交流电动机的应用范文

时间:2023-05-19 11:17:44

引言:寻求写作上的突破?我们特意为您精选了4篇交流电动机的应用范文,希望这些范文能够成为您写作时的参考,帮助您的文章更加丰富和深入。

交流电动机的应用

篇1

1 前言

目前我厂各类在役电动机中交流电动机占99%以上,而交流电动机面临的最大问题是起动问题。它包括起动时电流及起动转矩冲击,以及很多大功率电动机因为起动困难,对电网的冲击也很大,因此只能尽量减少停机次数,从而造成能源的浪费。

2 电动机起动问题

三相交流电动机起动分为直接起动和降压起动。交流电动机直接起动又称全压起动,它是一种最简单的起动方法。起动时将全部电压直接加在电动机定子绕组上,起动电流将达到4~7倍的额定电流和过高的起动转矩,直接影响该电网上的其他电气设备运行。当全压起动的电动机容量愈大,供电变压器的容量越小,这种影响越显著。当电动机容量大于电力变压器容量的30%时,在全压起动的瞬间大电流冲击下,将引起电网电压的降低,影响到该电网内其他电气设备的正常运转。电压降低可引起电机本身起动无法正常运行,严重时可烧毁电动机,同时全压起动产生过高起动冲击转矩,还将会使连接件损坏,电动机机座变形,齿轮或齿轮箱损坏,传送带撕裂等。解决此类问题,一般生产机械及电力拖动电动机尽可能采用软起动方法,即适当降低电动机端电压,减少电动机起动电流及过大启动冲击转矩等,以避免拖动系统不必要的损坏。

3 交流电动机软启动

随着工业生产及工业生产机械的不断发展,即对电动机拖动的起动性能提出了越来越高的要求。(1)电动机要有足够大的并能平稳提升的起动转矩和符合要求的机械特性曲线;(2)起动设备尽可能简单、经济、可靠、起动操作方便,直接起动是最简单起动方式,但还要克服其起动电流大及转矩冲击大,对电网及拖动设备造成的危害;(3)起动电流和起动功耗尽可能小。综上软起动对交流电动机拖动的控制及保护是达到节能、简化控制、优化资源的重要手段。

交流电动机软启动方式:一般采用(1)传动降压起动;(2)电子晶闸管降压起动:(3)变频软起动。

3.1 传统降压起动

3.1.1 自耦变压器降压起动

定子通过自耦变压器连接到三相电源上,降低电动机定子绕组电压,以减小起动电流。当电动机起动后,再将其切除,其优点根据不同负载要求,起动电压可选择,缺点是当电动机容量较大时,变压器体积增大,成本高。目前我公司已全部淘汰此种起动方式。

3.1.2 Y-转换起动

所谓Y-转换起动,起动时定子绕组为Y形连接,起动完成后,正常运行时为形连接。星形连接起动时起动电流和起动转矩为三角形连接的三分之一。同时由于从星形转换为三角形过程中会出现二次冲击电流以及冲击转矩等问题。适用于轻载或空载起动的场合,接线时还应该注意Y-连接时要保证其旋转方向的一致。优点是线路较简单,投资少,缺点是转矩特性差。

3.1.3 串电抗器或水电阻降压起动

即在定子回路绕组中串联电抗器或水电阻从而实现降压起动,减小起动电流,待起动完成后再将其切除。但由于电抗器成本高,水电阻损耗大,故一般在电动机空载或轻载运行时可利用串电抗器降压起动。由于维护复杂,空间、环境等因素,我们公司没有采用过此种降压起动方式。

3.2 晶闸管降压起动

晶闸管降压起动又称“软启动器”,它采用三对反并联的晶闸管,串接于三相电源与电动机定子回路上。利用晶闸管移相控制原理,通过微处理器的控制来改变晶闸管的开通程度,使电动机输入电压按预设的函数关系逐渐上升。

起动时,电动机端电压随晶闸管的导通角从零逐渐增大,直至达到满足起动转矩的要求而结束起动过程。当起动完成后,软启动器输出额定电压,旁路接触器接通,电动机进入稳态运行状态。

停机时,先切断旁路接触器,然后软启动器内的晶闸管导通角由大逐渐减小,使三相电压逐渐减小,电动机转速逐渐减小到零,完成停机过程。我公司现降压起动都采用此种方法,它是集电动机软启动、软停车和多种保护功能于一体的电动机控制装置。软启动器在晶闸管两侧装设的旁路接触器,保证了晶闸管仅在起动、停车时工作,避免长期运行使晶闸管发热,同时还可以避免在电动机运行时软启动器发生故障,可由旁路接触器作为应急备用。缺点:价格高,晶闸管还可以引起高次谐波。软起动器的广泛应用,标志着电动机控制技术由传统的电器控制时代进入了电子智能化控制时代。

