时间:2022-12-24 20:21:01
引言:寻求写作上的突破?我们特意为您精选了4篇化学成分分析论文范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

Abstract:ObjectiveTostudythechemicalconstituentsfromLigusticumchuanxiongaimingatsearchingforbioactivenaturalproducts.MethodsAllcompoundswereisolatedandpurifiedbychromatographicmethods.Theirstructuresweredeterminedbyvariousspectralmethods.ResultsSixteencompoundswereisolatedfromLigusticumchuanxiongandtheirstructureswereidentifiedbymeansofspectroscopicanalysisas:sinapicacid(Ⅰ);βsistosterol(Ⅱ);Z6,8’,7,3’–diligustilide(Ⅲ);ferulicacid(Ⅳ);4hydroxy3butylphthalide(Ⅴ);pregnenolone(Ⅵ).ConclusionCompoundsⅠandⅥarefoundinLigusticumchuanxiongforthefirsttime.
Keywords:LigusticumchuanxiongHort.;Chemicalconstituents;Structureidentification
川芎为《中国药典》2005年版(Ⅰ部)收载品种,为伞形科植物川芎LigusticumchuanxiongHort.的干燥根茎,味辛、性温,归肝、胆、心包经,具有活血行气、祛风止痛的功效,常用于月经不调,经闭痛经,癥瘕腹痛,胸胁刺痛,跌扑肿痛,头痛,风湿痹痛[1]。川芎含有多种内酯类、生物碱类、酚类、以及挥发油类等多种化合物。
笔者对川芎进行了化学成分研究,从中分离得到了6个化合物,经鉴定为芥子酸(sinapicacid,Ⅰ)、β谷甾醇(βsistosterol,Ⅱ)、Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide,Ⅲ)、阿魏酸(ferulicacid,Ⅳ)、4-羟基3丁基苯酞(4hydroxy3butylphthalide,Ⅴ)、孕烯醇酮(pregnenolone,Ⅵ),其中化合物Ⅰ、Ⅵ为首次从该植物中分离得到。
1仪器与材料
X4熔点测定仪(温度未校正);BrukerAvance600型核磁共振仪(TMS为内标),测定溶剂为CDCl3;BioTOFQ型质谱仪;柱层析硅胶(200~300目):青岛海洋化工厂生产;川芎药材购自成都市五块石药材市场,经成都中医药大学炮制制剂教研室胡昌江教授鉴定为川芎LigusticumChuanxiongHort.的干燥根茎。
2提取分离
川芎粗粉(10kg),经乙醇回流提取,乙醇提取液减压浓缩至无醇味,氯仿萃取,回收氯仿,氯仿萃取物经硅胶(200~300目)柱层析,以石油醚醋酸乙酯混合溶剂进行梯度洗脱,TLC检查合并相似流份,各组分进行反复硅胶柱层析分离,先后得到6个化合物。
3结构鉴定
化合物Ⅰ:无色针状结晶,mp143~145℃,FeCl3反应呈阳性,显示其具有酚羟基。溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCl3)δ:3.93(6H,d,J=18.24,OCH3),6.28(1H,d,J=9.48,H7),6.85(2H,d,J=4.44,H2,H6),7.61(1H,d,J=9.48,H8),参照文献[2],可确定该化合物Ⅰ为芥子酸(sinapicacid)。
化合物Ⅱ:无色针状结晶,mp137~139℃,LibermannBerchard反应呈阳性,提示分子中具有甾体母核,10%硫酸乙醇溶液显色为紫红色。1HNMR(CDCl3)数据与文献β谷甾醇标准图谱[3]一致,且与对照品β-谷甾醇的薄层具有相同的Rf值,与β谷甾醇对照品混合测熔点不下降,故鉴定化合物Ⅱ为β谷甾醇(βsistosterol)。
