电子设备结构设计合集12篇

时间:2023-06-11 08:13:11

电子设备结构设计

电子设备结构设计篇1

关键词:

电子设备结构设计;电磁兼容设计

1前言

电子设备结构设计构成比较复杂,它是由PCB、屏蔽系统、滤波、接地系统组合而成的综合设备。随着技术创新发展,综合性能更为强大,功能更加多元化,内部结构也更加复杂。但不能否定的是,如果忽视设计和管理工作,往往容易出现故障,不仅影响工作进度,还可能引发安全事故,降低电子设备的工作效率和综合效益。文章结合电子设备结构设计和运行作业的基本情况,探讨常见的不足,并有针对性的提出设计对策,希望能为实际工作提供指导与借鉴。

2电子设备电磁干扰源分析

电子设备运行过程中,往往受到内部和外部干扰,影响设备的正常运行,需要提高设计水平,促进设备作用的充分发挥。

2.1内部干扰

内部各元器件之间相互作用,进而产生干扰现象,对设备运行带来不利影响。常见形式如下:元器件发生漏电现象而引起干扰,无线电信号出现耦合,导线之间出现互感现象引起内部干扰。元器件工作时间过长导致发热,影响元器件运行的稳定性。公共地线上汇集电流,当电子设备在运营时,会出现电压降低现象,对设备产生不必要的干扰。

2.2外部干扰

外部电源及高电压出现绝缘漏电现象,对电子设备产生干扰。功率大的外部设备产生较强的磁场,出现耦合进而导致干扰现象发生。外部空间电磁波干扰电子设备正常运行,设备在温度不稳定的环境下工作,导致设备参数改变,也会干扰电子设备正常运行。

3电子设备结构设计电磁兼容设计的不足

电子设备结构设计中,有些设备存在质量缺陷,操作人员的综合技能不高,存在违规违章操作现象,可能导致电子设备出现相应的故障,制约设备综合性能的发挥,常见故障体现在PCB设计、屏蔽设计、滤波设计、接地设计等方面。

3.1PCB设计的不足

例如,PCB尺寸设计不合理,忽视对其综合性能的考虑,PCB板和元器件布局设计不到位,未能对各项参数全面考虑,难以提高设备的抗干扰能力,也制约电磁兼容性能提升。

3.2屏蔽设计的不足

组合体之间的电接触设计不合理,屏蔽材料选择不到位。设备机箱缝隙的屏蔽设备设计不到位,制约屏蔽设计水平提升,也难以提高电子设备的抗干扰性能。

3.3滤波设计的不足

设计过程中忽视对设备性能进行全面考虑,未能采取有效措施切断电磁干扰源,出现电磁干扰现象。

3.4接地设计的不足

接地点位置不合理,忽视考虑接地工作需要。电路组合接地方案不科学,抑制接电干扰措施不到位,降低接电设计水平,对设备运行也带来不利影响。

4电子设备结构设计电磁兼容设计的对策

为避免结构设计中可能出现的故障,提高施工作业效率,更好处理作业中遇到的问题,结合实际工作需要,笔者认为今后应该采取以下处理措施。

4.1PCB设计对策

首先,合理进行PCB尺寸设计。考虑抗噪音和抗串扰性能,提高尺寸合理性,避免出现尺寸过大或过小情况,使其更好发挥作用。其次,PCB板布局设计。尽量缩短高频元器件之间的连线,合理布置电路各功能单位的位置,确保信号流通性良好,尽量让信号流通方向保持一致。合理确定元器件参数,提高设备性能,并让元器件平行排列,增强抗干扰能力。最后,元器件布局设计。采用集成电路元器件,增强其抗干扰性能,提高电磁兼容性能。

