故障检测与诊断合集12篇

时间:2023-06-08 09:09:09

故障检测与诊断

故障检测与诊断篇1

一、暖通空调系统故障类型

暖通空调系统的故障大体可分成两大类:硬故障和软故障,既有局部性也有全面性,对整个HVAC系统的影响大小也不尽相同。硬故障是指机械设备和运转部件完全丧失功能所产生的故障,例如皮带断裂、传感器失效、阀门不受控制和风机停止运行等故障。从故障产生时间的角度分析,这些故障应当归为突发故障,且故障影响效果比较严重,所以检测和诊断的难度系数不大。软故障的实质是说设备和部件的机械功能降低或局部失效等,比如部件或管道结垢、堵塞,局部泄露、仪表稳定性降低等等。软故障基本都是循序渐进的,在产生的最初时期所表现的特征不太明显,因此在初级阶段很难被发现,实际上,这类故障的产生是因为系统参数渐渐恶化,从某方面或者某种角度来讲,软故障的危害性要远远大于硬故障的危害性,所以,软故障的监测力度要适当加强,并且要做好预防工作,其对空调系统的意义和作用是不言而喻的。

暖通空调在运行一段时间之后,系统故障的产生一般都是偶然且不确定的,所以,故障的属性具有任意性,且发展情况与平衡过程具有随机性。从HVAC系统整个结构入手分析,所涉及的设备都是由子设备和基础构件按照一系列的标准组合而成的,层次性和系统性极强,所以故障产生时就会因为层次深度的不一样而造成不一样的影响。除此之外,考虑到系统是由多个相关的子设备综合而成的,一些子设备发生故障也可能是因为其相关环节或者设备产生故障而引发的,这种现象称为故障的传导性。根据系统故障产生的位置不一样,既可以说是设备故障也可以说是传感器故障,既可以说是硬故障也可以说是软故障,因为这些故障参杂在一起很难分辨,所以空调系统的诊断和检测就十分的复杂。

二、暖通空调系统故障检测诊断分析

1、暖通空调系统诊断方法

暖通空调故障诊断方式主要有两种:一种是在线方式,即故障诊断系统实时地监测设备的工作状态,基于适时的在线故障检测与诊断算法,给出系统的故障信息,包括故障程度、故障所属模块、故障位置、故障报警等。另一种是离线方式,即构建计算机辅助决策支持系统,帮助系统迅速发现故障,制定合理有效的系统维修方案。

(1)基于知识的专家系统

建立专家系统诊断模块,包括专家系统知识故障诊断库,并可根据经验和知识的积累以及在获得了新的、可靠的故障诊断规则时或发现原有某条规则不足甚至错误时,能自动进行添加、修改和更新。 专家系统诊断模块由知识获取系统、知识库、推理机和输人、输出系统构成。

(2)基于规则的故障树

利用专家知识、工程师的经验和知识库建立基本故障诊断树,并可生成新的故障诊断树,用户则选择相适应的故障诊断树来执行故障诊断。

故障树分析是在复杂系统中作故障诊断的一种有力工具。用这种方法诊断的效率较高且不容易漏检,例如该模块能根据系统故障现象,逐次向下展开,查询有关的节点和树枝,直到找出故障的发生原因及处理对策。

(3)基于人工神经网 B P改进算法的模式识别

该模块由 B P改进算法的网络、网络结构参数及推理诊断等组成,主要用于完成模式识别和故障诊断。专家系统诊断与故障树诊断两种方法的相互结合,可以有效地解决过去已发生过的各种故障的诊断;但对于以前没有发生过的故障,不具备处理能力,因为知识库中缺乏相应的诊断知识。采用人工神经网络( A N N) 模式识别技术是一种较好的方案。它根据新的样本进行自动学习和训练以更新故障诊断知识,并可添加到专家系统知识库中。A N N的故障初始样本来自已有的故障实例,这些实例可通过故障机理分析或专家经验获得,此外还可在应用中逐步添加、删除和更新。

2、故障检测与诊断的应用

随着科技的进步,现在的故障检测和诊断手段嵌入了动态的控制系统体系,完善了检测和诊断的技术。制定一些模型数值或者一些经验数据,当传感器测量得到的实际运行过程中的参数和由模型得到的计算值在诊断软件中进行对比和评估,它们之间的差值作为传送的数据,送到故障诊断分析其中的问题,如果这个差值逐渐的增大时,就说明了这个系统发生故障的可能性就会增加。根据检测系统的分析,就会将故障的诊断结果及时传送出去进行显示。这些故障诊断由输入的数据类型、复杂程度、性质等进行分区,较难的诊断就会需要长时间来完成,或者由更高层次的诊断设备来完成。

暖通空调系统故障的检测方法。在以前,我们所用的方法就是用直接、解析和时序三种冗余法来进行检测。基于定量模型法在相同的情况下可以通过比较实际系统或者仿真的模型运行状态来进行检测和诊断系统故障,但是在执行的时候需要具体的、精确的数据模型来进行检测。还有一些基于定型模型法、基于统计学法、人工神经网络法和模式识别法等可以对暖通空调系统的故障来进行检测。

按照故障的级别和故障的优先级不同,不同故障在不同的诊断层次上来诊断。在分布式控体系(DCS)中,驻留在不同层级上的故障诊断工主要由输入数据的类型、性质、复杂程度和诊断具使用的频率来区分,复杂的、需要更多知识和能的故障诊断(如诊断周期需要一天或一个月的将由更高层次的诊断工具(或计算机)来完成,由现在传感器性能的提高,大量的、低端的故障诊倾向于在传感器中就地解决。

三、结束语

综上所述,通过故障预测与诊断,使暖通空调设备按优化程序运行,是降低建筑能耗和提高经济的途径之一。因此,加强对故障的预测与监控,能够减少故障的发生,延长设备的使用寿命,同时也能够给业主提供持续的、舒适的室内环境,这对提高用户的舒适性、提高建筑的能源效率、增加HVAC系统的可靠性、减少经济损失将有重要的意义。

参考文献:

故障检测与诊断篇2

1.数字电路出现故障的常见的原因

数字电路是处理和变化这些离散信号的电路,工作原理主要是应用两个元器件来表示离散信号,其中的每一个元器件的参数值都有很大的差异,所以在实际的应用的时候,数字电路虽然能够发挥很强大的功能,但是数字电路出现故障的状况是一件十分常见的事情,下文详细的介绍数字电路出新故障的原因。

1.1 数字电路元件出现老化造成故障

任何东西在长时间的使用之后都会出现或多或少的损坏,其中数字电路中使用的材料都是金属材质,在长期的使用过程中,电路元件变得老化,电路材料参数性能也逐渐的下降,使得数字电路受到天气以及温度等状况影响变大,非常容易造成数字电路出现故障。

1.2 数字电路元器件出现接触不良的状况造成故障

数字电路由于接触不良而出现故障是最常见的问题,造成数字电路接触不良的原因是多种多样的,数字电路在日常生活中的使用经常会出现非专业人士保管不善,或者是电器的外壳损坏导致数字电路的元件长时间的暴露在空气之中,造成数字电路出现进水或者是电器内部的焊点被氧化的状况,这些问题的出现都会导致数字电路出现故障。

1.3 数字电路设备所处的工作环节不稳定造成了故障

数字电路的安全使用是需要一定的环节条件的,但是在实际的应用中,电路设备的使用环境并不是十分的完美,数字电路所处的工作环境时常达不到设备工作的状态,例如实际的温度、磁场的改变等等,这些因素都会导致数字电路发生故障,导致数字电路不能正常的工作。

1.4 数字电路内的元件过了使用期造成故障

数字电路内部的电路元器件都存在着保质期的,关于保质期的常识并不是所有的数字电路的使用者都了解的,所以造成故障也比较常见。数字电路内的元器件只有在规定的年限内才能发挥出最佳的效果,倘若元器件过了使用期限,数字电路内部会出现超负荷的状况,元器件也会出现老化、性能降低等现象,导致数字电路故障的发生率增加。

2.数字电路故障检测与诊断的方法

2.1 采取有效的方法将故障检测的过程与诊断这两个过程分开

在对数字电路进行故障检测之前,应当先对数字电路常见的故障的特征进行了解,在对其中一些基本特征进行对比之后,可以尽可能的缩小数字电路故障排查的范围,当然在初步对比故障的基本特征之后并不能武断的确认数字电路的故障,而是要进一步的进行诊断,使得这两个过程能够有效的隔离。使用逻辑检测与诊断对数字电路中出现的故障进行初步的确认。例如:当数字电路的信号消失之后,可以借助检测探头在电路的连接点上进行检测与诊断,也可以在发现数字信号之后能够使用脉冲存储器进行存储,可以有效的缩小数字电路的护长范围。

2.2 使用分块测试法对数字电路进行诊断

目前对于数字电路中出现的故障检测方法中最常使用的方法就是直接观察法,使用直接观察法进行故障检测,故障检测的准确率有所下降,对于故障的排查以及处理的效率很低,所以采用分块检测法是代替直接观测法最有效的方法。使用分块测试诊断法的时候,应当对数字电路的设计结构有一个初步的了解,并根据电路的实际情况,将电路分为若干个独立的电路,分别进行通电测试,通过观测结果对数字电路的故障状况进行分析,之后便可以提出具有针对性的数字电路的故障的解决方法,能够有效地提高数字电路故障检测与诊断的效率,在复杂的数字电路的故障检测与诊断中应用也十分的广泛。

2.3 使用电阻检测诊断的方法进行诊断

在日常的使用中,数字电路一旦出现任何的异状的时候,首先需要做的就是要切断电源,之后进行短路与否的检验,这时候最常使用的方法就是使用电阻检测诊断法。电阻检测法能够有效的检测出数字电路底板内部和电路连接之间是否有接触不良或短路的状况,在使用此方法的时候操作过程非常的简单,即便不是专业的电路维修人员也能够轻松的完成数字电路故障检测的事情。使用电阻检测法的时候,一定要注意的就是用电安全,在切断电源的基础上进行检测装置的设计安装,之后再一一进行故障检测。