化合物Ⅲ:无色片状结晶,mp106~108℃,ESIMS给出分子量为380,结合元素分析确定分子式为C24H28O4,1H-NMR(CDCl3)δ:2.02(3H,m,H4),2.57(4H,m,H4),2.02(3H,m,H5),2.17(3H,m,H5),2.58(5H,m,H6),3.47(1H,d,J=7.24,H7),5.21(1H,t,J=7.8,H8),2.33(3H,m,H9),1.47(6H,m,H10),0.95(4H,t,J=7.6,H11),2.74(1H,m,H4’),2.45(1H,m,H5’),2.75(1H,m,H5’),5.93(1H,dt,J=9.6,4.1,H6’),6.17(1H,dt,J=9.6,1.8,H7’),2.94(1H,q,J=7.8,H8’),1.47(6H,m,H9’),1.14(3H,m,H10’),0.86(4H,t,J=7.6,H11’),ESIMS,1HNMR光谱数据与文献报道Z6,8’,7,3’-二聚藁本内酯相符[4]。故鉴定化合物Ⅲ为Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide)。
化合物Ⅳ:淡黄色针状结晶,mp174~176℃,溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCL3)δ:3.94(3H,s,OCH3),6.30(1H,d,J=15.84,H3),6.93(1H,d,J=8.10,H8),7.11(1H,dd,J=8.22,1.8,H9),7.05(1H,d,J=1.92,H5),7.71(1H,d,J=15.84,H2),与阿魏酸光谱数据基本一致[4],且与对照品阿魏酸薄层具有相同的Rf值,故鉴定化合物Ⅳ为阿魏酸(ferulicacid)。
化合物Ⅴ:无色片状结晶,mp188~190℃,1HNMR(CDCl3)δ:5.55(1H,dd,J=7.98,3.06,H3),7.36(1H,t,J=7.65,H6),7.47(1H,d,J=7.62,H5),7.01(1H,d,J=7.92,H7),2.31,1.77(各1H,m,H8),1.39(4H,m,H9,H10),0.90(3H,t,J=7.08,H11),5.72(1H,s,4OH)。13CNMR(CDCl3)δ:170.7(C1),80.7(C3),136.1(C3a),150.4(C4),120.0(C5),130.6(C6),117.8(C7),128.5(C7a),32.4(C8),26.8(C9),22.4(C10),13.9(C11)。以上物理常数及光谱数据与文献报道4-羟基3丁基苯酞相符[4]。故鉴定化合物Ⅴ为4羟基3丁基苯酞(4hydroxy3butylphthalide)。
化合物Ⅵ:无色片状结晶,mp191193℃,1HNMR(CDCl3),13CNMR(CDCl3),二维谱数据与文献孕烯醇酮标准图谱[5]一致,且与对照品孕烯醇酮的薄层具有相同的Rf值,与对照品孕烯醇酮混合测熔点不下降,故确定化合物Ⅵ为孕烯醇酮(pregnenolone)。
【参考文献】
[1]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:28.
[2]孙凯,李铣.南葶苈子的化学成分[J].沈阳药科大学学报,2003,20(6):419.
2方法与结果
2.1提取与分离糯稻根3.0kg,用水煎煮3次,1h/次。合并滤液为A,药渣为B,将A浓缩至3000ml,加无水乙醇至含醇量达70%,放置24h,过滤,滤液回收乙醇至无醇味,滤液上阳离子交换树脂柱,用不同浓度的氨水洗脱,直到洗脱液无茚三酮反应为止。分别得到16种成分。B用80%乙醇回流提取3次,1h/次,合并滤液,回收乙醇得M,将M上聚酰胺柱,用H2O、不同浓度的乙醇洗脱,分别得到M1~M55个成分。
2.2TLC鉴定
