道和阀门。

    支管、过滤器等设备的旁通管等的阀门尽量靠近总管设置,死水段根据需要设放空管道和阀门并保温,必要时增加伴热装置。

    工程一中循环水管道明敷,室内不采暖,附近无蒸汽管道。管网低点处集中设置放空管,考虑到操作的便利性,将放空阀设置在操作面1.2 m高处,放空阀前的放空管均采取了电伴热,由于伴热点多且分散,伴热带采用的是自限温伴热带。

    工程二中循环水管道在埋地段的最低点设置放空管道和阀门,由于主管管径较大,放空阀离开主管一段距离后设置阀门井,放空管位于冻土层以下,阀门井采用保温阀门井。露天布置的明敷管道与设备的接口较多,在接口阀门后紧挨着接口阀门设放空管道和放空阀。为尽量减小死水段的长度,放空阀采用带颈对焊配对法兰与放空管三通对焊。

    管道低点放空设置见图to3.2换热设备

    湿式冷却塔冬季部分停运后,由停运冷却塔负荷的热水通过旁通管直接进人冷却水收集池,通过调整进冷却塔的热水比例来保证混合后的出水温度不致过低而冻结或使后需设备和管网发生冻结。为防止运行的冷却塔填料外侧发生冻结,可在配水系统和填料层的之间设置喷淋系统,喷淋水的水源为系统的循环回水,水量为循环水量的2}%左右。为防止冷却塔侧壁水流导致挂冰增加冷却塔荷重,或冷水从进风口外溢引起周围回水台、检修平台等结冻,可在进风口卜部的冷却塔侧壁设置倒流装置。

    另外,可以考虑将蒸发空冷器的喷淋泵开启防止集水盘内水结冻,必要时可考虑将集水盘内喷淋水放空。

    对于露天布置的板式换热器,可以采取热水侧长流水,冷媒水放空从旁通管直流的方式。极端气候条件下,可采取全部保温甚至伴热的措施。

    另外,对于停运的设备,考虑放空后可设置压缩空气吹扫系统,防止残水发生冻结或致换热管锈蚀。

    工程一采用蒸发空冷器,自带集水盘,由于昼夜温差大,若夜间放空集水盘自天又须重新补水,采用放空的方式不仅增加维护成本还将造成用水的大量浪费,故设备整体设电伴热。

    工程二也采用蒸发空冷器,不带集水盘,喷淋水取自系统的补水池,用高压泵送至喷淋管并设雾化喷头雾化后进行冷却可大大减少喷淋水的用量。由于寒冷季节持续时间较长,喷淋使用时间较短,故寒冷季节到来之前将喷淋水管网放空。此种形式不仅降低了设备投资和运行、维护费用,而且也有效地避免了喷淋水的冻结。

3.3供水泵

考虑到供水泵一般都设有备用泵,备用泵前后存在死水段,以及水泵定修等因素,一般布置在采暖的泵站内,否则考虑到水泵的重要性,一般在死水段设置放空设施或增加电伴热装置。

工程一中泵站采用了电取暖,但考虑到供水泵与备用泵切换等因素,供水泵前后管路均增加了电伴热,并在低点设置了放空设施。工程二中泵站设置了热水采暖。

3.4补水系统

    补水管埋地部分通常需要设在冻土层以下,明敷部分设在采暖的泵站内,否则也需要设置保温,必要时考虑增加伴热。

    高位水箱设置位置如无采暖,则必须设保温,必要时考虑增加伴热。气压罐一般设在供水泵前,且与供水泵一并设在采暖的泵房内。稳压装置的进、出水管道防冻措施同稳压装置。

    工程一采用高位水箱进行稳压,由于设置区域无采暖,高位水箱以及连接的管道全程采用电伴热。工程二采用气压罐进行稳压,气压罐设在采暖的房间内,无需其他防冻措施。

3.5加药装置

    通常加药装置设置在采暖的泵站内,室外明敷或敷设在管沟内的加药管道均设置保温,必要时增设电伴热。洗眼器可以考虑和加药装置同样的防冻措施,对设在室外或非采暖房间的洗眼器,尽量选用自排水式洗眼器。