3.3 变频软启动

即采用电压频率按比例平滑上升的VVVF控制的基本原则,在起动过程中不存在大的转差功率,有利于电动机平稳起动,从而实现降压起动,消除了起动冲击,避免起动功耗,且可控制起动速度,是一种真正的平滑起动方式。它可以在限流同时保持高的起动转矩,具有保护功能强大的特点。缺点:价格高,对电网来说它可是谐波污染源,但我们利用电抗器和有源滤波器抑制谐波。虽然他也是一种软起动装置,但更广泛应用在变频调速。我们公司现在将负荷变化较大的电动机都采用变频控制。不仅可以减少对电网冲击,还达到了节能的目的。

4 结语

综上所诉:传统的降压起动设备,其目的减少了起动电流和功耗,但同时降低电动机起动转矩,起动效果差,并且产生二次电流冲击、故障率高、使用受限等问题,但投资少,不会产生谐波;电子晶闸管降压软启动有较好的起动特性,起动参数可调,一定程度上可解决轻载起动设备起动冲击问题。不足之处不宜作随载降压节能设备用,且达不到电磁兼容的要求,另外存在价格高等问题;变频软起动其具有调速、节能、保护等优点,它以微电脑全数字节能化控制,对电动机提供全方位服务,不愧为电动机综合节能保护的优选产品。

参考文献:

篇2

中图分类号:U264.91+3.4文献标识码:A

交流电动机调速方法近年来得到了广泛的应用,它的惯量小、结构设计简单、可在恶劣环境中使用,并且维护检修比较方便、容易实现高速化、高压化以及大容量化,还具有非常明显的成本优势。交流电动机调速技术因其具有优质、节电、降耗、增产的特点已经逐渐成为我国电气传动的中枢。

虽然交流电动机调速方法在现实使用中具有明显的优势,但是由于很多企业和部门对于交流电动机调速的方法缺乏明确的判断和认识,对于各种调速方案的使用条件和优缺点认识不够,在使用过程中出现了一系列的问题,不能使各种调速方案的作用得到最大化的发挥。为了避免这些问题的出现和蔓延,也为了进一步提高对于交流电动机调速方法及其控制方案的理解,本文从交流电动机调速的基本方法及其装置入手,对交流电动机的调速控制方法及其 特点进行了详细的分析,并研究了各类交流电动机的调速控制方案的适用场合和条件,为交流电动机调速方案作用的最大化发挥提供了参考和指导。

1 交流电动机调速方法阐述

根据交流电动机的基本转速公式(下式(1)、(2))可以发现只要改变转差率S、交流电机供电率F以及极对数P中的任意一个交流电机的转速就会发生改变,由此引出了三最基本的调节电机转速的方法,即常说的变频调速(改变频率f1)、变转差率调速(改变s)、变极调速(变极对数p)三种调速方式。

同步电动机转速公式:N0=60F/P(1)

异步电动机的转速公式:N=N0(1-S)=60F/P(1-S) (2)

式中: P为极对数;

F为频率;

S为转差率(0~3%或0~6%)。

由于电机供电率F的改变比转差率S和极对数P的改变要简单得多,所以变频调速在实际中比另外两种调速方式的应用要广泛的多,特别是近年来静态电力变频调速器的迅速兴起和发展促使了三相交流电动机变频调速成为当前电气调速的主流。总的来说,交流电动机的调速方法有不改变同步转速和改变同步转速两种方式。基于此,在生产实际中,不改变同步转速的调速方法有应用油膜离合器、液力偶合器、电磁转差离合器等调速以及绕线式电动机的串级调速、斩波调速以及转子串电阻调速。我们还应该注意到仅仅改变电动机的频率不一定能获得良好的变频特性,还需要对对电压做出调整,以便使磁通保持在一个恒定位置。

2各种调速方法及其装置的特征分析

(1)变频调速

变频调速是一种改变同步转速的调速方法,它的主要装置是能够改变电源频率的变频器。一般有两大类变频器:交流-交流变频器以及交流-直流-交流变频器,而我国使用的是后一种变频器。它的主要特点如下表1所示:

表1 变频调速的主要特点

(2)转子串电阻调速

转子串电阻调速的原理是转子串电阻加大了电动机的转差率,因而串入的电阻越大就会使转速越低,对设备的要求比较简单,但是在使用过程中会产生热量。它的主要特点如下表2所示:

表2 转子串电阻调速的主要特点

(3)定子调压调速

定子电压的改变会产生一系列机械特性各异的曲线,进而产生不同转速。但是电压的平方正比于电动机的转矩决定了该方法的调速范围不大。基于此,在实际应用中有人提出了转子电阻值大的笼型电动机或者在绕线式电动机上串联频敏电阻能够扩大其调速范围的观点,并得到了证实。调压调速的核心设备是一个能使电压发生改变的电源,主要有晶闸管调压、自耦变压器、串联饱和电抗器等几种,其中以第一种调压方式为最好。它的主要特点如下表3所示:

表3 定子调压调速的主要特点

(4)串级调速

串级调速是通过在绕线式电动机转子回路中联入可变附加电势来改变电动机转差的一种调速方法。在这个过程中可变附加电势对于转差功率的吸收能力决定了串级调速的程度,并且根据吸收方式的不同,串级调速又可分为晶闸管串级调速、机械串级调速以及电机串级调速三种形式,第一种为最常用的形式。它的主要特点如下表4所示:

表4 串级调速的主要特点

(5)变极调速

该种方法主要是针对笼型电动机而言的,它改变的是定子绕组的接线方式,因此设备要求比较简单。它的主要特点如下表5所示:

表5 变极调速的主要特点

参考文献

[1] 周志敏,周纪海,纪爱华.变频调速系统设计及维护[M].北京:中国电力出版社,2007:76.

篇3

中图分类号:G642.0文献标识码:B文章编号:1672-1578(2013)11-0017-01

近年来,随着能源日益减少,新型节电设备的不断更新和科学技术的飞跃发展,合理化的设计和节电设备的日益广泛应用,给人们工作和生活带来了更多的方便。

1.交流电动机调速系统的发展过程

1.1交流电动机励磁调速。早期用原动机来驱动一台发电机,而通过控制发电机的励磁来调节发电机的输出电压,借此来调节被驱动电机的转速和电机有功功率输出,还可以关闭和起动电机。

1.2电流电动机可控整流调速。随着科学技术不断发展,发明了通过晶闸管的导通时间来控制电压(可控整流技术)。首先是调速系统响应速度得到了很大提高,并且很好地解决了低速情况下的电流断续问题。可控硅调速是用改变可控硅导通角的方法来改变电动机端电压的波形,从而改变电动机端电压的有效值,达到调速的。

2.交流电动机的调速原理

转速公式:

式中各项因子如下:f:电源频率;p:电动机磁极对数;s:转差率。

通过式(1)可以看出,在理想状态下(即以不考虑各项因子之间的相互影响为前提条件),想要调节交流电动机的速度,可以由以下三种方式来实现:

1)变极调速方式,即通过改变电机定子绕组的极数来控制电动机速度。但此方式有一定的局限性,因为它无法实现平滑调速,故而在很多要求高控制精度的工业生产场合并不适用。

2)变转差率调速方式,采用此方式有一个前提条件,即电机中旋转磁场的同步转速恒定,此时通过调节转差率s也可实现对电动机的调速,此方式的缺点是能耗较大,且效率较低,是一种得不偿失的调速方式,因而较少使用。

3)变频调速,即本设计所采用的调速方式,此方式是通过调节供电电源频率来实现对电动机的调速,其效率和能耗明显优于上述两种调速方式。

3.系统硬件设计

该系统的硬件部分大体上可以分成以下几个模块所组成:主电路、系统保护电路、控制电路和扩展电路。下图给出了硬件设计的主体结构,可以看出,主电路由整流滤波电路和SPWM逆变电路两个部分组成。其工作原理是把输入的单相交流电压通过整流滤波电路变为平滑的直流电压,然后再通过逆变电路对该直流电压进行斩波,形成电压和频率均可调的三相交流电供电机使用。(如图1)

3.1SPWM逆变电路模块。逆变电路采用SPWM的优势在于可以降低输出电压的谐波,使其输出电流更加符合正弦波,其功率开关器件拟采用智能功率模块(IPM),此模块是以绝缘栅双极晶体管为核心的。SPWM逆变电路模块的工作原理是:通过通用定时器发生单元、比较单元以及输出逻辑来生成三相六路SPWM波,在通过六个复用的I/O引脚输出给逆变电路驱动交流电动机的运行。

3.2控制电路模块。控制电路模块包括的部件有:频率输入电路、DSP最小系统电路等。该设计采用TMS320LF2407A型号DSP。它的优点在于可以将实时处理能力和控制器外设功能集于一身,这就大大简化了电路设计方案,以及提高了控制系统的运算速度,为整个系统的效率提升提供了有力的支撑。DSP最小系统是DSP硬件设计中的最为核心的一个环节,它的好坏直接决定了整个系统适用性的高低。它主要包括:电源电路、时钟电路、复位电路、接口JTAG电路、扩展SRAM等。