2.2.1氨基酸TLC鉴定将样品溶于蒸馏水中(1mg/ml),制成供试液。另将各种氨基酸标准品分别用蒸馏水溶解,制成对照品溶液(1mg/ml)。吸取供试液与对照液各5μl,分别点于同一硅胶G薄层板上(20cm×20cm),以正丁醇-甲醇-水(75∶15∶10)展开,展距19cm,0.2%茚三酮显色,与对照品比较,供试品中的氨基酸与对照品的斑点一致。Rf值分别为:组氨酸Rf0.01,赖氨酸Rf0.02,丝氨酸Rf0.14,脯氨酸Rf0.15,苏氨酸Rf0.17,谷氨酸Rf0.24,精氨酸Rf0.26,门冬氨酸Rf0.27,甘氨酸Rf0.29,酪氨酸Rf0.30,丙氨酸Rf0.34,缬氨酸Rf0.40,蛋氨酸Rf0.45,苯丙氨酸Rf0.49,异亮氨酸Rf0.50,亮氨酸Rf0.59。见图1。
2.2.2糖的TLC鉴定将水提液与对照品葡萄糖、果糖,分别点于同一硅胶硼酸板上(5cm×20cm),以正丁醇-醋酸-水4∶1∶5(上层)展开,展距15cm,α-萘酚浓硫酸显色,与对照品比较,供试品与对照品的斑点一致。
2.3黄酮类波谱学鉴定M5:黄色针晶,m.p274~276℃,HCl-镁粉反应阳性,Molish反应阴性,UV[λ]MeoHmax:396、266,IRυKBrcm-1:3359(OH)、1659、1613(α、β-不饱和酮)、1600、1509(芳环)、1380、1175。1H-NMR(100MHz、CD3COCH3,TMS,δPP):8.14(2H,d,J=9Hz,2ˊ,6ˊ-H)、7.00(2H、d、J=9Hz、3ˊ,5ˊ-H)、6.49(1H、d、J=2.58Hz、8-H)、6.29(1H、d、J=2.6Hz、6-H)、3.11(4Hbr,OH加H2O消失)。综上分析M5的结构为山萘酚。
2.4氨基酸分析仪鉴定结果见图2。
3讨论
糯稻根来源广泛,全国各地均有栽培。经研究表明,根部含有各种氨基酸成分,作为氨基酸的天然资源是极为丰富的。
将糯稻根的有效成分研制为产品应用于临床或者研制成食品保健品,将有较好的经济效益和社会效益。
经药理实验表明,糯稻根的水煎液有明显的滋阴、保肝作用。
M1,M2,M3,M4单体的结构鉴定待进一步研究。
致谢:氨基酸、黄酮单体成分测定分别由广西分析测试中心和广西师范大学协助测定,特此感谢!
【参考文献】
[1]冉先德.中华药海[M].哈尔滨:哈尔滨出版社,1993:2238.
[2]谭文界.糯稻根的化学成分[J].中草药,1980,11(10):440.
Abstract:ObjectiveTheessentialoilsfromNepetacatariaL.wereextractedbysteamdistillation.MethodsThechemicalconstituentswereanalyzedbyGCMS.ThenthepercentagecontentofcompositionofessentialoilwasdeterminedbyGCnormalizationmethod.ResultsTheconstituentswereidentifiedbyGCMS.58componentswereseparated,identifiedandaccountedforover86.23%.ConclusionByanalyzingtheessentialoilofNepetacatariaL.,thescientificfoundationswereprovidedforfurtherdevelopmentoftheplantnotonlyasakindoffoodbutalsoakindofmedicine.
Keywords:NepetacatariaL.;Essentialoil;GCMS
荆芥NepetacatariaL.为唇形科荆芥属多年生草本植物,产于河南、山西、陕西、甘肃、新疆、山东、湖北、四川、贵州、云南等省区,阿富汗、印度、日本、美洲南部也有分布[1]。荆芥在河南主要以鲜嫩的茎叶供作蔬菜食用,也可作佐料,具有特殊的香味,富含营养价值和药用价值,是重要的药食两用蔬菜。荆芥在整个生长期间几乎不会受病虫危害,是一种经济效益高、很有发展前途的无公害、保健型辛香蔬菜,多为人工栽培,在伏牛山区和太行山区也有野生。在我国东北地区多以多裂叶荆芥SchizonepetatenuifoiaBrig的地上干燥部分作为荆芥入药,广西各地以同科的荠苎属(Mosla)及香薷属(Elsholtzia)多种植物的干燥地上部分“土荆芥”为名代替荆芥[2]。