4.2屏蔽设计对策

合理设计屏蔽组合体各部分之间的电接触,将接触电阻降到最小。屏蔽材料选用导磁率和导电率较高的材料,可在高导磁材料表面增加一层高导电率材料,促进材料的抗干扰能力增强。采取相应措施,提高设备机箱缝隙的屏蔽效果。将带背胶的铍青铜簧片粘贴于机箱缝隙结合面处,促进屏蔽效果提升。机箱制作时,应该合理采用焊接措施,确保焊缝平滑和连续,让接缝处和金属板的射频电阻尽可能相等,有效提升屏蔽效果。

4.3滤波设计对策

切断沿导线传播的干扰源,从而有效落实电磁兼容设计方法。采用两个电容器和一个电感器组成π型滤波器,作为滤波形式,并消除电路间的耦合,促进电磁兼容设计水平提升。将差模和共模滤波单元组合起来,抑制电流,降低高频段噪声衰减,提高兼容设计水平,促进设备综合性能提升。

4.4接地设计对策

合理选择接地点,提高电路组合接地方案科学性。采用多点就近接地方式,让接地点间的电位差尽量接近,避免相互之间产生干扰。要确保接地线和接地面的直流搭接阻抗小于2.5mW,确保电气连接的可靠性。注重接地面处理,提升抗氧化和抗腐蚀性能,促进接地设计水平提升。

4.5电子设备结构其他设计对策

重视接电保护工作,当电子设备出现损坏现象时,要检查各项设备,掌握设备的综合性能,确保满足要求。结构出现损失时,应该及时更换新的设备,保证设备运行的安全。还要提高电子设备设计和维修人员素质,完善设计措施和管理制度,加强电子设备的性能监测,及时排除故障,确保电子设备性能良好。

5结语

电子设备在日常运行中,由于受到自身质量状况、所在环境、工作人员操作技能等因素的影响,可能出现相应故障。如果未能及时处理,会影响作业顺利进行。实际工作中应该认真分析形成原因,有针对性的采取控制和完善措施,将故障及时排除,提高电磁兼容设计水平,促进电子设备有效运行。

参考文献:

[1]张敏.电子设备的电磁兼容设计[J].科技风,2016(5),86.

[2]刘丽平.电子设备电磁兼容设计研究[J].信息与电脑,2013(1),16~17.

电子设备结构设计篇2

二、电子设备结构电磁兼容设计的目的

当今社会中,电子设备的正常运行,是基于电磁兼容的基础上,电磁兼容能够保证电子设备的运行不受电磁的干扰,就能够很大程度上避免电子设备细节部分和个别部位的不良反应,使电子设备的性能达到最大化,提高电子设备的运行效率,提高整个行业的生产率。众所周知,当前社会科学技术的不断发展促进了电子设备应用的广泛性,与各个行业各个领域息息相关,一旦运行的电子设备出现某些一时间不可解决的故障,就会影响整个行业的经济发展,极大地威胁整个行业的安全稳定。因此,电子行业在设计电子设备的时候,首先要考虑到影响电子设备电磁兼容的条件和因素,考虑到电磁不兼容的种种迹象和表现,以尽快采用技术手段进行调整解决,以免电子设备投入使用后出现电磁不兼容的情况,影响电子设备的正常运行。电磁兼容,简而言之就是控制电磁干扰,消除电磁干扰,使电子设备与其他的设备在特定的电磁环境中工作运行时,保证彼此的和谐稳定,保证电子设备各部分性能的正常。一个可以投入广泛使用的电子设备不仅不会辐射有害能量,而且也不会受到不相关的辐射影响。因此,电磁兼容设计的目的是为了电子设备的正常运行和广泛应用,是当今社会电子行业发展的整体走向和目标。