4.交流电动机调速系统方案论证

4.1单片机调速。随着全球范围的数字化控制系统的发展,人们对数字化信息的依赖程度也越来越高。实现调速系统全数字化控制不仅能使交流调速系统与信息系统紧密结合,而且可以提高交流调速系统自身的功能。由于交流电机控制理论不断发展,控制策略和控制算法也日益复杂。扩展卡、滤波器、FFT、状态观测器、自适应控制、人工神经网络等均应用到了各种交流电机的矢量控制或直接转矩控制当中。因此,DSP芯片在全数字化的高性能交流调速系统中找到施展身手的舞台。在交流调速的全数字化的过程当中,各种总线也扮演了相当重要的角色。STD总线、工业PC总线、现场总线以及CAN总线等在交流调速系统的自动化应用领域起到了重要的作用。

4.2PWM调速。PWM控制是交流调速系统的控制核心,它可以完成任何控制算法的最终实现。

关于PWM控制方案已经在各领域有了多个版本的应用,尤其是微处理器技术应用在

PWM技术之后,总是不断有新的技术更新,从开始追求电压波形的正弦,到电流波形的正弦,再到磁通的正弦;从最初效率最大化、转矩脉动少到后来的以消除噪音为主攻课题,这些都是PWM控制技术的不断升级和完善。目前,越来越多的新方案不断地被提出和应用,说明这项技术的应用空间十分广泛。其中,空间矢量PWM技术以其电压利用率高、控制算法简单、电流谐波小等特点在交流调速系统中得到了越来越多的应用。V/f恒定、速度开环控制的通用变频调速系统和滑差频率速度闭环控制系统,基本上解决了异步电机平滑调速的问题。然而,当生产机械对调速系统的动静态性能提出更高要求时,上述系统还是比直流调速系统略逊一筹。原因在于,其系统控制的规律是从异步电机稳态等效电路和稳态转矩公式出发推导出稳态值控制,完全不考虑过渡过程,系统在稳定性、起动及低速时转矩动态响应等方面的性能尚不能令人满意。

异步电机是一个多变量、强耦合、非线性的时变参数系统,很难直接通过外加信号准确控制电磁转矩,但若以转子磁通这一旋转的空间矢量为参考坐标,利用从静止坐标系到旋转坐标系之间的变换,则可以把定子电流中励磁电流分量与转矩电流分量变成标量独立开来,进行分别控制。这样,通过坐标变换重建的电动机模型就可等效为一台直流电动机,从而可像直流电动机那样进行快速的转矩和磁通控制即矢量控制。

参考文献

篇4

中图分类号:C29 文献标识码:A文章编号:

引言

随着社会的发展,在当 今的自动化控制与应用中,PLC与变频器正日益得到普及,在以往传统的控制方式中一般采用这样的控制方式,即把PLC的数字量输出点接到变频器的输入点来实现变频器的启/停控制,把PLC的模拟量输出点接到变频器的模拟量输入点来实现变频器的速度调节。这种控制方案占用了PLC宝贵的硬件资源,有时还需要配置昂贵的模拟量模块,成本较高。随着PLC及变频器通讯功能的日益增强,考虑使用两者通讯来实现驱动设备的速度控制,想必是一较为经济的控制方案。西门子S7系列PLC作为控制系统的核心,可提供强大的控制、网络和组态功能,同时强大的扩展能力和广泛的通讯能力,容易实现分布式系统结构,再结合西门子s7编程软件和1NTOUCH组态软件使得西门子S7系列PLC成为中型、大型自动控制领域的理想产品。

一、直流电动机与交流电动机控制在现代工业企业生产中的优缺点

变频调速技术是一种以改变交流电动机的供电频率采达到交流电动机调速目的的技术。从大范围来分,电动机分为直流电动机和交流电动机两种。直流电动机与交流电动机的应用场合都比较广,两者工作的基本原理相同,都是电磁感应定律,且两者都有各自的优缺点。分析一下,直流电动机或者说是直流电机有其工作时的缺点很重要的一个原因大概就是因为换向器,这也是决定直流电机与交流电机工作方式不同的最主要原因。并且如果采用直流电源,直流电源的滑环和碳刷都要经常拆换,所以比较浪费时间,再加上成本高,换向困难,容量受到限制,不能做的很大,给人们带来很多的麻烦。变频调速器最为典型的应用时电机传动调速,电机交流变频调速技术以其优异的调速和启动、制动性能,高效率、高功率因数,显著的节电效果,进而可以改善工艺流程,提高产量质量,改善工作环境,推动技术进步,以及广泛的适用范围等许多优点而被国内外公认为最有发展前途的调速技术。