在对同科裂叶荆芥属植物荆芥(SchizonepetatemuifoliaBrig.)挥发油成分及药理作用研究发现,化学成分主要是薄荷酮(30.8%)和2甲基6异丙基2环己烯1酮(38.98%),另外还有香芹酮、月桂烯和柠檬烯等含量较少成分。药理作用具有镇痛、抗炎、扩张支气管和抗过敏等功效[3~6]。笔者用GCMS首次分析了河南省开封市产荆芥挥发油的化学成分,将所得质谱图与标准图谱对照鉴定化合物,并用GC测定了各化合物在其挥发油中的相对百分含量。
1材料与方法
1.1仪器与材料GC/MSQP500联用仪(日本岛津)。荆芥样品200512采集于河南省开封市,经鉴定为唇形科荆芥属植物荆芥(NepetacatariaL.)。
1.2挥发油提取将切碎后的荆芥地上部分鲜重380g用挥发油提取器提取2h,取油待检测。
1.3挥发油成分分析荆芥挥发油的分析在GC/MSQP500气相色谱/质谱联用仪上进行。
气相色谱条件:色谱柱为OV17(30m×0.25mm);升温程度为60℃(保留2min),以速率6℃/min至260℃(保留8min)。进样口温度280℃,界面温度250℃。进样量为1.0μl,分流比为35∶1;载气为高纯He(φ=99.999%),载气流量为1.0ml/min。质谱条件是:离子源EI源;离子温度250℃;电子能量70eV;倍增器电压1.35kV;接口温度280℃;扫描质量范围33~440amu。
2结果与分析
2.1用水蒸气蒸馏法提取新鲜荆芥挥发油,挥发油占鲜重0.05%。应用GCMS法对荆芥挥发油成分进行分析,经NIST数据库与标准质谱图库对照,并经过有关文献人工图谱鉴定,从中鉴定出58种成分(表1),已鉴定成分的总含量约占全油的86.23%。
表1荆芥挥发油成分及相对百分含量(略)
从分析结果可以看出,河南产荆芥挥发油成分主要是萜类、萜醇类、醛类、酯类及烷烃类化合物等,其中含量较高的成分为反-柠檬醛(17.80%)、顺-柠檬醛(15.39%)和对烯丙基茴香醚(14.76%),这与文献报道同科不同属植物药用荆芥主要成分为右旋薄荷酮和消旋薄荷酮有很大的差别,与相同功效的薄荷主要的成分为薄荷酮区别也较大。
2.2萜类是存在于植物界具有多方面生物活性的一类化合物,是某些中药的有效成分,如在荆芥挥发油中的主要萜类顺-柠檬醛和反-柠檬醛具有杀虫、抗曲霉菌和真菌活性,对烯丙基茴香醚有抗真菌活性。柠檬醛是一种广谱性的杀虫剂,它可杀灭蚊子、苍蝇、蟑螂和臭虫等传染疾病的害虫,以及危害粮食、蔬菜的常见害虫,包括幼虫、蛹等在内,而对人、动物和植物均无毒性,且杀虫效果好。因此荆芥挥发油可望开发为环保型杀虫剂,对人、动物和植物均无毒副作用,从而有助于生产真正无污染的绿色果品。
2.3含柠檬醛的挥发油别具调味风味,制成粉剂后使用方便,易溶于水。在汤粉、粉末饮料中添加这种油性调味粉,则柠檬清香四溢。在脱水奶、香料、香料和着色剂中添加这种油性调味粉能显著增加香味,提高质量。通过对荆芥挥发油化学成分的分析及含量的测定,对开发和综合利用荆芥食用药用资源提供了科学依据。
【参考文献】
[1]丁宝章,王遂义.河南植物志[M].郑州:河南科学技术出版社,1998:348.
[2]周丽娜.荆芥的化学成分及药理作用研究[J].中医药学刊,2004,22(10):1935.
[3]袁久荣,袁浩,周方敏,等.山东荆芥挥发油的GCMS分析[J].中国药学杂志,1996,31(10):618.
ChemicalConstituentsofPyrolaxinjiangensis
Abstract:ObjectiveToinvestigatetheconstituentsofPyrolaxinjiangensis..MethodsSeparationandpurificationwereperformedonsilicagelCCandsephadexLH-20.Theirstructureswereestablishedonthebasisofphysicochemicalandspectralanalysis.ResultsFivecompoundswereisolatedandidentifiedasPyrolin(Ⅰ),Isoquercitrin(Ⅱ),Pirolatin(Ⅲ),Monotropein(Ⅳ),renifolin(Ⅴ),respectively.ConclusionThesecompoundsareisolatedfromPyrolaxinjiangensisforthefirsttime.