2.4 使用波形检测方法进行故障检测

波形检测诊断方法对数字电路进行故障的检测以及诊断对于检测人员的专业素养要求很高,要求维修人员能够熟练的掌握电路维修的相关的理论知识和拥有一定的实际操作经验,熟练地使用示波器观察电路故障检测过程中所反映出的波形,也就是数字电路故障检测过程中在示波器上显示的数字电路板的各级输出波形的状况,观察示波器上所出现的波形是否表现正常,在这样的过程中得到的数字电路故障检测的结果更加的具有科学性以及具有说服力,在使用波形检测诊断法进行数字电路故障检测的时候,数字电路内多数是脉冲电路,由于脉冲电路的复杂程度,其他的检测方法并不是十分的准确与科学,所以波形检测诊断法形成的检测结果更加的准确,在进行故障检测的过程中对于维修人员的安全保障性能也是最强的,不仅提高了数字电路故障检测与诊断的效率,也有助于制定数字电路维修策略,制定的策略也更加的具有针对性。

3.总结

当今时代科学技术飞速的发展,对于数字电路的研究的投入也变得更大,数字电路在生活中的使用也变得更加的普遍,但是数字电路的使用出现的问题也困扰着现代人,所以为了更好地使用数字电路,提高使用效率,就一定要选择有效的方法对于数字电路中出现的故障进行检测与诊断,因此应当针对数字电路产生的原因进行研究,并且积极地进行故障检测的技术,使得数字电路的使用能够更加顺时代的发展,使得数字电路能够为现代人们的生活提供更多的便捷服务。

参考文献

故障检测与诊断篇3

一、定义:

汽车故障的“诊断”和“检测”从广义来讲,两个词没有太大的区别,但要讲究的话,还有一点差异,诊断是运用必要的手段(包括外观、气味、震动、声响、感觉和电气现实及仪器等)和知识、经验对车辆故障(包括故障码、故障症状)做出分析和判断,确定故障部位、器件、电路的过程,诊断的过程是一个完整的过程,不是一个单一的某个内容的检测,而是对一些故障症状从开始接触到测量、到分析判断,最后做出修理方案的思维过程。而检测是指根据判断,对确定的故障部位、器件和电路进行精确的测量,以便证实判断是否正确并准确地确定故障部位、器件、电路的过程。

二、故障诊断技术特征

1、故障分析手段的多样化。现代汽车结构的复杂使故障状态呈现出多样性、模糊性和不确定性,将小波分析技术、模糊集理论、粗糙集理论、灰色关联分析、波形分析、融合技术、神经网络技术等应用于故障诊断

2、故障诊断设备的现代化。车外诊断系统和车载诊断系统仪器的发展融合了机械、电子、流体、声学、光学等技术,还具有自动分析、判断、打印结果的功能,并不断向着集成化和智能化方向发展。

3、故障诊断方式的网络化。现代网络技术的发展可使在汽车故障诊断方面运用现代通信技术,集各种组件如维修企业的管理软件、诊断维修技术信息系统、专家系统为一体,实现各维修企业的软硬件共享。

三、汽车故障诊断技术方法

1、人工经验诊断法:诊断人员凭借丰富的实践经验和理论知识,在汽车不解体或局部解体情况下,借助简单工具,用眼看、耳听、手摸、鼻闻等手段,边检查、边试验、边分析,进而对汽车技术状况作出判断。有直接检测法、换件法、条件改变法、顺序检查法、分段排除法等。特别是对汽车运行中出现的随机故障,直至现在它仍不失为一种行之有效的诊断方法。然而,它只能对故障进行定性的分析,而对于因诸多因素导致的复杂故障则难以诊断,诊断的准确与快慢取决于诊断技术人员的技术水平。经验诊断法经过不断地积累、总结和完善,已朝着人工智能分析、逻辑推理的方向发展。在使用该方法时,一般应先了解汽车的使用和维护情况,搞清楚故障特征及其伴随现象,然后由简到繁、由表及里进行推理分析,做出判断。其诊断方法大致分为望问法、观察法、听觉法、嗅觉法、触摸法、试验法等,

2、仪器设备诊断法

仪器设备诊断法是在传统的人工经验诊断法的基础上,随着社会和科学技术的进步逐渐发展起来的。与人工经验诊断法相比,其不同点在于:一是要借助于仪器;二是可将检查结果定量化。

目前可供利用的仪器设备有:万用表、点火正时灯、汽缸压力表、真空表、油压表、声级计、流量计、油耗仪、示波器、汽缸漏气量检测仪、曲轴箱窜气量检测仪、气体分析仪、烟度计,以及功能比较齐全的测功机、四轮定位仪、制动试验台、侧滑试验台、发动机综合检测仪、底盘测功机,等等。这些仪器设备给人们提供了可靠的工具,使汽车故障诊断从定性诊断发展为定量诊断。

现代仪器设备诊断法具有检测速度快、准确性高、能定量分析、可实现快速诊断等优点,而且采用微机控制的现代电子仪器设备能自动分析、判断、存储并打印出汽车的各项性能参数。但其缺点是投资大,需有专用厂房,需要培训操作人员,检测成本高等。这种诊断方法适用于汽车检测站和大中型维修企业。使用现代仪器设备诊断法是汽车诊断与检测技术发展的必然趋势。

3、汽车故障的自诊断法

随着现代科学技术特别是计算机技术的进步,20世纪末期,汽车故障的自诊断技术随着汽车电子控制技术发展起来。汽车电子控制系统机理与结构的复杂性,要求其自身必须建立可靠的故障自诊断系统。1979年,美国通用公司首次在汽车上运用了电子控制装置ECU自诊断系统,该系统由存储于ECU中的软件及相应的硬件构成,当汽车运行时,ECU不断监控系统中各部分的工作情况,如果发生故障,ECU根据故障的性质和程度,首先进入失效安全模式,使汽车有可能行驶到附近的维修点排除故障。同时,其将故障信息以代码的形式存贮,汽车维修时,利用专门的仪器和方法提取故障代码,据此排除故障后再将其清除。这种汽车故障自身诊断系统又称为OBD。

四、故障诊断、检测过程

1、故障描述。要仔细询问故障出现的状态,比如时间、温度、冷车、热车、加速、减速、行驶里程、晴天还是雨天,在整个修理过程中,故障的描述是非常重要的,千万不可忽略。

2、初步诊断

2.1根据对故障症状的了解,对该故障系统的知识以及积累的经验,可对故障正中做出一个初步的判断。例如,什么系统、何部位、与故障症状相关的器件等。比如发支机系统,有很多子系统,出现的故障和哪些系统有关?这个判断是初步的判断,但是该判断已经有了一个理性的认识,这是根据你对故障的了解以及你的经验,知识进行的判断,它已经不是客观存在的东西,是你的大脑思维做出的阶段,这个结论对不对呢?还要去检测。

2.2利用合适的仪器设备,对初步判断的内容作一个简单快速的检测,比如行到一个相关的故障码。

2.3相关的技术资料,这点非常重要,因为随着车辆更新的加快、技术变更的加快,技术资料也是必不可少的,专修厂因为获得技术支持比较直接有及时。

3、替换试验

3.1替换的原则有两个,一是用性能良好件,而不是新件,新件不等于好件,性能良好指在同类车上正确使用完全没有问题。二是替换的时候应该一个一个换,有人不间断地换,换到最后也不知道是哪个出了问题。

3.2替换后的实验,应该是同故障状态一致,替换后的实验一定应该与故障状态同等,否则的话,替换试验没有意义。

4、路试,有一个原则,一定是谁陪客户验的车,由他去陪客户实验。

4.1一个好的试车员,应该对车况、对路况非常悉。

4.2一个系统所有的功能都要经过验证。现在的车讲究的是,除了良好换挡以外,还有品质的控制,换档的过程、强制换楼的过程,TOC的控制过程,包括发动机的功能等等都有要试,不能说人家有8个功能,修了以后剩3个功能,车主也不会同意。所以说,无论你修的是哪个系统,所有的功能都要去试验。

五、诊断、检测方法技巧

1、熟练掌握手中的各类测试仪器的使用。熟练对仪器的型号、连接、选择、使用都要知道,一个功能应用得好坏,取决于人对仪器的理解。

2、要了解进行测量器件的位置,电路(如接口、针脚、线色、信号类型等),压到电路图、位置图中去找。电路上的故障,有60-80%是根据现象能在电路图上分析出来的,在哪点测量,根据线路图就能分析出来。现在有的修理工都看不清楚电路力这是可行的。

3、选择合适合理的测量部位,正确连接测试设备,全面如实记录测试数据。有些东西,如果用手测非常难,要拆一大堆东西,还下不去手,那么这时候你考虑到同理的设备,也可以进行测量。

4、全面正确的分析所得信息,如果测量错了,你可能得出错误的结论,可是总有人不承认自己的错误。因此,在记录数据的时候也要做到全面、如实,在开始测量的时候并不知道数据是有用,在分析的过程中,就需要各方面的数据。

结语:通过对汽车检测和故障诊断方法的论述,有利于汽车维修工作人员在汽车发生故障时能够快速诊断出故障的原因和部位,及时修复,提高汽车的维修工作效率和汽车的使用效率,使汽车造福于人类。

故障检测与诊断篇4

当前,随着全球经济一体化的建设,经济技术迅速发展,促使数字技术主导高科技产品层出不穷,同时已经渗透到我们的日常生活中。但是在电子电路工作的过程中,会存在内部或者外部原因造成电路出现各种问题,导致电路不能正常的工作。因此电子工程设计人员一项重要的任务就是要对工作电路进行检修、检测以及故障的诊断与排除。在实际生活中,数字电路故障检测与诊断在电路设计与生产的过程中具有重要的意义。对数字电路进行检修与诊断,对及时发现、修复数字电路中出现的问题具有重要影响。同时还能够重新配置数字电路系统,有助于数字电路生产工艺的优化与改进。分析数字电路故障检测与诊断,能够提高数字电路的质量、效率与可靠性。