三、电子设备结构设计中保证电磁

兼容的方法和措施在电子设备结构设计中,需要通过采用特定的技术手段保证电子设备的电磁兼容性,以减少甚至消除电磁干扰,避免部件受到不良辐射反应而损坏,降低电子设备的整体性能和运行效率,影响整个行业的发展。新型电子产品研究开发之初,首先要对电磁兼容有一个概念性的把握,并在后期研发的时候充分考虑到电磁兼容的影响因素,进行相适应的电磁兼容开发设计,避免重复开发和资源浪费。在设计之初采取措施保证电磁兼容是最最经济节约的方法,避免了后期维修调整的人力物力的浪费。现实生活中,很多已经投入使用的电子设备如果出现电磁兼容问题维护成本极高,甚至根本没有解决办法,因此,电子设备的结构设计要做到未雨绸缪,减少不必要的麻烦和损失。目前,最常见的电子设备电磁兼容的方法有滤波、屏蔽、接地三种,这是有效消除电磁干扰的重要举措。

1电磁滤波

电磁滤波,是常见的影响电磁兼容性的因素,是压缩信号回路所致,并且会对频谱产生严重干扰,电磁滤波的存在不仅能影响干扰源的发射,而且会有效抑制干扰源频谱分量对其他设备元件如敏感设备、电路、元器件的影响。简单地讲,电磁滤波通过某种特定方式过滤信号中的特定波段频率,这种方式能够有效抑制干扰,因此,在处理电子设备结构设计中的电磁兼容问题时可以考虑在内并加以应用实施。在电子设备的运行过程中,正在运行的电路会产生一些较强的干扰信号,这些干扰信号能够通过电源线、信号线以及控制线等方式对整个电路产生巨大的干扰作用,因此,设置滤波电路已然成为当前公用电源线的发展走向和趋势,这是保证电路安全稳定,减少电路干扰,提高电子设备安全稳定的重要方式。滤波电路的设置需要掌握一定的方法和技巧,铁氧化体磁环\穿心电容、三端电容是最常见的选择器件,是有效改善电路特征的重要元件。在滤波电路设置中,还需要保证所有的电源滤波器外壳与电子设备的接地点连接在一起。只有保证滤波电路设置的合理性,才能提高电磁滤波的效率和质量,提高电磁兼容,保证电子设备正常运行和整个电子行业的发展。

2电磁屏蔽

电磁屏蔽是目前解决电磁兼容问题的最有效方法,电磁屏蔽的优点是有效地将内部电磁辐射控制在一定范围,即限制内部电磁越出既定的领域,与此同时,还能够防止外部电磁辐射的入侵,切断电磁波,减少不必要的损害。当前,电子设备出现的大多数电磁兼容问题都能够通过电磁屏蔽这种技术解决,这种方式还能够保证电路的正常工作。

2.1电磁屏蔽的作用

电磁屏蔽的作用是极大的,通过对两个不同的空间区域进行金属隔离,达到控制整个电场、磁场、电磁波的目的,使一个空间区域对另一个空间区域的辐射和感应控制在可控范围。也就是充分发挥屏蔽物体的作用,将诸如电缆、元部件、电路、组合件甚至整个系统的干扰源包围控制,阻断干扰电磁场的对外扩散;与此同时,还需要充分利用屏蔽物体将系统、电路、电子设备有效包围起来,以防止它们受到外界电磁场的影响。目前,电磁屏蔽技术是当前有效解决电磁辐射的方法,能够有效保证电磁兼容,促进电子设备的正常运行。

2.2电磁屏蔽的注意事项

2.2.1电磁屏蔽的时候,一定要注意电磁屏蔽板的放置,一定要将其尽可能地靠近被屏蔽的机械设备,同时电磁屏蔽板要尽可能地与地面相接,这是有效发挥电磁屏蔽效果的关键,越靠近被屏蔽的器械元件,电磁屏蔽板所分布的电容容量就会相应地越大。

2.2.2电磁屏蔽板的时候,电磁屏蔽板的整体屏蔽效果还会相应地受到屏蔽板本身形状的影响,实践证明,屏蔽效果最好的的屏蔽板形状是全封闭状态,并且最好是金属盒电场。

2.2.3电磁屏蔽的时候,电磁屏蔽板选择材料的时候要求也很高,经过实践调查研究,良性导体材料是屏蔽效果最好的屏蔽材料,常见的有铜、铁、铝等,与此同时,还需要注意屏蔽材料的厚度,这个需要根据实际强度灵活把握,只要屏蔽材料的厚度符合强度要求即可。