Keywords:PyrolaxinjiangensisY.L.Chou;Chemicalconstituents
新疆鹿蹄草PyrolaxinjiangensisY.L.Chou为鹿蹄草科鹿蹄草属植物,产于新疆维吾尔自治区境内的天山及阿尔泰山脉,是新疆民族药常用药材[1]。该属植物共有三十余种,我国产27种3变种,较为集中的分布在我国的西南部和东北部[2]。《中国药典》中收载的中药鹿蹄草是鹿蹄草或普通鹿蹄草的干燥全草,其性温,味甘、苦,具有祛风除湿、强壮筋骨、补虚益肾、收敛止血的功效,主治风湿痹痛,肾虚盗汗,筋骨酸软,虚弱咳嗽,外伤出血。哈萨克民间用新疆鹿蹄草治疗和预防心血管疾病,对冠心病、高血压病以及由其引发的心痛、胸闷、心悸等有特效。体外抗血小板聚集活性测试表明新疆鹿蹄草的70%乙醇提取物对血小板聚集有显著的抑制作用。本实验对新疆鹿蹄草乙醇提取物的正丁醇萃取部分进行了化学成分分离,从中得到五个化合物,通过化学和光谱方法鉴定了它们的结构,分别为鹿蹄草素(Ⅰ),异槲皮苷(Ⅱ),鹿蹄草苷(Ⅲ),水晶兰苷(Ⅳ),肾叶鹿蹄草苷(Ⅴ),所有化合物均为首次从新疆鹿蹄草中获得。
1仪器与材料
Yanaco显微熔点测定仪(温度未校正),FTS165型红外光谱仪(美国PerkinElmer公司生产),EI-MS和FABMS用ZABHS型质谱仪,Varianinova400型核磁共振仪(TMS作内标)。柱色谱硅胶(200300目)和薄层色谱硅胶GF254均为青岛海洋化工厂产品,sephadexLH20为Pharmacia公司产品。化学试剂均为分析纯。药材购自新疆阿勒泰,由新疆生态与地理研究所沈观冕研究员鉴定为新疆鹿蹄草PyrolaxinjiangensisY.L.Chou。
2方法与结果
2.1提取与分离
取新疆鹿蹄草干燥全草3.5kg粉碎,用70%乙醇回流提取3次,合并提取液,减压浓缩,得浸膏848g。将浸膏分散于水中,依次用石油醚,氯仿,醋酸乙酯,正丁醇萃取。取正丁醇部位63g进行硅胶柱色谱分离,以氯仿-甲醇(100∶0~0∶100)梯度洗脱,每500ml为1个流份,合并成分相似流份,再经反复硅胶柱色谱和sephadexLH20分离纯化,得到化合物Ⅰ(69mg),Ⅱ(120mg),Ⅲ(19mg),Ⅳ(45mg),Ⅴ(15mg)。
2.2结构鉴定
2.2.1化合物Ⅰ无色片状结晶(氯仿),分子式:C7H8O2;mp126-127℃;三氯化铁-铁氰化钾反应显阳性;IRνKBrMaxcm-1:3320,1615,1600,1490,1380,1190;EI-MS(m/z):124[M]+,107,95,77,57,43;1H-NMR(DMSO-d6):8.61(1H,s,OH),8.53(1H,s,OH),6.57(1H,d,J=8.1Hz,H-6),6.50(1H,d,J=2.0Hz,H-3),6.41(1H,dd,J=1.8Hz,8.1Hz,H-5),2.05(3H,s,2-CH3);13C-NMR(DMSO-d6):149.52(C-1),147.73(C-4),124.41(C-2),117.20(C-3),115.12(C-6),112.63(C-5),16.13(2-CH3)。根据以上数据并参照文献报道[3],鉴定为鹿蹄草素。
2.2.2化合物Ⅱ黄色粉末(甲醇),mp231~233℃;分子式:C21H20O12;盐酸镁粉反应显红色,molish反应显阳性;IRνKBrMaxcm-1:3340(OH),1654(C=O),1602,1498(Ar);FAB-MS(m/z):487[M+Na+];1H-NMR(DMSO-d6):12.61(s,-OH),7.61(1H,dd,J=1.6Hz,8.4Hz,H-6'),7.48(1H,d,J=1.8Hz,H-2'),6.76(1H,d,J=8.4Hz,H-5'),6.34(1H,d,J=2.4Hz,H-8),6.15(1H,d,J=2.4Hz,H-6),5.31(1H,d,J=8.1Hz,H-1″).3.3~3.65(5H,m,H一2″~6″);13C-NMR(DMSO-d6):178.43(C-4),165.02(C-7),162.18(C-5),157.20(C-9),l57.15(C-2),149.53(C-4′),145.77(C-3′),134.30(C-3),123.07(C-6′),122.12(C-l′),116.94(C-5′),116.24(C-2′),104.83(C-l0),99.60(C-6),94.55(C-8),102.74(C-l″),72.30(C-2″),74.13(C-3″),68.95(C-4″),76.84(C-5″),61.01(C-6″),根据以上数据并参照文献报道[4],鉴定为异槲皮苷。