    工程一和工程二的加药装置及加药管均布置在采暖的泵站内,不需单独考虑防冻。

3.6过滤器

    高速过滤器和浅层砂过滤器一般都设置在过滤器间,室内采暖或管道进行保温。

    闭式循环冷却水供水泵后一般设置Y型过滤器,该过滤器和供水泵一起设在采暖泵房内,无需另外考虑防冻措施。

若自清洗过滤器设在采暖的房间内,则无需另外考虑防冻措施;否则,旁通管段需要考虑保温,必要时增设伴热,或者也可采取双阀切断并放空,具体做法见图(图略)。工程一中未设过滤装置,工程二中考虑到闭式系统运行稳定后过滤器的作用不大,故采取过滤网在系统试车前使用,试车后拆除。此法不仅可以节约投资,也能避免后期的旁通管冻结,闭式系统可以借鉴。

循环冷却水系统篇9

中图分类号:TE08 文献标识码: A

冷却循环水系统广泛应用于空调采暖冷热媒介配送,石油化工、钢铁冶金、热电、纺织化纤、生化制药、机械电子、建材等行业的工艺冷却水输送,起到移去热量作用。泵类设备是冷却水输送最为通用的动力机械,其电力消耗巨大,据《中国大百科全书・化工篇》所载,泵类装置所消耗的电量约占社会总发电量的25%。目前,冷却循环水领域普遍存在低效率、高能耗现象,造成能源极大浪费。国家发展改革委的《节能中长期专项规划》(2505号文件)明确指出,我国水泵平均设计效率75%,比国际先进水平低5个百分点,系统运行效率低20个百分点。

一 循环水系统低效率与高能耗原因剖析

从离心泵基本工作原理理论可知,水泵所耗功率与扬送的流量、水头成正比(水头等于系统的总阻抗)、与运行效率成反比。由此可知,节能型系统要求是以体现“合理的阻抗、最高的运行效率、合理的流量”为目的,但目前已运行的装置在以下几个方面普遍存在问题:

1、冷却循环水主要用于换热设备的冷、热量交换和传送,根据热工与传热学理论,对某一特定生产装置的换热量是可以计算的,那么根据当地的气候条件及换热设备的传热性能,所需的合理循环水量同样可以确定的,关键是如何做到“按需定量”。但目前现状是:系统回路普遍存在水力失衡现象或单纯的大流量现象,具体表现为“大流量、低温差”。

2、化工单元过程的理论告诉人们,表征离心泵流量、供给压头之间关系的水泵特性曲线,与管路特性曲线(反映管网系统不同流量下的压力损失)二者的交点,即为泵在实际运行时的工作点。对某一特定管路,如何准确地找到管路特性曲线,按合理的流量确定工作点并按最高效率原则匹配水泵,这是节能型设计之关键。但目前状况很难做到或做好,导致实际运行时的工作点严重偏离泵的高效区或不处于理想的高效工作点。原因有二:

1)、作为批量生产的工业制成品,泵是按一定规格型号系列组织设计制造的,泵的特性曲线只有设定的若干条,而管路特性曲线却是千变万化,对某一特定管路,在泵的设计选型时,就不能保证水力效率高,也不能保证工作点正好落在泵的高效率区间内。

2)、在现实情况下设计者往往凭经验,而不是根据管路特性曲线选泵,常常过于保守,以致严重依赖阀门调节运行,管路与泵匹配存在问题。同时,对已投入运行装置的管路特性曲线,也很少有人对其实施有效检测,管路与泵是否匹配从无评判,对泵的匹配进行有效调整则更少。

3、循环水系统都存在多种工况运行,泵站一般有数台泵组成,组合形式又有并联、或并联加二级串联等形式。那么,如何做好泵组搭配以保证应各种工况要求所扬送的流量尽可能合理、运行效率都处于高效区,这对设计过程及运行管理过程中都是非常重要课题,但目前对多泵组合泵站的设计普遍缺少节能优化,运行管理过程也缺少必要的节能技术手段,能耗的经济性处于盲目状态。