1 数字电路以及故障的特点

数字信号主要是在时间与数值方面具有离散的信号,而数字电路就是用来处理和改变这些离散信号。其工作的原理就是利用这两种状态的元器件表示离散信号。这样看起来较为复杂,但是基本的电路单元较为简单。数字电路的元器件参数值方面具有较大的差异。因而不会出现由于电压不高不低的电平。除去三态门之外,通常输出的电平要么是低电平或者是高电平。因此,这两种电平称为了解数字电路的主要特征。由此可见,检测事物存在一定的复杂性。并且其复杂性主要体现在待测电路存在大量的输出与输入变量,可能大于一百个变量。同时电路相应又具有时序性,有的还存在组合型。所集成的电路元器件与门都被安装在芯片里面,不能度逻辑电平、输入输出波形进行检测。类似模拟集成电路,仅仅可以在芯片的外部对其测试,而不能对数字IC内部电路进行测试。所以,必须及时寻找出一种能够简单的完成对芯片内部进行检测的方法。

2 数字电路故障产生的原因

在数字电路运行的过程中,产生故障的原因有很多种。但是较为常见的故障笔者认为有这么几种。首先,就集成数字电路而言,负载能力范围具有一定性。常规与非门的输出低电压可以带同类们的最大限度为10个。但是实际生活中这个输出电压所带门远大于理论值。这样就容易导致电路输出低电压,造成电路破坏,使得电路不能稳定运行。为避免这种情况的发生就需要使用负载的集成电路。其次,集成电路运行效率较低。在集成电路运行的过程中唯有第一组信号通过集成电路,并在电路内部延时作用下稳定输出端时,另外一组信号才能进入。由此可见,造成电路运行效率低下的主要原因就在于电路内部延时。如果输入脉冲很高时也会导致输出端不稳定。检测这一问题的过程相对复杂。因此,在设计逻辑电路时要采用运行效率高的集成电路。

3 数字电路故障检测与诊断策略

在数字电路检修的过程中,针对其中的故障需要采取有效的诊断策略,提高数字电路运行的效率。这样不仅保证电路运行的质量,还能够减少检修的次数。

3.1 隔离故障检测与诊断

在检测数字电路问题的过程中,第一步就应当根据故障的基本特点,最大限度的减少问题的区域,也就是将故障诊断与检测进行隔离。这一环节对数字电路检测具有十分重要的意义。在检测的过程中,其检测关键之处就是逻辑诊断与检测。通常而言,如果电路信号消失,那么可以使用检测探头完成电路信号连接的线路实施诊断与检测工作,从而快速找到消失的电路信号,并且检测探头上都安装了逻辑存储装置。这样就能够对数字电路上具体的信号进行诊断与检测。如果出现电路信号,就会被检测器上的逻辑储存装置记录下来,并通过显示器显示出来。从这一点就充分说明了数字电路上的脉冲信号能够被检测与诊断。通过缩小点路鼓掌范围,来找到电路故障的具置。另外一种就是能够有效的诊断和检测数字故障的方法就是逻辑分析。在检测的过程中利用逻辑分析仪对数字电路的设备进行检测,分析电路运行中产生的数据以及其输出情况。

3.2 定位检测与诊断

在数字电路出现故障的过程中,其最为关键的步骤就是检测故障,将故障进行定位。一般情况下,在电路故障范围缩小到一定范围时,直至缩小到某一电路元件时,就能够使用逻辑探头、脉冲检测仪等对数字电路的故障进行分析,并就其产生的影响进行分析。通过这种方法就能够检测出故障的具置。利用逻辑信号对数字电路的脉冲信号进行检测,分析电路输出与输入信号的情况。依据获取的信号判定数字电路运行的情况。研究表明,数字电路在日常的工作中,都会存在低电压与高电压。这两者在运行的过程中能够互相转换。使用逻辑探头等仪器进行检测,如果有信号就能够判断出工作电路是正常。通常情况下,数字电路偶尔也会出现故障。因此,电路信号的时需不需要经常检测。

4 结语

总而言之,在数字电路获得广泛应用的过程中,在一定程度上对提高电器使用与质量具有重要的影响。同时也进一步促进了电器产品性能的提高。但是,在此环节中我们应当充分的认识到,数字电路正常运行离不开故障的检测与诊断。重视数字电路检测与诊断,能够全面提高数字电路应用水平与运行质量。

参考文献

[1]李源.在《数字电路》实验教学中提高学生动手能力的尝试[J].井冈山医专学报,2011,12(04):56-57.

[2]张万里,杨烨,李毅,等.数字电路常见故障类型与检测方法及技巧分析[J].数字技术与应用,2012,10(6):98-99..

[3]杨聚庆,刘娇月,刘三,等.数字电路系统设计与制作的一般方法[J].洛阳工业高等专科学校学报,2013,8(04):79-90.

作者简介

故障检测与诊断篇5

一、电力系统状态监测的意义

第一、进行设备运行的历史档案的建立,从而使设备运行中所发生的情况中出现的资料和数据得到积累,以备后用。

第二、判断设备运行状态的正常与否,并对设备故障的性质和程度进行判断。判断的主要依据为以前所建立的历史档案,包括设备运行状态的等级、从前出现此种故障的过程中显示的特征等。

第三、为了能够在实施状态检修时为检修工作提供必要的依据,必须评估设备的运行状态,同时分析这些状态,分类评估,从而形成一定的评估标准。状态检测的评估的主要内容包括:评估设备运行状态、估计这杯异常状态、预测设备故障状态的未来变化。将这些内容都纳入评估的体系之中主要为提供一定的条件来进行评估,从而不断地健全、完善评估监测。

综上所述,设备的运行资料可以在状态监测过程中不断的被积累、完善、健全,突破了过去的管理体制的束缚,并对管理体制进行了完善。因而,笔者认为,在现代电力系统设备管理中,状态监测系统有着不可忽视的作用。

二、状态监测的关键技术的研究

第一、在信号采集方面

所谓电力设备的在线监测系统,其功能是持续地对设备的状态进行检查和判断,并对设备状态的发展趋势进行预测;系统运行的时间为设备的使用期,也就是说,只要设备还在进行使用就必须对其进行监测。

诊断对象的状态信息的获取是设备运行状态量反映设备运行情况中首要完成的任务,信息的内容除了包括电力设备的电压、电流、频率、局部放电量外,还包括磁力线的密度情况以及正常信号和故障信号。通常,信号的采集方法会随着表征设备状态量的信号的特性的不同而改变。信号采样主要有以下几种方法:

1、每次所采集的信号的样本的长度为处理一个足够数据所需要的长度,我们将这种采样称为一次性采样。

2、采样的时间为事先规定的好的,且采样频率为一个整定的周期,简单地说就是定时采样。

3、自动采样,采样发生的时间为随机的,采样以故障时信号突变为手段。

4、特殊采样,采样方式根据所诊断的故障的要求不同而不同,例如转速跟踪采样、峰值采样等。

第二、数据传送

信号处理系统通常距监测设备较远,因此,数据在传输过程中易受干扰、易损失及相移(受环境因素影响较大),需先对数据进行模数转换、预处理和压缩打包,再经通信路径传输到处理控制中心。通信设备现已广泛应用于电力领域,光纤传输数字信号可较好地抑制干扰,保证信号质量。

第三、数据处理

工控数据处理中心收到通信线路传输来的状态量数据包后,利用各种不同数学方法对数据解包处理。例如,频谱分析将时域连续时间信号转变为频域不同频率信号进行分析;在时域中由2个信号之间相关性采用相关分析搜索另一个信号的处理数据;小波分析;神经网络;人工智能。数字信息技术和智能技术应用到电力设备监测系统的数据处理使电力设备在线监测更加实时准确。

三、故障诊断的建议

第一、利用多传感技术和信息融合处理技术诊断某种故障不同的故障表象。多传感技术利用多个传感器从多侧面、多角度观测同一对象,即针对同一故障的多种故障表征,多层次多领域(时域、空间域、频域)采集不同的特征量,选择故障反映灵敏度高的状态信息量,从而较全面的分析诊断故障。

信息融合技术是将来自多传感器的数据按照一定的准则加以分析和综合的数据处理过程。因同一设备故障在不同特征空间的不同反映之间存在着内在的关联关系,利用融合技术“求同去异”可提高电力设备状态检测和故障诊断的准确性。但信息融合基本理论尚不完善,该诊断方法还有待研究。

第二、基于特征空间矢量的故障诊断方法,可通过对故障误差的学习实时修正故障特征量。这种诊断方法具有一定的自适应能力,适合于具有不确定性和慢时变性的复杂对象的故障诊断。其实质是将每次的故障征兆矢量作为原先验征兆矢量集中的一个新的先验征兆矢量,并根据自适应算法修正故障特征矢量。故障先验征兆矢量不确定时,则需要人工判断第一次故障。

第三、针对电力设备的固有特性以及在线监测状态信息量不足导致的不确定性,可考虑采用模糊理论中的最大隶属度原则诊断故障原因,判断故障类型,将状态信号与模糊数学方法结合起来分析故障的随机性和模糊性问题。

除了上述方法外,还可以结合人工智能、专家系统、神经网络等方法诊断故障。

结语

在最近十年的电力系统的发展过程中,设备的状态监测技术和故障诊断技术作为一个新技术,持续着突飞猛进的发展趋势。无论是从发展前景方面看还是从应用前景方面看,都呈现着良好的发展势头。虽然,在我国这两个技术的发展的时间也持续了相当一段时间,并且已经有各种检测装置投入生产和使用的过程中,然而,还没有普及对状态监测和故障诊断技术的使用,并且无论在技术的认识方面还是使用过程中都存在着一些不可忽视的问题。我们应该继续大力探索研究这项技术,提高电力系统的稳定性和效率。