3接地技术

电子设备结构设计的电磁兼容,还会充分运用到接地技术,接地,并不是字面上理解的与土地地面相连,而是为电源和信号提供回路和基准电位。接地技术的使用有一定规则和标准,而不是随意的。接地技术的使用必须保证接地的安全性,电子设备所使用的金属质地的外壳一定要与地面相接,这是充分保障生命财产安全的重要举措,还能够确保电子设备的有效性和稳定性,保障电子电路的正常运行,杜绝静电损坏等不良情况的出现。接地技术的使用还包括工作接地,工作接地这种方式相信大家都不陌生,主要指的是单板,母板或系统之间信号的等电位参考点或参考平面,这些参考点或参考平台相当于信号回流的安全性通道,原则上认为这个通道的阻抗性是极低的。在使用接地技术的时候,一定要保证工作接地的正常,因为他的好坏直接影响整体的信号质量。因此电子设备结构设计中,熟练掌握工作接地的方法极为必要,不仅能够最大限度地减少电路间的电磁干扰,而且确保了电子设备的电磁兼容,提高了电磁兼容的可能性和稳定性。以下将简单接受接地的主要目的。电子设备接地技术的目的很明晰,就是为了最大程度上减少甚至避免电路之间的彼此干扰。通常我们提到的接地技术的目的有以下三个:

(1)接地技术的使用能够使整个电路系统中的单元电路有一个公共的参考零电位,这是保证电路系统稳定工作必要条件。

(2)接地技术能够有效防止外界电磁场产生的不良干扰。为了避免电荷形成的高压引起电子设备内部起火放电产生不良干扰,可以选用机壳接地,这样可以使大量电荷得以释放,这些积累在机壳上的大量电荷的排放可以减少电磁干扰,保证电子设备的正常运行。此外,要想获得较好的屏蔽效果,还需要根据线路对屏蔽物体进行挑选,并为其选择合适的接地,这样才能保证电子设备的有效运行。

(3)接地技术能够有效保证工作的安全性,如果发生直接雷电的电磁感应,可以有效保护电子设备,避免电子设备的意外毁坏;如果工频交流电源的输入电压由于绝缘不良的原因与机壳直接相通的时候,可以有效保护操作人员的人身安全,以免发生触电事故。因此,接地技术也是有效防止电磁干扰的重要方法,正确使用将会大大减少电子设备使用后的故障发生频率,保证电子设备的正常运行,促进电子行业的发展。

电子设备结构设计篇3

结构设计是为了满足电子产品的各项功能和电性能,使设备在各种既定环境下都能正常工作所进行的设计。它可以把产品的外观直接展现出来,在一定程度上决定了产品的可靠性、寿命及性价比。好的设计应合理满足整机的性能要求,在市场上具有竞争力。产品的工艺性能直接影响到产品性能和战术技术指标的实现。工艺设计的最高原则是以最少的社会劳动消耗创造出最大的物质财富,这个原则也是企业赖以生存和发展的基础。无论哪类电子设备的设计都离不开结构,整机结构设计水平的高低和工艺技术的好坏对于产品质量至关重要。电子设备的故障或失效大都可归结为设计上没有想到或没意识到某些细节或约束,一些通用设计的技术、准则、理念和方法必须被予以重视并深入贯彻到产品研发中去。

1某系统电子设备结构设计

1.1概述

某系统主要由多路耦合器、终端机和信号分配器组成,采用19英寸标准机柜上架安装方式。各设备遵循标准化、系列化、通用化设计原则,颜色、标识、铭牌、把手和接口连接器选择均符合系统设计规范要求。根据研制方案确定电气功能、性能及使用环境要求,经研究分析整机结构形式和尺寸约束后,初步进行元器件布局、布线和组装设计,合理选用材料、涂镀、加工手段,采用通用件和标准件,简化制造工艺,积极运用成熟技术。后通过软件进行三维实体建模、装配仿真、应力应变分析、热流分析,进一步优化零部件结构。