4、因设计、改造或运行原因导致系统管网各回路的管路特性曲线差异较大,存在因某局部阻力偏高而导致整体压头升高等现象。

5、当然引起高能耗的原因还有很多,如冷却塔及系统相关换热设备换热效能低下增加泵送流量,未能按负荷变化(和气候变化)有效调节流量 增加水送能耗。

二 循环水系统节能的技术思路与技改手段

1、技术思路:以最佳工况运行、最合理能耗为指导原则,从影响水泵能耗最根本的三大要素(管路阻抗、运行效率、输送流量)入手,凭借专业的参数采集和计算机仿真模拟等技术手段,通过检测复核当前运行的工况参数和设备额定参数,准确判断引起高能耗各种原因,提出系统最佳配置方案和系统过程能量优化最佳解决方案。然后通过整改管网不利因素,优化调整系统换热装置,按最佳运行工况参数定做高效节能泵等,实现配置优化,消除因系统配置不合理引起的高能耗;通过安装变频节能控制系统,实现运行控制优化,降低因负荷较大变化引起的高能耗;标本兼治,综合节能,达到最佳节能效果。

2、技改手段:

1)根据热平衡原理及流量分配节点平衡原理,通过检测各换热装置及总供回水温差,再通过计算复核各装置的换热量,判断冷却水量供应及分配的合理性,最终找到系统的合理流量及流量平衡调整的参数。

2)通过一定的方法、程序,对运行中的管路在线检测,通过拟合,得到水力平衡调整后真实的管路特性曲线。

3)采用高效叶轮技术改变离心泵的额定点,使之适应工作点。过去的实践中人们主要注重如何改变泵的工作点,使之适应新的工况,其中比较有效的方法就是在运行中改变泵的特性曲线,亦即改变泵的速度或叶轮直径,对于一条匹配的管路特性,上述方法无疑是有效的,但当管路特性曲线与原设计出入较大时,在原泵特性曲线基础上通过变频技术改变转速形成新的特性曲线,其与管路特性曲线的交点往往偏离泵的额定点,而处于低效运行区间,不可能得到理想的效果。这时便需求通过重新设计出特制的高效的叶轮,使其额定点正好符合工作点的对应Q、H、n值。

4)运用系统优化的思路,着眼于泵站适应变工况运行下的泵组最佳组合和管网优化,在保证系统功能的前提下,使整体能耗最优。如对多泵组变工况运行的系统,从设计上如何做好泵组搭配,并采用具有自动寻优功能的变频节能控制系统做好运行管理优化;针对个别地方需用压头过高,采取局部加压的配置,避免整体压头升高耗费能量;通过检测找出管路阻力瓶颈部位,采取措施削除瓶颈,改进了管路特性曲线,强调实效,做到各项技术措施整合协调。

三 上述节能技术在现实中的应用

利用上述节能手段,针对唐山市某钢铁公司1780高炉透平拖动装置冷却水系统进行节能改造。系统原有配置六台1000kW水泵,常年运行2台泵。通过优化管路配置,剔除管路中的因阀门控制造成不合理的阻抗,通过重新量身定做高效节能泵,提高管网的运行效率,根据季节因素进行便变况处理,年节电量达到880万度电。如表一所示

表一:

如今节能减排已成为基本国策,冷却水系统的节能技改也就成为企业节能降耗的有效手段。节能技术、节能产品越来越广泛的应用于实际,正为产品提升市场综合竞争力,企业的转型升级发挥着越来越大的作用。同时电耗的下降带来碳排量减少,对企业来说不仅仅经济效益还有有良好的社会效益。

【参考文献】

循环冷却水系统篇10

中图分类号:TE08 文献标识码: A

冷却循环水系统广泛应用于空调采暖冷热媒介配送,石油化工、钢铁冶金、热电、纺织化纤、生化制药、机械电子、建材等行业的工艺冷却水输送,起到移去热量作用。泵类设备是冷却水输送最为通用的动力机械,其电力消耗巨大,据《中国大百科全书・化工篇》所载,泵类装置所消耗的电量约占社会总发电量的25%。目前,冷却循环水领域普遍存在低效率、高能耗现象,造成能源极大浪费。国家发展改革委的《节能中长期专项规划》(2505号文件)明确指出,我国水泵平均设计效率75%,比国际先进水平低5个百分点,系统运行效率低20个百分点。

一 循环水系统低效率与高能耗原因剖析

从离心泵基本工作原理理论可知,水泵所耗功率与扬送的流量、水头成正比(水头等于系统的总阻抗)、与运行效率成反比。由此可知,节能型系统要求是以体现“合理的阻抗、最高的运行效率、合理的流量”为目的,但目前已运行的装置在以下几个方面普遍存在问题:

1、冷却循环水主要用于换热设备的冷、热量交换和传送,根据热工与传热学理论,对某一特定生产装置的换热量是可以计算的,那么根据当地的气候条件及换热设备的传热性能,所需的合理循环水量同样可以确定的,关键是如何做到“按需定量”。但目前现状是:系统回路普遍存在水力失衡现象或单纯的大流量现象,具体表现为“大流量、低温差”。

2、化工单元过程的理论告诉人们,表征离心泵流量、供给压头之间关系的水泵特性曲线,与管路特性曲线(反映管网系统不同流量下的压力损失)二者的交点,即为泵在实际运行时的工作点。对某一特定管路,如何准确地找到管路特性曲线,按合理的流量确定工作点并按最高效率原则匹配水泵,这是节能型设计之关键。但目前状况很难做到或做好,导致实际运行时的工作点严重偏离泵的高效区或不处于理想的高效工作点。原因有二:

1)、作为批量生产的工业制成品,泵是按一定规格型号系列组织设计制造的,泵的特性曲线只有设定的若干条,而管路特性曲线却是千变万化,对某一特定管路,在泵的设计选型时,就不能保证水力效率高,也不能保证工作点正好落在泵的高效率区间内。

2)、在现实情况下设计者往往凭经验,而不是根据管路特性曲线选泵,常常过于保守,以致严重依赖阀门调节运行,管路与泵匹配存在问题。同时,对已投入运行装置的管路特性曲线,也很少有人对其实施有效检测,管路与泵是否匹配从无评判,对泵的匹配进行有效调整则更少。

3、循环水系统都存在多种工况运行,泵站一般有数台泵组成,组合形式又有并联、或并联加二级串联等形式。那么,如何做好泵组搭配以保证应各种工况要求所扬送的流量尽可能合理、运行效率都处于高效区,这对设计过程及运行管理过程中都是非常重要课题,但目前对多泵组合泵站的设计普遍缺少节能优化,运行管理过程也缺少必要的节能技术手段,能耗的经济性处于盲目状态。

4、因设计、改造或运行原因导致系统管网各回路的管路特性曲线差异较大,存在因某局部阻力偏高而导致整体压头升高等现象。

5、当然引起高能耗的原因还有很多,如冷却塔及系统相关换热设备换热效能低下增加泵送流量,未能按负荷变化(和气候变化)有效调节流量 增加水送能耗。

二 循环水系统节能的技术思路与技改手段

1、技术思路:以最佳工况运行、最合理能耗为指导原则,从影响水泵能耗最根本的三大要素(管路阻抗、运行效率、输送流量)入手,凭借专业的参数采集和计算机仿真模拟等技术手段,通过检测复核当前运行的工况参数和设备额定参数,准确判断引起高能耗各种原因,提出系统最佳配置方案和系统过程能量优化最佳解决方案。然后通过整改管网不利因素,优化调整系统换热装置,按最佳运行工况参数定做高效节能泵等,实现配置优化,消除因系统配置不合理引起的高能耗;通过安装变频节能控制系统,实现运行控制优化,降低因负荷较大变化引起的高能耗;标本兼治,综合节能,达到最佳节能效果。

2、技改手段:

1)根据热平衡原理及流量分配节点平衡原理,通过检测各换热装置及总供回水温差,再通过计算复核各装置的换热量,判断冷却水量供应及分配的合理性,最终找到系统的合理流量及流量平衡调整的参数。

2)通过一定的方法、程序,对运行中的管路在线检测,通过拟合,得到水力平衡调整后真实的管路特性曲线。

3)采用高效叶轮技术改变离心泵的额定点,使之适应工作点。过去的实践中人们主要注重如何改变泵的工作点,使之适应新的工况,其中比较有效的方法就是在运行中改变泵的特性曲线,亦即改变泵的速度或叶轮直径,对于一条匹配的管路特性,上述方法无疑是有效的,但当管路特性曲线与原设计出入较大时,在原泵特性曲线基础上通过变频技术改变转速形成新的特性曲线,其与管路特性曲线的交点往往偏离泵的额定点,而处于低效运行区间,不可能得到理想的效果。这时便需求通过重新设计出特制的高效的叶轮,使其额定点正好符合工作点的对应Q、H、n值。

4)运用系统优化的思路,着眼于泵站适应变工况运行下的泵组最佳组合和管网优化,在保证系统功能的前提下,使整体能耗最优。如对多泵组变工况运行的系统,从设计上如何做好泵组搭配,并采用具有自动寻优功能的变频节能控制系统做好运行管理优化;针对个别地方需用压头过高,采取局部加压的配置,避免整体压头升高耗费能量;通过检测找出管路阻力瓶颈部位,采取措施削除瓶颈,改进了管路特性曲线,强调实效,做到各项技术措施整合协调。