参考文献:

故障检测与诊断篇6

【中图分类号】TB657 【文献标识码】B 【文章编号】1009-5071(2012)08-0246-01

传动系包括离合器、变速器、万向传动装置、主减速器及差速器等部件,在汽车运行过程中,传动系功能会逐渐下降,出现异响、过热、漏油及乱档等故障。传动系的状况直接关系到整车行驶的操纵稳定性和安全性,同时还影响发动机的动力传递和燃油消耗。为确保汽车能正常运行和安全行驶,需要对汽车传动系及时进行检测、诊断和维修。而离合器是传动系中的首要部件,它的技术状况对整个传动系的功能至关重要。下面就离合器的故障进行分析。

1 离合器的组成

离合器位于发动机与变速器之间,在汽车起步和变速器换档时,暂时切断发动机与变速器的连接,以切断动力传递,变档后逐渐结合,传递发动机动力,从而保证汽车平稳起步以及平顺换档,并且能防止传动系过载。目前以膜片弹簧离合器的应用最为广泛。膜片弹簧离合器其主要由主动部分(飞轮、压盘、离合器盖)、从动部分(从动盘、从动轴)、压紧机构(膜片弹簧)、分离机构(分离轴承与套筒、分离叉等)、操纵部分等组成。

2 离合器常见故障及诊断分析

离合器常见故障有打滑、分离不彻底、发抖、发响等。

2.1 离合器打滑

(1)故障现象

①汽车用低速档起步时,放松离合器踏板后,汽车不能顺利起步。

②汽车加速行驶时,车速不能随发动机转速的提高而提高,感到行驶无力,严重时产生焦臭味或冒烟等现象。

(2)故障原因

①离合器踏板自由行程过小或没有自由行程,使分离轴承一直压在分离杠杆上。

②从动盘摩擦片、压盘或飞轮工作面磨损严重,离合器盖与飞轮的连接松动,使压紧力减弱。

③从动盘摩擦片油污、烧蚀、表面硬化,铆钉外露或表面不平,使摩擦力下降。压力弹簧疲软或折断,膜片弹簧疲软或开裂,使压紧力下降。

④分离轴承套筒与导管间油污严重,使分离轴承不能回位。

(3)故障诊断与排除

①检查离合器踏板自由行程是否合适,不合适应进行调整。

②检查从动盘摩擦片、压盘或飞轮工作面磨损情况,若磨损严重应及时更换。

③检查压力弹簧、膜片弹簧是否疲软、折断或弹性不足,若弹性不足或破坏应及时更换。

④检查从动盘、分离轴承套筒与导管,若有油污应及时清理。

2.2 离合器分离不彻底

(1)故障现象:发动机怠速运转时,踩下离合器踏板,挂档时有齿轮撞击声,且难以挂入;如果勉强挂上档,则在离合器踏板尚未完全放松时发动机熄火。

(2)故障原因

①离合器踏板自由行程过大。

②新换的摩擦片太厚或从动盘正反面装错。

③从动盘钢片翘曲、摩擦片破裂或铆钉松动。

④液压传动离合器的液压系统漏油造成油量不足,或有空气侵入。

⑤分离杠杆调整不当,其内端不在同一平面内或内端高度太低,或分离杠杆弯曲变形、支座松动、支座轴销脱出,使分离杠杆内端高度难以调整。

(3)故障诊断与排除

①检查离合器踏板自由行程是否合适,若自由行程过大,应进行调整。

②检查离合器从动盘或摩擦片安装是否正确,若从动盘变形或损坏应及时更换。

③检查液压系统管路、管接头是否漏油。

④检查分离杠杆是否变形,支座是否松动,分离杠杆调整是否合适。

⑤检查变速器第一轴和离合器从动盘配合是否良好,若配合不当应及时调整。

2.3 离合器发响

(1)故障现象:车辆起步或换挡时操纵离合器,有不正常响声。

(2)故障原因。

分离轴承磨损严重或缺油,轴承回位弹簧过软、折断或脱落;从动盘铆钉松动或减振弹簧折断;踏板回位弹簧过软、脱落或折断。

(3)故障诊断与排除。

稍稍踩下离合器踏板,膜片弹簧与分离轴承接触,听到有“沙沙”的响声,为分离轴承响。若加油后仍响,为轴承磨损松旷或损坏,应予以更换;踩下、放松离合器踏板时,如出现间断的碰击声,为分离轴承前后滑动响(分离轴支承弹簧失效),应更换支承弹簧;发动机一起动就有响声,将踏板提起后响声消失,为踏板弹簧失效,应更换踏板弹簧;连踩踏板,在离合器刚接触或分开时响,为从动盘铆钉松动和摩擦片铆钉外露,应修复铆钉。

2.4 车辆起步时离合器发抖

(1)故障现象:车辆起步时,离合器不能平稳结合,使车身产生抖动。

(2)故障原因。

离合器压盘或从动盘发生翘曲,或从动盘铆钉松动;变速器与飞轮壳或者离合器盖与飞轮固定螺栓松动;膜片弹簧弹力不均。

(3)故障诊断与排除。

让发动机怠速运转,挂上低速挡,缓慢松开离合器踏板并加大油门起步,如车身有明显的抖动,则为离合器发抖;检查变速器与飞轮壳、离合器盖与飞轮固定螺钉是否松动,检查膜片弹簧的高度;拆开离合器盖测量膜片弹簧的高度是否一致;若上述各项均符合要求,则拆下离合器,分别检查压盘、从动盘是否变形,铆钉是否松动,膜片弹簧的弹力是否在允许范围内。

3 总结

本文讨论了离合器的组成、检测及故障诊断,对汽车动力输出第一步的离合器的保养及维护具有极为重要的意义。

参考文献

[1] 蒲永峰.《汽车检测、诊断与维修》.北京:清华大学出版社,2008.9

[2] 董继明、罗灯明.《汽车检测与诊断技术》.北京:机械工业出版社,2008.5

故障检测与诊断篇7

中图分类号:TP399文献标识码:A文章编号:1007-9599 (2011) 24-0000-03

Fault Detection and Diagnosis of Networked Control System

Zhuo Min

(Zhenjiang Electrical and Mechanical Branch of Jiangsu Union Technical Institute,Zhenjiang212016,China)

Abstract:A great deal of attention has been focused on a class of networked control systems (NCS) wherein the control loops are closed through communication networks.This family of systems is an integration of plants, sensors,controllers,actuators and communication networks of certain local field.In this paper,based on the condition of data packet dropout,firstly,a modeling approach of the system is presented,and the fault observer is modeled as a stochastic switching discrete-time linear system with delay.When a fault occurs,the observer residual can change rapidly and detect the occurrence of the fault.Finally,an illustrative example shows the effectiveness of the proposed method.

Keywords:Data packet dropout;Networked control system (NCS);Fault detection;Observer;Residual

与传统的点对点控制系统相比,网络控制系统具有可实现资源共享、远程控制,具有较高的诊断能力和交互性好、增加系统柔性和可靠性、安装维护方便、减少系统的布线等优点。但由于网络的介入,使得传统的控制系统面临着新的挑战,如网络传输诱导时延、数据包丢失、时钟异步等,因此在利用网络作为信息的传输通道时,数据包丢失和时延等故障检测问题受到了广泛的关注[1-3]。

在故障诊断与容错控制方面,网络控制系统和传统控制系统有所不同。在数据传输中存在信息碰撞和网络带宽限制等问题,使得延迟和丢包问题在信息传输中发生,以致网络化控制系统的故障诊断与容错控制变的复杂[4]。网络控制系统的故障诊断与容错控制是具有现实和理论意义的研究课题,关系到国家经济命脉和国防安全的战略性需求,也是提升国家工业基础水平、综合实力和自主创新能力的重要举措[5]。

NCS的数据包丢失和时延是NCS中的重要研究课题。鉴于此,文献[6]针对一类具有数据包丢失和时延的NCS设计了保证闭环系统稳定的控制器。考虑到NCS中同时存在数据包丢失和时延的情况,以建立NCS模型来构建故障检测器;最后通过数据仿真验证了本文所描述问题的可行性。

一、网络控制系统

网络化控制系统NCS(Networked Control Systems),即将控制系统中至少一个或多个回路经过计算机网络实现闭环的控制[7]。

如图1所示的,网络只存在于控制器和执行器之间[8],所以系统只具有控制时延 ,为上界已知的时变时延。假定NCS的被控对象模型为

(1)

其中, 是状态向量; 是输出向量; 是输入向量; 是故障向量,正常情况下 是非零向量; , , 是适维常系数矩阵。

图1 网络控制系统

Fig.1 Networked control systems

在网络控制系统中,通讯网络并非是一个非常可靠的数据传输通道,会产生传输错误、网络堵塞、节点竞争发送权失败、连接中断和时序错乱等现象。虽然多数的网络协议具有多次重发送数据机制,由于此机制受到时间的限制,所以在超过了设定的时间范围时,便会导致数据包丢失。

正常情况下,实时反馈控制系统能够接受一定数量的数据包丢失。但是对数据包丢失寻求正确的解决方法的研究以及对在数据包丢失时系统是否稳定的探索是很有价值的。

二、状态预测器的设计

网络控制系统的状态可以直接反映系统的运行状况,所以在NCS系统中基于状态估计的故障诊断与容错控制方法显得特别突出。此方法可以归纳为以下两种:一种基于观测器的方法,另一种基于滤波器的方法。本文的研究是基于预测器的方法。

不考虑噪声等外部扰动时,被控对象的离散模型可以表示为:

(2)

令 = ,表示不确定时延 引起的不确定项。式(2)写为:

(3)

假设 非奇异和( , )能观测,被控对象的状态观测器就可以采用下列模型:

(4)