2.2.3化合物Ⅲ白色针状结晶(甲醇),mp165~167℃;分子式:C23H34O8;IRνKBrMaxcm-1:3340-3100,2916,1507,1205,1028;FAB-MS:461[M+Na]+;1H-NMR(CD3OD):6.95(1H,s,H-3),6.60(1H,s,H-6),5.37(1H,qt,J=6.7Hz,1.2Hz,H-2′),5.31(1H,t,J=7.2Hz,H-6'),4.80(1H,d,J=8.1Hz,H-1″),4.12(2H,s,2H-8′),3.3~3.75(7H,m,H-2″~6″,2H-1'),1.98~2.30(4H,m,2H-5',2H-4′),2.16(3H,s,5-CH3),1.76(3H,d,J=2.1Hz,7′-CH3),1.73(3H,s,3′-CH3);13C-NMR(CD3OD):151.45(C-4),149.64(C-1),136.22(C-3′),135.52(C-7′),130.92(C-2),128.41(C-2′),124.52(C-6′),123.37(C-5),120.08(C-6),116.39(C-3),61.34(C-8'),40.88(C-4'),28.57(C-1'),27.11(C-5'),21.31(7'-CH3),16.20(3'-CH3)),15.90(5-CH3),104.08(C-1″),75.05(C-2″),77.84(C-3″),71.51(C-4″),78.12(C-5″),62.70(C-6″)。根据以上数据并参照文献报道[5],鉴定为鹿蹄草苷。
2.2.4化合物Ⅳ无色针状结晶(甲醇),mp170-172℃;分子式:G6H22O11;IRνKBrMaxcm-1:3460-3000(OH),3000-2450(COOH),1702(C=O),1647(C=C);FAB-MS:413[M+Na]+;1H-NMR(DMSO-d6):7.32(1H,d,J=1.2Hz,H-3),6.11(1H,dd,J=2.5Hz,6.0Hz,H-6),5.53(1H,d,J=1.8Hz,H-1),5.48(H,dd,J=1.8Hz,6.0Hz,H-7),4.67(1H,d,J=7.5Hz,H-1'),3.3~3.70(8H,m,H-2'~6',5,10),2.59(1H,dd,J=2.0Hz,8.5Hz,H-9);13C-NMR(DMSO-d6):170.50(C-11),151.17(C-3),137.23(C-7),132.08(C-6),109.36(C-4),93.93(C-1),84.77(C-8),66.24(C-10),43.52(C-9),36.25(C-5),98.40(C-1'),73.13(C-2'),76.41(C-3'),70.26(C-4'),77.12(C-5'),61.24(C-6')。根据以上数据并参照文献报道[6,7],鉴定为水晶兰苷。
2.2.5化合物Ⅴ无色针状结晶(甲醇),mp231~233℃;分子式:C18H24O7;RνKBrMaxcm-1:3350,1610,1513,1451,1205;FAB-MS:353[M+1]+;1H-NMR(CD3OD):6.61(1H,s,H-6),5.60(1H,m,H-3),4.78(1H,d,J=7.6Hz,H-1'),4.16(2H,s,2H-1),3.37~3.78(5H,m,H-2'~6'),3.28(2H,m,2H-4),2.30(3H,s,7-CH3),1.81(3H,s,2-CH3);13C-NMR(CD3OD):151.80(C-5),146.71(C-8),132.65(C-8a),130.87(C-2),130.07(C-7),120.70(C-4a),118.49(C-3),114.97(C-6),31.02(C-1),26.08(C-4),23.61(2-CH3),17.40(7-CH3),105.70(C-1'),75.61(C-2′),77.82(C-3′),71.45(C-4′),78.01(C-5′),62.79(C-6′)。
根据以上数据并参照文献报道[8],鉴定为肾叶鹿蹄草苷。
3讨论
文献报道的对鹿蹄草属植物的研究主要集中在鹿蹄草P.calliantha.H.Andres和普通鹿蹄草P.decorateH.Andre。从本次实验结果可见,新疆鹿蹄草中含有的主要化学成分与以上两种鹿蹄草属植物相同,本研究对维吾尔医中把新疆鹿蹄草作为常用药材提供了理论依据。
【参考文献】
[1]新疆植物志编辑委员会.新疆植物志,第4卷[M].乌鲁木齐:新疆科技卫生出版社,2002.
[2]中国科学院中国植物志编辑委员会.中国植物志,第56卷[M].北京:科学出版社,1990.
[3]周玉波,李洪侠,王金辉,等.绿花鹿蹄草中的化学成分[J].中药研究与信息,2005,7(6):11.
[4]易醒,石建功,周光雄,等.青钱柳化学成分研究[J].中国中药杂志,2002,27(1):43.
[5]InouyeH,InoueK.Structureofrenifolinandreconfirmationofthestructureofpirolatin[J].Phytochemistry,1985,24(8):1857.