1.2多路耦合器机

箱箱体及内部隔板全选用铝合金板,铣削成型,并通过相互搭接、螺钉拧紧固定。选用铝合金板,是因其具有重量轻、加工定位准确、易开沟槽安装固定屏蔽材料、装配拆卸简便、外形美观等优点。多路耦合器采用模块化设计理念,将防雷电路、放大电路和功率分配电路分别安装在铝合金板铣削成型的屏蔽盒内,构成单独的防雷模块、放大模块和功率分配模块。为便于器件散热,将散热器紧贴机箱左侧板,电源模块紧贴机箱右侧板,放大模块和功率分配模块固定在散热器上,并分别在安装贴合面涂敷导热硅脂。由于电源模块较重,为满足冲击、振动试验要求,设计固定架使其一侧与底板连接,另一侧包住电源与右侧板。防雷模块安装在前隔板预设位置,并与中隔板和后隔板一起组成隔板部件,组装时将其整体插入机箱。各模块用隔板隔开,分别安装在3个相对封闭独立的隔段内,尽可能避免电源与模块、模块与模块间的电磁互扰。多路耦合器结构形式如图1所示。

1.2.1终端机

箱体是机箱结构的主体部分,是设备功能模块的安装载体,也是机箱结构的集中受力体。根据安装器件的尺寸、重量和位置,同时考虑振动、冲击对结构强度的影响,参考压铆螺钉、压铆螺母柱的铆接装配要求,核算确定各面板材料及厚度。终端机结构形式如图2所示。终端机由16个解调模块组成,外部线缆通过航空插座进入机箱并通过双绞塑胶线与母板欧式插座连接。由于结构尺寸的限制,一个航空插座需通过8路音频信号或8路串口数据,为避免设备内部多路信号互相串扰,走线及母板设计尽量将多路同类信号线分开。另外所有解调板都安装了背板进行电磁屏蔽隔离、安全防护和固定,以提高电气连接的可靠性。导轨支撑部件由托板、导轨和连接条构成,主要起约束解调模块自由度的作用,模块的插拔、固定简单方便。终端机前面板左、右两侧各开设一个进风口,出风口安在后面板中部,风扇装在机箱外侧向外抽风。由于风扇转动把箱内的热空气强制抽出,使机箱内产生负压,吸引机箱外的冷空气由进风孔口进入,从而形成空气交换。为避免导轨支撑部件阻挡、妨碍空气在箱内流通,导轨上设计有导风孔,冷空气经导风孔流过带走解调模块散发的热量。其基本任务是在热源至热沉之间设计一条低热阻的通道,保证热量迅速传递出去,以便满足可靠性要求[1]。另一方面,设计导风孔还起到减轻设备重量的作用。兼顾电磁屏蔽和良好通风的双重要求,通风开口处分别安装了屏蔽通风窗,为进一步提高屏蔽效果,屏蔽通风窗与箱体固定贴合面还粘结橡胶密封丝网组合衬垫。终端机风道设计如图3所示。

1.2.2信号分配器

以前设计的机箱大多采用零部件搭接、螺钉拧紧固定的结构形式,为满足强度和电磁兼容性要求,完成箱体组装往往要使用很多螺钉,这使得设备拆卸、装配十分繁琐,维修性不好。为解决此问题,信号分配器设计采用插装结构形式,如图4所示。根据装配顺序将底板插入前面板、后面板、左侧板和右侧板底部对应的沟槽,推动左、右侧板使其与前、后面板互相卡住,然后用螺钉进行固定。把隔板插入箱内使其与底板和后面板配合,分别将滤波器、电源模块和主板模块安装在隔板分开的两个封闭隔段内,尽可能避免电源对主板模块的电磁骚扰。将盖板榫齿插入前面板顶部后面的沟槽中,往前推动盖板使其后端向下插入左、右侧板卡槽,用螺钉将盖板与箱体固定。信号分配器全部零部件共计12个,结构简单,组装方便。