由于系统存在网络诱导时延[0, ], 时刻传输到观测器的信号为:

。 (5)

由式(3)可得

(6)

由式(5)和(6),得到观测方程为

(7)

定义估计误差

(8)

则估计误差方程为

(9)

由于 和 均已知,则式(9)可以表示为

(10)

其中,

由于 由不确定时延 引起,因此误差方程含有不确定项 ,且 有界。

三、存在数据丢包的故障检测

数据包丢失能够影响到闭环NCS状态矩阵的结构和NCS的控制性能,特别是其稳定性。因此,关于在NCS中数据包丢失对系统稳定性的影响成为关注的热点。

在NCS中,一是由于通信机制和网络带宽的限制造成的数据包,另一种是为达到某种目的而采取的主动丢包。本文是基于前者提出的故障检测方法。

当在传感器与控制器之间发生数据包丢失时,NCS结构可以用图2表示

图2 具有数据包丢失和时延的NCS

Fig.2 NCS with network-induced delay and packet dropout

图2中随机变量 表示第 个周期是否有传感器数据到达控制器,即

是独立的Bemoulli随机变量。在传感器与控制器之间,由于数据时延能够被看作在本周期未接收到有效数据,便可判断发生了数据包丢失。

若原系统的控制率为 ,则由式(2)可得

(11)

假设事件1和事件2发生的概率分别为 和 ,亦即

(12)

事件1 时刻传感器数据没有到达控制器端,在控制器端建立观测器

(13)

定义观测器状态估计误差 ,无故障时,其状态估计误差方程为

(14)

对于式(14),引入增广向量 ,可得

(15)

式(15)中含有 的两个滞后项,引入 ,可得

(16)

事件2 时刻控制器收到来自传感器的数据,建立观测器

(17)

则无故障时,观测器状态估计误差方程为

(18)

按照事件1中同样的方法,可得

(19)

有式(12),(16)和(19),可得如下的随机切换系统

(20)

其中,

, ,

四、故障检测设计

定理1:基于如下的观测器,残差系统(10)渐进稳定,

其中 , , 定义省略。 为卡尔曼滤波增益,误差协方差矩阵为 ,且

下面,我们将通过数值例子说明所得到结果的有效性。

五、数字示例和仿真结果

本文通过第2和3部分对状态观测器和存在数据丢包的故障检测进行了研究和描述,我们假定以下系统

(21)

其中 , , , 。假设Markov链的转移概率矩阵已知为 ,干扰信号 为任意的随机数。使用Matlab仿真工具,可得如下结果。图3显示为网络控制系统的状态响应。

图3 系统状态响应

Fig.3 State response of system

图4 传感器故障时的仿真结果

Fig.4 Simulation result with sensor fault.

注:1-系统的实际输出;2-观察期输出;3-残余量

Note:1system actual;2observer output;3residual

当传感器故障发生在8.8秒时,系统的实际输出、观测器输出和残余量如图4所示。从中我们可以观察到,残差量在8.8秒迅速增加,并且无延迟,表明了该传感器在此时出现了故障。

六、结论与展望

本文针对长时延的NCS,假定传感器和控制器之间存在数据包丢失,执行器与控制器之间存在时变控制时延等现象。针对此类NCS,本课题研究了有无故障两种情况下可能出现的结果,并且设计了故障观测器。

本文概述了近年来常用的网络控制系统基于模型的故障诊断方法,建立恰当的数学模型,将数据网络简化为对控制系统产生的若干影响因素,并将一般的故障诊断与容错控制方法与理论推广应用到网络控制系统中来。

对一般的控制系统来说,网络控制系统的故障诊断与容错控制并不完善。首先多数的研究主要针对某一特定性能的设计,缺少对系统整体与总体性能的研究;其次现有模型对网络时滞具有严重的依赖性,而且在非线性系统中难以实现。NCS的故障诊断与容错控制方法有很多,本文仅总结和归纳了一部分。

参考文献:

[1]方华京,方翌炜,杨方.网络化控制系统的故障诊断[J].系统工程与电子技术,2006,28(12):1858-1862

[2]Hao Y,Ding S X,Fault detection of networked control systems with networked-induced delay[C].The 8th Int Conf on Control,Automation,Robotics and vision.Kunming:IEEE Press,2004:294-297

[3]Bao Y,Dai Q Q,Cui Y L,et al.Fault detection based on robust states observer on networked control systems[C].Int Conf on Control and Automation.Budapest:IEEE Press, 2005:1237-1241

[4]霍志红,方华京.一类随机时延网络控制系统的容错控制研究[J].信息与控制,2006,35(5):584-587

[5]邱占芝,张庆灵,杨春雨.网络控制系统分析与控制[M].科学出版社,2009

[6]Turner J R.Towards a theory of project management:The nature of the project goverance and project management[J].Int J of Project Management,2006,24(2):93-95

故障检测与诊断篇8

[Abstract] the power transformer is one of the most important equipments for power transmission and distribution network, to ensure the safe operation of power system has play a decisive role effect. Due to the power transformer design and manufacture quality and operation and so on many aspects, m alignant accidents and faults have occurred, seriously affecting the safe operation of power grid. In this paper, based on the author's practical experience, discusses the fault detection and diagnosis of power transformer.

[keyword] power transformer online monitoring and fault diagnosis

中图分类号:TM41 文献标识码:A文章编号:2095-2104(2013)

引言

电力变压器是电力系统中重要的电气设备之一,它一旦发生事故,则所需的修复时间较长,造成的影响也比较严重。随着我国电力工业的迅速发展,电网规模不断扩大,电力变压器的单机容量和安装容量随之不断增加,电压等级也在不断地提高。一般而言,容量越大,电压等级越高,变压器故障造成的损失也就越大。近年来,电力变压器虽然由于材料的改进、设计方法和制造技术的提高,运行可靠率有所提高,但仍会发生料想不到的事故。

一、变压器故障运行时的特征

电力变压器在运行中发生故障时,除油中气体成分和电气参数发生变化外,一般常伴有某些部位的外表颜色、气味、声音、温度、油位等的变化,结合这些变化对分析与综合诊断变压器的故障部位性质、程度、趋势和严重性等起到一定的作用。

1、外观异常

(l)防爆筒薄膜龟裂破损。当油枕呼吸器发生堵塞,变压器不能进行正常的呼吸,会使得油枕上方空气压力变化,引起防爆筒薄膜破损,防爆管失去作用,水和潮气进入变压器内使绝缘受潮。

(2)套管闪络放电。套管闪络放电会造成发热、老化、引起短路甚至爆炸。

(3)渗漏油。渗漏油是变压器常见的问题。渗漏油的主要部位为大盖与本体结合部、放油门、散热器间阀接口、气体继电器及套管基座等处。

2、颜色、气味异常

变压器的许多故障都伴随有过热现象,使某些部件局部过热,引起有关部件颜色变化或产生特殊焦臭气味等。

(l)线卡处过热引起异常。套管与设备卡线连接部位螺丝松动、接触面氧化严重等使接头过热、颜色变暗并失去光泽。套管污秽严重或有损伤引起异常。套管污秽严重有损伤而发生闪络放电会产生一种特殊焦臭气味。

(2)呼吸器硅胶变色。呼吸器的硅胶一般为变色硅胶或掺有变色硅胶的无色硅胶,其目的是便于运行人员监视。硅胶的作用是吸附进入变压器油枕中的潮气,以免变压器绝缘受潮。正常情况下变色硅胶应呈浅蓝色,若变为粉红色说明已经失效。

(3)变压器气体继电器内有气体。正常情况下,变压器气体继电器内充满了变压器油。若气体继电器内有瓦斯气体,会造成轻瓦斯保护动作,严重时则会造成重瓦斯跳间。

3、声响异常

变压器故障运行时,从运行中声音的变化可发现与正常运行时有明显差异。变压器是静态运行的电力设备,正常运行时在交流电磁场的作用下,变压器器身会发出轻微连续的“嗡嗡”声,常被称为交流电磁声,简称交流声。正常运行中变压器发出的“嗡嗡”声是连续均匀的,如果产生的声音不均匀拥特殊的响声,应视为不正常现象。

4、温度异常

(l)内部故障引起温度异常。变压器内部故障,如绕组匝间或相间短路、裸金属过热、铁心多点接地、涡流增大等,都会引起变压器温度异常。

(2)散热器阀门不通引起温度异常。新安装或大修后变压器散热器阀门如忘记打开,使变压器油不能正常循环散热,也会引起温度升高。

(3)呼吸器堵塞或严重漏油引起温度异常。变压器呼吸器堵塞或油量严重不足也会影响其散热效果,导致温度升高。

5、油位异常

变压器储油柜的油位表或油位计温度刻度,是标志变压器不同油温时的油面标志,根据标志可以判断是否需要加油或放油,运行中变压器温度的变化会使油体积变化,从而引起油位的上下位移。

二、电力变压器常规在线监测的方法

1、变压器绕组变形在线监测

变压器绕组变形(如轴向、径向尺寸变化、位移、扭曲、鼓包等)是由于绕组经受了轴向、幅向力的作用以及强大的短路力作用。常规的吊罩检查只能看到高压绕组的状况,而在高压绕组内部的中、低压绕组所发生的形变根本无法看到。变压器绕组在线监测的基本原理是根据变压器绕组的短路电抗值的变化进行变形与否的监测和判断。因为绕组的短路电抗值与绕组的变形程度、几何尺寸以及位置变化密切相关,即短路电抗直接取决于绕组的几何结构。在工频电压不变的情况下,短路阻抗及阻抗中的电感分量与变压器绕组的几何形状及位移相关。通过理论研究和实际测试,实时监测绕组短路电抗的变化对在线监测变压器绕组变形具有很好的实效性。