循环冷却水系统篇11

以往我公司的循环冷却水系统采用了二台循环水泵(一用一备)以恒速泵的方式供水,通常情况下水压波动很大,能量损耗大,一旦发生车间用水量大时管网压力会迅速下降,而车间停止或减少用水量时,管网压力又会急速上升,实际上间接的流量改变导致管网压力改变造成了循环泵的输出功率损失,循环泵的出口压力不稳定而造成了循环泵的工作点发生变化,从而使循环泵组本身的效率变差,无形中增加了电能的消耗和设备的机械磨损,容易造成设备故障率的升高,而为了保证生产正常,达到车间预期冷却效果,平时循环泵后的压力保持过高,这样相对的在恒速循环泵供水管网中用水流量大时管网压力底,用水流量小时管网压力高的现况;公司对车间循环水使用情况没有具体的什么规定和约束,时有发生车间已经不用循环水了而循环泵却是开的;有时也由于循环水池水位过底而使泵组吸不到水也不知道,循环泵组却在空载运行既浪费了电力能源也加速了泵组的机械磨损;另一方面循环水泵的拖动电机启动方式采用星-三角降压瞬时启动,启动时的冲击波造成了电网的不稳定和循环泵组的机械性能受损。鉴于以上几点有意改用变频调速闭环控制方式来控制。 自从通用变频调速器问世以来,变频调速技术在各个领域得到了广泛应用,变频调速器以节能、安全、高品质的质量等优点,在实际应用中得到了很大发展,随着电子技术的飞速发展,变频调速器的功能也越来越强,尤其充分利用变频调速器内置的PID调节功能,对合理设计变频调速设备,保证正常生产等方面有着非常重要意义。公司的循环水泵供水系统通过变频调速器改变泵组的出水能力来适应各车间对流量的需求,当循环水泵的转速改变时,扬程特性随着改变,而管阻特性则不变,则调节了管网压力流量。由于在不同的时间段,车间用水量变化是很大的,为了节约能源,本着多用多开多送,少用少开少送的原则,故通常需要“1控X”的切换。若供水不足,自动提升循环泵的转速来增大泵组出口流量压力或启动2号泵组进行变频控制;反之,当车间用水量减少时则先停止2号泵组退出工作,仅由1号泵组变频控制系统供水。变频调速器已具有内置PID调节运算功能,使采集到的压力信号(DC4—20mA)经过PID调节比较处理后得到新的频率给定信号输出(DC4—20mA),决定变频调速器输出频率的大小,从而改变了循环泵的转速大小来实现管网压力恒定,构成了闭环定值控制系统,能按需自动调速,实现管网水压实时调节的平稳恒定,避免水压流量波动造成的冲击损耗;合理对PID的参数值设定,可以大大减少系统供水管网水压过高过底所带来的功率损耗,节约能源和减少机械磨损。此外,通过变频调速器对循环泵电机启动过程的过渡性设置,使得泵组的启动电流平缓增大,连续启动运行,避免了常规快速启动电机产生大电流对电网的冲击和所产生的机械冲击;从而有效的降低轴承和其他易损件的磨损,普遍减少机械应力,具有节电和延长电机、泵组使用寿命的功效。

另外对循环水池的水位情况及冷却踏的风机运行情况与循环泵组变频调速闭环控制系统进行连锁工作。根据水池水位决定开机,一当水池水位过底可以连锁自动打开补充进水阀们给水池加水,直到达到预定水位。这样保证了整个系统正常运行的可控性。

具体方案图纸附图:

控制系统电气

变频调速器内部接线原理图(通用风机水泵型) 单位:浙江普洛化学有限公司

编号:DYKR0311001

编制:任雪峰

日期:2003-11-11

1

断路器

3

650.00

1950.00

2

交流接触器

CJ20-160A 380V

4

380.00

1520.00

3

电流互感器

BH-0.66 150/5

2

50.00

100.00

4

电流表

6L2-A 150/5 只

2

40.00

80.00

5

电压表

6L2-V 0-450V

1

40.00

6

信号灯

AD11-25/40

5

10.00

50.00

7

控制按钮

LAY3

6

15.00

90.00

8

通用继电器

HH54P

4

10.00

40.00

9

液位控制器

YJ-712

1

40.00

10

压力变送器

HBY-2000

1

3000.00

11

变频调速器

VF-55KW

1

18000-35000.00

12

箱体

1

1000.00

13

主导线

1

200.00

14

辅料费

1

200.00

15

备注

循环冷却水系统篇12

中图分类号:TF085

1 前言

攀钢钛业公司钛冶炼炉冶炼高钛渣,采用半除盐循环冷却水系统间接冷却电极柱的白钢保护套、底环、接触元件和液压站的液压站油箱。钛冶炼炉循环冷却水系统图如下。

试生产以来,水冷管道结垢严重,流量变小,局部温度过高造成系统报警频繁,严重影响了水冷系统的换热效果,产量达不到设计值(平均每月产量小于3000吨)。

2 原因分析

钛冶炼炉循环冷却水系统垢样结果如下。

可知系统老垢以钙垢为主。结合循环水水质指标计算饱和指数(L.S.I.)和稳定指数(R.S.I.)。

(1)饱和指数

L.S.I.=pH-pHs=9.20-6.34=2.86>0

(2)稳定指数

R.S.I.=2pHs- pH=3.48

由此可知,钛冶炼炉循环冷却水系统水质为结垢型水质,此为系统极易沉积污垢的一大因素,另有三个因素:

(1) 循环冷却水系统的pH值较高,导致循环水中的钙、镁离子易从水中析出形成水垢附着在管道壁上;

(2) 污垢的附着,导致冷却水流量变小,底环冷却水回水温度升高,钙、镁离子更易析出,如此恶性循环,使系统结垢更加严重,冷却水回水温度进一步升高,造成超温报警装置报警频繁;

(3) 微生物粘泥形成的污垢,造成管壁增厚,达不到换热冷却效果,严重时将导致设备烧坏并产生漏水,造成停产检修。

鉴于此,需对钛冶炼炉循环冷却水系统进行水质稳定研究,投加阻垢分散剂(内含污垢剥离成分),以保证不堵塞管道。

3 实验室药剂筛选及结果

3. 1 试验目的

循环冷却水处理是一个综合性治理的过程,不能片面地处理结垢或腐蚀或菌藻滋生的问题。因此针对钛冶炼炉结垢型水质,需筛选以阻垢分散为主,配以缓蚀基团为辅的缓蚀阻垢剂,并结合杀灭、剥离菌藻的杀菌灭藻剂共同保证水质稳定。

3. 2 试验内容

进行实验室静态阻垢试验、强化腐蚀试验、缓蚀阻垢剂与杀菌灭藻剂配伍性能试验、有热负荷的动态试验筛选针对性强的缓蚀阻垢配方,确定药剂投加量,并考核缓蚀阻垢剂和杀菌灭藻剂的配伍性能。

3. 3 静态阻垢试验结果

阻垢率随加药量变化曲线图:

3. 4 强化腐蚀试验及结果

缓蚀率随药剂投加量变化曲线图:

通过试验,筛选出配方C为缓蚀阻垢最佳配方。

3. 5 杀菌灭藻剂与缓蚀阻垢剂配伍性试验结果

杀菌灭藻剂与配方C配伍性能较好,杀菌率均保持在99.0%以上。

3. 6 动态模拟试验结果

将配方C不同浓度进行动态模拟试验,得出结果见表6:

配方C阻垢缓蚀性能满足需要,命名为PS-305。投加量在[20,30)mg/l时,对A3钢、黄铜、不锈钢均有较好的缓蚀效果,污垢附着率和腐蚀率均能够达到GB50050-07的要求。

4 现场调试及结果

4.1 调试技术路线

4.2 现场调试结果

调试后钛冶炼炉循环冷却水系统各项水质指标和管道腐蚀结垢率均达到GB50050-07要求,说明钛冶炼炉循环冷却水系统管道结垢情况得到了有效控制。

5 结论

5.1投加缓蚀阻垢剂PS-305,彻底解决了现场报警异象,说明钛冶炼炉循环冷却水系统所结老垢已彻底清离,管道管径已恢复。运行期间,水系统污垢附着率均低于GB50050-07(污垢附着率≤15m.c.m)的标准,确保了钛冶炼炉冶炼高钛渣的安全生产。

友情链接