二、交流电动机的变频调速技术

交流电动机的变频调速技术就是要用半导体电力电子器件构成的变频器,把交流电变成频率可以调控的交流电,这就可以供给交流电动机,这种变频调速技术是用来改变交流电动机的运转速度。如果按照变换环节可以将交流电动机分为两大类:一类是交-直-交变频器,一类是交-交变频器。所以变频器利用根据这个变频的原理可以分为直接变频和间接变频。变频调速技术的应用一般有两种:一类是用于各种静止电源;另一类是用于电机传动调速变频调速器。其中最典型的应用时电机传动调速,电机交流变频调速技术因为启动和调速快、制动性能,高效率、高功率因数,还有显著的节电效果,这就可以改善工作环境,提高产量质量,改善工艺流程,极大的推动技术进步,现在已经被国内外认为最有发展潜力的调速技术。所以,只要我们共同的努力,不断的完善交流电动机的变频调速技术,这种技术得到更大的发展。

西门子调速装置在现代工业企业生产中的应用

近年来随着世界电子技术突飞猛进的发展,特别是微处理器和数字技术的发展使可编程控制器的性能和功能有了很大的提高。PLC是一种以计算机技术为基础的,专为工业环境设计的数字运算控制装置,具有功能齐全、使用灵活方便、可靠性高、抗干扰能力强及易于维护维修等优点。

1、PLC的选型

PLC选型方式灵活,根据控制对象和控制任务的不同,我们可以选择不同型号的PLC及其模板类型和数量。首先我们根据具体的控制任务决定出需要采集和控制的点数, 即D1/DO点数和AI/A0点数,然后像搭积木一样搭出所需PLC的模板配置及其模板的数量。一般来说:点数在100点以下,选用s7—200系列;点数在1 000点以下,选用S7—300系列;点数在l 000点以上,选用S7—400系列;模板的数量等于点数除以单个模板的通道数。

2、西门子S400系列PLC和施耐德ATV-71变频器的通讯

(1)ATV-71变频器与西门子S400系列PLC的系统组态,如下图所示:

(2)通讯网络

PLC与变频器的通讯采用PROFIBUS-DP现场总线。PROFIBUS-DP是目前工控系统中最成功的现场总线之一,得到了广泛的应用。它是不依赖于生产厂家的、开放式的现场总线,各种各样的自动化设备均可通过同样的接口协议进行信息的交换。PROFIBUS-DP(Distributed I/O System-分布式I/O系统)是一种经过优化的模块,有较高的数据传输率,适用于系统和外部设备之间的通信,远程I/O系统尤为合适。它允许高速度周期性的小批量数据通信,适用于对时间要求苛刻的自动化控制系统中。PROFIBUS-DP现场总线系统可使许多现场设备(如PLC、智能变送器、变频器)在同一总线进行双向多信息数字通讯,因此可方便地使用不同厂家生产的控制测量系统相互连接成通讯网络。

3、PLC编程示例

PLC与变频器之间采用从方式进行通讯,PLC为主机,变频器为从机。1个网络中只有一台卞机,卞机通过站号区分不同的从机。它们采用半双工双向通讯,从机只有在收到卞机的读写命令后才发送数据。PLC控制软件编程上采用模块式结构,各种功能的程序模块通过程序有机地结合起来,使系统运行稳定可靠。

(1) PLC在第一次扫描时执行初始化子程序,对端口及RCV指令进行初始化。为了增加程序的可靠性,在初始化完成后,如果检测到端口空闲时则运行RCV指令使端口处十接受状态初始化子程序如下:

Network 1//网络标题检测端口空闲可编在主程序中

//设定端口属性

LDSM0.0

MOVB73,SMB 30

Network 2

//接收信息状态

LDSM0.0

MOVB102,SMB 87

Network 3

LD SM0. 0

MOVB16#02,SMB88

MOVB50,SMB92

MOVB50,SMB94

R SM87.2,1

Network 4

LDSM0.0

ATCHINT1,23 / /连接口0接

收完成的中断

Network 5

LDSMO.O

ATCHINTO.9//连接口0发送完成的中断

完成的中断

Network 6

LD SM0 0

ENI//中断允许

Network 7

LD SM0.0

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
友情链接
发表咨询 加急咨询 范文咨询 杂志订阅 返回首页