2、变压器局部放电在线监测

变压器局部放电是反映高压电气设备状态的一个重要标志。因为很多故障均产生局部放电。一般情况下,如果变压器油中发现了特征气体则表明其内部已经存在比较严重的局部放电。局部放电能有效反映变压器内部的绝缘状况。变压器局部放电在线监测技术借助先进的传感技术和电子技术,根据超声波原理将高频声学传感器放在油箱外部以便测取局部放电或电弧放电所产生的暂态声音信号。

3、变压器油性能指标在线监测

变压器油性能的在线监测专家系统由数据库、知识库、推理机、知识获取和人机接口等几部分组成。数据库的主要功能是存储并及时提供变压器油质变化的各项指标和历史数据。数据库中的各种指标和信息中还包括对油质的缺陷分析和处理结果,可以为监测维护人员提供详细的油性能数据。知识库用来存储与变压器分析相关的经验和知识。推理机的作用是从数据库中提取数据后再以逻辑方式对油状况进行推理分析。

三、 DGA故障诊断方法

1、油中气体色谱分析法(DGA)的原理

目前变压器几乎都是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体,由于含有不同化学键结构的碳氢化合物有着不同的热稳定性,所以绝缘油随着故障点温度的升高依次裂解生成烷烃、烯烃和炔烃,每一种烃类气体最大产气率都有一个特定的温度范围,故绝缘油在各不相同的故障性质下产生不同成分、不同含量的烃类气体。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。

2、三比值法

充油电气设备的故障诊断也不能只依赖于油中溶解气体的组分含量,还应取决于气体的相对含量。通过哈斯特的热力学研究结果表明,随着故障点温度的升高,变压器油裂解产生烃类气体按CH4C2 H6C2 H4C2 H2的顺序推移,并且指出低温时H2是由于局部放电的离子碰撞游离所产生的。三比值法的原理是根据充油电气设备内部油气体在故障下裂解产生气体组分含量的相对浓度与温度的相互依赖关系。从5种特征气体中选用两种溶解度和扩散系数相近的气体组分组成三对比值,以不同的编码表示。

结语

本文阐述了电力变压器故障运行时的特征,并分析了电力变压器常规在线监测的方法,此外还分析了DGA故障诊断方法,具有一定的实用价值。进入21世纪电力行业将有更大的发展,电力变压器的故障诊断与状态检修作为我国电力系统实现体制转变、提高电力设备的科学管理水平的有力措施,是今后在电力生产中努力和发展的方向。

参考文献:

故障检测与诊断篇9

一、暖通空调系统故障原因

HVAC系统整合了多种设备,很多参数互相配合和融合,使整个系统变得十分复杂,增加了故障之间的连接性和影响性。多个种类的空调设备通过管道连接而形成关联性和影响性极强的HVAC系统,倘若这个系统中有任何一个位置出现问题、发生故障,都会对其他设备和位置的运行情况产生影响,进而牵连到整个系统的稳定运行和控制性能。

暖通空调系统的故障大体可分成两大类:硬故障和软故障,既有局部性也有全面性,对整个HVAC系统的影响大小也不尽相同。硬故障是指机械设备和运转部件完全丧失功能所产生的故障,例如皮带断裂、传感器失效、阀门不受控制和风机停止运行等故障。从故障产生时间的角度分析,这些故障应当归为突发故障,且故障影响效果比较严重,所以检测和诊断的难度系数不大。软故障的实质是说设备和部件的机械功能降低或局部失效等,比如部件或管道结垢、堵塞,局部泄露、仪表稳定性降低等等。

另外,HVAC系y中所包含的传感器数量是极少的,因此缺少传感器带来是数据和信息,降低系统的监测性,而且,HVAC系统所整合数据比较多也比较复杂,通常都会给系统的控制者增大管理难度,由于系统所产生的数据和信息不能通过图案和文字直观的表现出来,其多变性较强,而这些数据信息最终都是由人工来进行处理和分析的,对故障的检测和诊断器械和软件也必须通过人来判断,还有就是系统的控制者比较容易忽视的故障和隐患,尽管这些故障不能干扰系统的稳定运行,但也许会有带来一些不确定问题。

二、暖通空调系统故障检测与诊断常用方法

1、直接方法

直接方法主要是指在暖通空调系统运行中,以不同的输入、输出参数为依据作为故障检测基本症状,直接将这些症状输入分类器中。利用预期设置完成的分类策略对分类器中症状进行具体分类,即对系统故障进行分类,再以此为依据作出准确故障诊断结果。该故障检测与诊断方法常用于分类器设计中,较常见的分类方法如专家规则、贝叶斯分类法等等。利用这些具体方法可有效实现对设备自动故障检测与诊断,效果良好,操作便利,诊断数据较准确。

2、间接方法

间接方法主要是指通过系统模型预测,该方法的应用前提条件是要先设立正常系统运行条件,并对已经确定的故障进行系统建模。在此基础上构建标准化模型系统,进而展开进一步针对性预测,再将预测结果所得参数与实测参数对比,将对比后偏差作为输入参数,再输入至分类器,确定故障类型。其分类方法包括贝叶斯分类法、故障树与神经网络法等等。其主要建模方法则为回归法等。

三、暖通空调系统故障检测与诊断分析

1、暖通空调系统诊断方法

暖通空调故障诊断方式主要有两种:一种是在线方式,即故障诊断系统实时地监测设备的工作状态,基于适时的在线故障检测与诊断算法,给出系统的故障信息,包括故障程度、故障所属模块、故障位置、故障报警等。另一种是离线方式,即构建计算机辅助决策支持系统,帮助系统迅速发现故障,制定合理有效的系统维修方案。

(1)基于知识的专家系统

建立专家系统诊断模块,包括专家系统知识故障诊断库,并可根据经验和知识的积累以及在获得了新的、可靠的故障诊断规则时或发现原有某条规则不足甚至错误时,能自动进行添加、修改和更新。 专家系统诊断模块由知识获取系统、知识库、推理机和输人、输出系统构成。

(2)基于规则的故障树

利用专家知识、工程师的经验和知识库建立基本故障诊断树,并可生成新的故障诊断树,用户则选择相适应的故障诊断树来执行故障诊断。

故障树分析是在复杂系统中作故障诊断的一种有力工具。用这种方法诊断的效率较高且不容易漏检,例如该模块能根据系统故障现象,逐次向下展开,查询有关的节点和树枝,直到找出故障的发生原因及处理对策。

(3)基于人工神经网 B P改进算法的模式识别

该模块由 B P改进算法的网络、网络结构参数及推理诊断等组成,主要用于完成模式识别和故障诊断。专家系统诊断与故障树诊断两种方法的相互结合,可以有效地解决过去已发生过的各种故障的诊断;但对于以前没有发生过的故障,不具备处理能力,因为知识库中缺乏相应的诊断知识。采用人工神经网络( A N N) 模式识别技术是一种较好的方案。它根据新的样本进行自动学习和训练以更新故障诊断知识,并可添加到专家系统知识库中。A N N的故障初始样本来自已有的故障实例,这些实例可通过故障机理分析或专家经验获得,此外还可在应用中逐步添加、删除和更新。

2、故障检测与诊断的应用

随着科技的进步,现在的故障检测和诊断手段嵌入了动态的控制系统体系,完善了检测和诊断的技术。制定一些模型数值或者一些经验数据,当传感器测量得到的实际运行过程中的参数和由模型得到的计算值在诊断软件中进行对比和评估,它们之间的差值作为传送的数据,送到故障诊断分析其中的问题,如果这个差值逐渐的增大时,就说明了这个系统发生故障的可能性就会增加。根据检测系统的分析,就会将故障的诊断结果及时传送出去进行显示。这些故障诊断由输入的数据类型、复杂程度、性质等进行分区,较难的诊断就会需要长时间来完成,或者由更高层次的诊断设备来完成。

暖通空调系统故障的检测方法。在以前,我们所用的方法就是用直接、解析和时序三种冗余法来进行检测。基于定量模型法在相同的情况下可以通过比较实际系统或者仿真的模型运行状态来进行检测和诊断系统故障,但是在执行的时候需要具体的、精确的数据模型来进行检测。还有一些基于定型模型法、基于统计学法、人工神经网络法和模式识别法等可以对暖通空调系统的故障来进行检测。

按照故障的级别和故障的优先级不同,不同故障在不同的诊断层次上来诊断。在分布式控体系(DCS)中,驻留在不同层级上的故障诊断工主要由输入数据的类型、性质、复杂程度和诊断具使用的频率来区分,复杂的、需要更多知识和能的故障诊断(如诊断周期需要一天或一个月的将由更高层次的诊断工具(或计算机)来完成,由现在传感器性能的提高,大量的、低端的故障诊倾向于在传感器中就地解决。

四、结束语

综上所述,针对暖通空调系统加强故障检测与诊断对保证系统正常运行,提高室内空气质量有着重要作用。为进一步提高暖通空调系统故障检测与诊断技术,应充分结合技术理论及经济性理论,在提高系统整体可靠性的同时,提高暖通空调系统节能性,有效降低暖通空调出现故障的几率,提升暖通空调应用质量及寿命。同时加强故障检测与诊断技术研究,对进一步推进我国暖通空调系统创新发展也有着重要意义。■

参考文献

[1]陈友明.自动故障检测与诊断在暖通空调中的研究与应用[J].暖通空调,2014,03:29-33.

故障检测与诊断篇10

在目前看来,机电设备故障检测与诊断技术深受国内外关注,并且在现代新兴技术检测中占有主导地位。煤矿机电设备的进一步完好,有效的预防了煤矿机电重大事故的发生,减少了煤矿人员和国家财产的损失,为煤矿机电设备维修管理提供了技术参数,促进了矿井设备的安全运行,节约了生产维修成本。

随着,现代科学技术的日新月异,煤炭工业生产的自动化水平也在进一步提高,并不断得到完善,煤矿机电设备在当今社会生产中的作用也得到了日趋显著提高,设备的运行费用也越来越高,所以,在矿井生产工作过程中煤矿机电设备的故障或损坏,不仅会在经济上带来较大损失,还会造成人员伤亡,导致事故悲剧发生,造成一定的社会不良影响。因此,煤矿机电设备的故障检测与诊断技术的应用就变得越来越重要。要保证煤矿机电设备运行的安全性与可靠性,做到早诊断、早发现、早处理,尽量减少不必要的故障危害,对机电设备的故障检测与诊断技术的应用就是一个十分有效的措施。

1.故障诊断技术在我国的发展历程

故障检测及诊断技术是是一项国内外倍受关注、且发展迅速的现代新兴技术检测手段,是以当前较为先进的计算机技术、传感器技术,以及信号分析、处理技术等为基础的一种综合性技术应用方法。其故障诊断技术实质上就是通过对设备运行状态进行相应的定量检测,对出现的故障进行具体诊断,来对设备的实际运行参数进行有效掌握和了解,进而实现对机电设备自身的安全性,以及稳定性和工作持续性作出正确的预测,同时对其在运行过程中出现的问题、故障以及破坏程度等进行相对科学、合理的评价和识别。并据此结果来采取相应的解决对策和处理措施,也就是我们常说的通过利用状态检测以及故障诊断等作业方法对设备的运行状态进行及时、准确检测,并依据检测结果来明确设备运行状态和预测设备运行的未来状况。

故障检测诊断技术最初出现是出于军事的需要,主要运用仪表检测设备运行状态参数,随即多功能、自动化的检测仪器不断涌现,各种新技术也不断得以应用,随着航天技术、微电子技术、传感器技术等的发展,机械设备故障诊断技术也日趋完善。在我国20世纪80年代初期,在该领域的的讨论及研究开始起步,应以引进、利用为主,逐步发展起来。近几年,煤矿机电设备故障检测诊断技术随着我国科技的不断进步,以及相应科研单位的进一步研究也有了显著提高,并随着煤炭行业的不断快速发展,故障检测诊断技术不断的被广泛采用,并且在煤矿日常生产和管理过程中取得了显著的成效。

2.采煤机工况检测和故障诊断技术

采煤机故障检测与诊断系统主要包括以下几个方面:

2.1变频器故障检测系统

该系统是用来将各检测工况的检测参数信号传送到工况检测及故障诊断中心,由检测中心进行相应的处理后,并给予图文显示的。故障检测与诊断系统具有众多的保护功能,在设备运行过程中所使用的变频器不但有一个相对独立的液屏显示器,还将采煤机自身的一些牵引速度以及电机电流、电压等诸多参数显示出来,同时也能对28个工况参数等进行有效检测,并在其运行过程中具备温度保护、过电压、欠电压及过电流等多种保护特性。其中变频单元最主要的功能是一个信号传输的过程,将变频器检测出来的工况检测信号通过变频器传送到故障检测中心进行诊断,通过检测中心对所获得的参数进行参考,然后再对故障进行处理,最后通过文字或者是图形的方式将所要传达的信息显示出来。

2.2工况检测及故障诊断

工况检测及故障诊断系统是存在于计算机内部的一个程序,通过Windows操作系统来进行工作。这个系统的主要功能是当发现故障或者根据数据参数显示将有事故发生时,屏幕上就会第一时间将这个消息传送到采煤机控制中心,并对其发出信号,采煤机控制中心在接受到这个信号后会通过声光报警的形式,或者采取相应的故障保护措施等来降低或减少故障带来的损失。

2.3检测151.5mm显示单元

这个显示单元是有许多电路及彩色液晶显示屏等组成。该显示单元内容丰富,包含有工况检测参数、及在工作过程中为减少损失提醒人们及时采取措施的报警系统,还有对发生的故障进行诊断后的结果等。还包括许多的检测单元,有左右摇臂式的,也有对机身进行检测及高压控制箱等中断检测单元等。

3.如何预防煤矿机电设备事故

我国是一个人口众多、能源消耗大的国家,随着煤炭行业的日益快速发展,越来越多的人投身于煤矿事业,山西、东北、山东等地都是矿区的集中地,煤矿的安全也越来越受到国家的高度关注,每年所发生的重特大安全事故,总是会让人们触目惊心。

2004年10月20日22时09分郑煤集团大坪煤矿的事故一直让人们记忆犹新,当时是由于煤矿井下瓦斯逆流进入进风流所引起的瓦斯爆炸,事故共造成148人死亡、32人受伤的惨状,引起此次事故的主要原因是检测监控不健全,发生延期性煤与瓦斯突出。例如中国矿业大学的KTD型旋转铁谱仪和计算机磨屑图像分析系统等,就是故障检测诊断技术研究在生产中具体应用的典型事例。所以,故障检测与诊断技术的合理应用是预防煤矿重大事故,乃至重特大事故发生的重要手段,也是十分必要的。

随着煤炭行业的不断发展,煤矿安全成了人们最关注的问题。煤矿是一个生产系统性要求较强的高危险行业单位,由涉及煤矿各种专业的管理者、工程技术人员,以及各个工种的操作人员等构成,人员文化水平、素质参差不齐。所以,不管是管理者还是职工都要加强对煤矿安全知识的学习,掌握基本的安全知识与理论,确保自身及他人安全,乃至国家财产安全;要加强对煤矿安全生产技术的进一步学习与培训,掌握煤矿机电设备的故障检测与诊断技术,保证机电设备在即将有故障或已有故障时,能及时诊断出来,并正确地加以维修,以减少维修时间,提高维修质量和节约维修费用,应使重要的设备能按其状态进行维修(即视情维修或预知维修),不断扭转或改革目前按时维修的体制;提高职工的安全生产意识,减少事故发生,保证可靠地、高效地发挥机电设备在生产中应有的功能。

3.1加强管理制度

煤矿的工种比较多,也是一个危险系数比较高的岗位,在选择职工的时候要本着认真、负责的态度来安排工种,不能徇私。要加强对职工的管理,特别是对临时工更要加强教育及培训,对于特殊工种的工人要严格制止经常性调换工作的现象出现,一定要严格进行各工种考核,持证上岗,并严格遵守国家对煤矿所制定的各种法律法规、规定,以及企业对煤矿所制定的各种管理办法、奖惩制度。

3.2加强对职工的安全培训

煤矿机电设备故障检测与诊断技术是当今生命力旺盛的新兴学科,这就要求煤矿尽量将每位职工放在一个适合自己的岗位上。对于技术工与管理层的人要实行竞争上岗的形式,让员工通过竞争不断自觉学习设备故障检测与诊断技术,来提高自身业务知识和技能水平,增强掌握新知识、新技术的素质,保证机电设备能处于最佳的运行状态。每隔一段时间就进行一次业务技能考核,对表现优秀的员工给予物质奖励及精神鼓励等。要定期培训,加大培训力度,提高职工掌握机电设备故障检测与诊断技术的意识,施行“以人为本”的现代管理理念。

3.3加强安全工作力度

要想将煤矿安全工作做好,充分应用煤矿机电设备故障检测与诊断技术,监督和奖惩是非常重要的。要严格禁止侥幸心理及违章现象的出现,领导要在严把生产关的时候把好安全关,对违章、违规人员进行一定的惩罚制度,采取一定的奖罚措施促进煤矿各安全管理制度的有效实施,保障机电设备故障检测与诊断技术在煤矿生产中的良好应用。

4.结束语

所以,煤矿机电设备的故障检测与诊断技术的应用是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的生命力旺盛的新兴学科。由于种种原因,该技术尚未在煤矿中广泛普及,因此,要加强对煤矿故障检测手段及诊断技术的大量研发和投入,要加强煤矿与科研单位的技术合作和交流,要加强对新技术的不断推广和应用,需要煤矿坚持引进科技人才和加强外委培训,才能使煤矿机电设备故障检测与诊断技术的应用日趋普及、成熟和完善,从而全面促进我国煤炭行业的稳步前进,与时展及要求同步。

【参考文献】

[1]雷振廷,查伏强.故障检测诊断技术在煤矿机电设备中的应用[J].科技资讯,2008(35).

故障检测与诊断篇11

随着科技的不断进步,生产力的不断发展,在建筑行业中越来越多的大型机械设备的使用,很大程度上提高了工作效率。然而,在大型设备使用期间,不可避免的会出现故障,因此,为了在出现故障的早期尽可能的消除引起故障的因素,从而提高设备的使用寿命,在工程机械使用期间,应该注重设备的检测和维修,通过检测和维修,可以降低设备成本以及提高了工作效率,从而可以获取更大的经济效益。工程机械液压系统故障的现场检测与诊断分析技术的不断进步,将会对我国建筑行业的发展起到重要的促进作用。

1 工程机械液压系统故障具有的特征

工程液压系统故障一般分为两个方面,而引起这两种系统故障具有的共同特点为:系统压力不足。一方面为工作装置液压系统故障,工作装置液压系统主要由控制阀、液压泵、液压缸以及液压马达组成,其故障主要表现为回转无力或马达的行走、缩回迟缓和液压缸活塞的伸出。另一方面为液力机械传动系统故障,液力机械传动系统主要由液压泵、动力换挡变速阀变矩器、控制阀和变速器等组成、其故障通常表现为液压离合器接合不良或行走无力。

2 国内外机械液压系统故障监测与诊断前景

从1960年起,主要是对于参数的直接测量判断故障。是液压系统故障诊断刚刚起步阶段。随后二十年期间,以人工智能的诊断方法为基础的液压系统故障诊断得到了快速发展。英国相关技术人员利用多层感知机来进行故障诊断;加拿大科学家开发了驱动卫星天线跟踪进行液压系统故障的诊断;在1997年法国科学家则研发了未知输入观测器;bath大学在1998年开发了动态专家系统并开发了相应的软件;在2003年哥伦比亚学者则通过神经网络非线性识别方法对液压系统建模,开发了故障诊断程序,加拿大科学家实现了液压系统电气环节故障诊断。在这短短的五十几年期间,液压系统故障的诊断技术得到了飞速的发展,为全世界的科技与经济的发展做出了重要的贡献。

我国的液压故障技术在上世纪末才刚刚起步,但是得到了快速的发展。目前工程机械液压传动系统的研究主要集中于北京大学、浙江大学、北京航空航天大学与燕山大学,逐步实现了故障机理和诊断技术,通过深入研究并利用振动信号来进行诊断,再发展利用神经网络、小波分析、专家系统等实现智能诊断。在工程机械液压传动系统故障诊断中常用的方法是基于人工智能与传递函数的故障诊断方法,由于故障与表征原因存在复杂的非线性映衬关系,不能直观地表现出来,给经典的故障诊断带来了极大的困难。

工程机械最重要组成部分是液压系统、行走、承担驱动、作业和控制等功能,由于液压系统的结构相对比较复杂,大部分的工程机械故障都是由于液压系统故障引起的,因此,工程机 械液压系统故障的现场检测与诊断分析技术的探究就显的尤为重要。

工程机械液压系统是由动力装置、辅助装置、控制调节装置以及执行装置组成。行走和执行结构迟缓或无力,液压离合器接触不良的故障表现是由元件或者系统失效而导致的,引起这种故障表现又是通过液压系统的温度、流量以及液压系统压力而发生变动。

随着科技与知识工程的不断发展,同时,神经网络、虚拟现实以及数据库等技术的发展,实现了故障隔离,远程诊断。液压系统故障诊断技术的发展趋势是液压系统故障诊断智能诊断技术。综合利用人工神经网络方法、故障树分析法、模糊数学方法、原理推测推理法相结合,实现诊断已有故障,同时将可以实现在线监测、预报未知故障。基于此,对于液压系统的智能诊断具有原则简单性、概率性以及效益性。

3 故障的现场检测与诊断

3.1 现场的初步检查与诊断

对照液压系统图分析产生故障初步原因以及部位,根据故障现象查清有关情况,为了避免造成不必要的损失,对于看起来很简单的原因不能忽视,更不能擅自对工程机械进行盲目乱拆。在故障的现场检测和诊断中,可以按照以下步骤进行具体检查。

(1)检查各种滤芯。液压系统的清洁工具是滤油器,在故障诊断时,检查滤油器(滤芯上各种杂质的性状、台滤油器的脏污程度等)可为进一步分析故障提供依据。如一台加腾HD820型挖掘机,在运转了4000h左右后发现整机无力,拆检其液压系统滤油器时,发现滤芯损坏,堵住了回油口,更换滤芯后故障得以排除。

(2)有时,驾驶员对机器故障的因果关系陈述不清,致使故障诊断困难,这时进行必要的现场操作将会显得尤为重要。

(3)首先要做的就是要向驾驶员了解具体情况,为了避免化易为难以及小题大做,要详尽了解故障产生时机器的声音以及状态。对于一台966D装载机变矩器油温过高,在给变速器换完油后发现机器行走无力。通过检查发现,所加传动油号发生了错误而导致的,在弄清楚了引发故障的原因之后,迅速排除了故障,解决了问题 。

(4)对于油量和油质的检查。该项工作看起来简单,但是却经常会被忽视。例如一台其行走机构为液压力传动系统的966D装载机,在修理完液压缸后发现液压油不足,而现场采购的液压油为土法提炼的再生油,续加到油箱后造成了油质的污染,变质起泡,致使机器动作无力,更换液压油后故障得以排除;一台日立EX220-2挖掘机,驾驶员在停工期间已经将变速器油放完。当工地搬迁后其助手开车时,发现机器无法运转,认为出现了大的故障,但是维修人员在现场通过检查油尺和听声音就解决了问题。

如果通过以上的初步检查后仍不能排除故障,则应借助仪器做更为详细的检测。

3.2 液压系统的仪器诊断

(1)电脑诊断

随着机电液一体化在工程机械上的广泛应用,单一的压力测试已不能满足现场检测的需要,现在越来越多的进口工程机械,其故障诊断要借助专门的检测电脑来完成,检测电脑所测数据丰富、体积小且携带方便。

(2)系统压力诊断

在一般的现场检测中,由于流量的检测比较困难,加之液压系统的故障往往又都表现为压力不足,因此在现场检测中,更多地是采用检测系统压力的方法。如,一台EX220-5挖掘机,运转3000h后发现行走跑偏,检测行走系统压力发现,左边为32MPa,右边只有26MPa,后调整右行走安全阀压力,故障得以排除。

(3)其它诊断方法

现场维修中常采用不用仪器的对换诊断方法,这种方法常在不同型号机器进行整体测试时使用,即若现场无检测仪器或被查元件比较精必而不宜拆开时,可换上其它同型号机器上元件在进行检查,即能快速地诊断出有否故障。

4 总结

通过本文对工程机械液压系统故障的现场检测与诊断分析进行了深入的探析,显示了故障检测和诊断对工程机械正常工作的重要性,对工作效率的提高,成本的降低都起得了很大的作用;同时,对建筑行业的发展也起到了促进作用。

故障检测与诊断篇12

引 言

在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,判断产生故障的部位和原因,以及预测预报设备状态,对机械设备正常运行进行必要指导,提高设备的可靠性,安全性和有效性,把故障降低到最低水平,指导设备的管理维修非常必要和重要。

一、机械设备故障诊断与检测发展现状

机械设备是一个完备的系统,随着科学技术的不断发展,自动化水平的不断提高,机械设备本身也逐渐变得复杂,随着设备的大规模投入使用,机械设备故障诊断与检测越来越凸显出不可替代的重要性,定期进行机械设备故障诊断势在必行。

在机械设备应用方面,我国起步较晚,因此,在机械设备故障诊断技术的研究和应用方面更是被许多国家远远抛在脑后,发展历程经历了由简到易,完成了由粗略化操作到精细化操作的完美转身。但是,经过几十年的发展,也算是迎头赶上了,目前,我国已经形成了相对完善的机械设备故障诊断技术学科体系,就技术手段而言,也已形成了油样分析、温度检测和无损检测探伤等一系列环节,随着计算机、数控技术的发展,机械设备故障诊断和检测技术逐渐转向数字化、实用化。

二、机械故障诊断存在问题

机械故障诊断的核心还是信号处理,对于技工院校的教育教学过程来说,机械故障诊断缺乏创新,在原有理论基础上进行的探索,面临当下时代的快速发展,虽然试图倚靠设备本身进行教育方式探索,却始终少了发展的基本途径,达不到改革发展的基本要求,是其发展的一大弊病。传统的故障诊断基本思路是模式识别,然而在工业系统应用中,模式识别相当受限不具备普适性。由于其需要过多的机械装备历史故障数据以及先验知识,因此,对于中职技工院校的学生来说,还是难度太大。

另外,由于新兴机械故障诊断技术对于科学技术的精准程度的要求,如果将机械故障诊断逐一落实到中职技工院校的设备处理上,尚有一定难度,需要根据不同院校、不同设备型号进行处理,在实际操作上需要顾忌的问题就有点多了。举例来说,如果某一批次的设备主要的破坏力是热应力,那么按理说应该施加不同等级的高于实际的热应力进行试验,但是由于学校设备批次、寿命特征、分布等数据不尽相同,最终推断出的设备在正常应力下的机械使用就会有所偏颇,这就是目前难以解决的设备问题。

三、探求改进方法

(一)建立健全设备管理网络

“探寻,就是要不断相信、不断怀疑、不断幻灭、不断摧毁、不断重建,为的是避免成为偏见的附庸”。因此,在进行设备故障诊断的过程中,需要时时刻刻保持清醒,将建立健全设备管理规章制度作为发展方向,才是利于设备维修工作开展的重中之重。规章制度是设备管理的基础,针对机械设备故障本身的诊断与检测,是加强设备管理制度的重要手段,更是促进基础教学工作开展的必要前提。机械故障诊断是一个前景很广阔的领域,这个行业圈子很小,国内尖端人才就更少了,因此,要想切实有效发展设备故障诊断和检测技术,建立健全设备管理系统尤为必要。

(二)编制各类设备安全操作规程

设备操作规程是设备操作人员正确掌握设备操作技能的技术性规范,它是根据设备的结构和运转特点,与安全运行的要求,规定设备操作人员在其全部操作过程中必须遵守的事项、程序动作等基本规则。为全面贯彻落实“安全第一、预防为主、综合治理”的方针,提高操作规程的科学性和可操作性,推行安全实训标准化建设,有效控制和预防安全事故的发生,确保人身财产安全。结合学校实际情况,制定各类设备安全操作规程,并将安全操作规程悬挂、张贴在设备附近的显要位置,时刻警醒学生,严格遵守安全技术操作规程和各项规章制度,保障人身及设备安全。对不符合安全要求的设备设施应及时处理,对有严重危及安全的情况,应立即停止使用并及时报告。

四、结语

在柴静的《看见》一书中,曾这样写道:“一个国家由人构成,一个人由无数他人构成,你想如何报道一个国家,就要如何报道自己。”和新闻报道的性质一样,对于技工院校的实训课程而言,正是由若干台正常操作的设备构成,而一台设备由若干机件构成,你想顺利完成课程,就需要找到使用设备的正确方法,事前进行好机械设备的点检和故障诊断,否则,隐藏的问题是危险的、可怕的,越是如此,教育过程的本质就会变得不安。

在中职院校的教学过程中,针对任何具体的机械设备运行,都需要建构在诊断性能圆满实现的基础之上,机械设备的状态监测以及定期故障诊断,使得机械设备状态真正走向协调发展的方向。当然,这并不是指机械设备维修维护可以高枕无忧,恰恰相反,关于机械设备故障诊断与检测发展研究方兴未艾,还有更多的领域需要去探寻,路漫漫其修远兮……

参考文献:

[1]许立学,设备管理中的机械故障诊断技术与状态监测维修[J].中山大学学报(自然科学版).

友情链接