2某系统电子设备工艺设计

2.1概述

某系统电子设备环境适应性要求比较苛刻,设计人员不仅要将“六性”设计理念融入、贯彻到研发工作中去,还需清楚产品的工艺流程。电子设备环境适应性主要取决于所选材料、构件、元器件的耐环境能力和结构设计、工艺设计采取的耐环境措施是否合理和有效[2]。装联工人应积极主动地提出合理化建议,配合工艺人员共同完善产品设计,这样才能使设备满足低温、高温、湿热、盐雾、霉菌、振动、冲击、颠震等环境试验要求。装配、组装质量不仅影响设备外观,而且影响系统的性能,可以说系统的质量直接体现在焊接和组装上。应合理安排装配顺序,注意前后工序的衔接,连接应牢固可靠,安装方向、位置要正确,不损伤设备单元和零部件,不损伤面板等机壳表面涂覆层,确保电性能稳定和机械强度足够。

2.2通用工艺技术

根据各种材料在实际应用中的表现,内部设计规范应明确禁止使用预镀锌钢板。以前钣金件多采用冷轧钢板,加工后进行镀锌工艺处理,但其防护能力还是偏弱,长时间使用时会产生锈斑腐蚀,相关零件要求全部换成奥氏体不绣钢,新产品设计不再使用冷轧钢板。除钝化处理外,奥氏体不绣钢零件可不再做其他表面处理。电磁兼容设计应采取主动预防、整体规划、“对抗”与“疏导”相结合的方针[3]。某系统电子设备的箱体材料全部选用铝合金板材,机加工后进行导电氧化处理,使机箱内表面形成理论上连续的导电面。箱体搭接缝隙处全部安装橡胶芯金属丝网屏蔽条,这种屏蔽条既有很好的弹性,又抗永久压缩形变,在潮湿及盐雾环境中具有很强的抗电化学腐蚀性能。由于屏蔽条有弹塑性,按设计尺寸截取时不要用力拉伸,可先从一端塞入沟槽并顺着按压到另一端再截取,剪切屏蔽条时应使其端头的橡胶芯微缩在丝网内,切忌安装后屏蔽条端头的橡胶芯露出金属丝网很长。在设备通风开口处安装屏蔽通风窗,利用截止波导原理解决通风和屏蔽这对矛盾。具体设计可参考GJB1046-1990《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》(6.2.2.3截止波导通风孔)。电源线穿过箱体会使机箱整体屏蔽效能降低,为提高设备电磁兼容性,电源输入接口采用将航空插座与电源滤波器做成一体的结构形式。在滤波器与后面板安装固定面粘接扭角铍铜簧片或导电衬垫,使壳体和机箱贴合并保证接触良好,输入输出线不能靠得太近,引线尽量短且不能交叉,电源线不要与其他电缆捆绑走线。电源输入接口旁边就近设计安装安全的螺栓,并将电源线安全地连接。带有螺纹连接、压合、搭接、铆接、点焊、单面焊接等组合件,原则上不允许进行电化学处理,不同金属材料组合在一起的部件不能进行溶液处理,这些组合件应尽可能采用涂漆,或分别进行电化学处理后再组装。所有电化学处理都应在零件状态(即非组合件)下进行。钢铁件在喷涂前应进行磷化处理,铝件喷涂前应进行氧化处理(铸铝合金可采用喷砂处理),以增加涂层附着力。体积和质量较大的模块、晶振、线圈可用硅橡胶封装或加固管脚。尽量降低元器件的安装高度,缩短其管脚引线。导线穿过金属孔或靠近金属零部件时需用绝缘套管将导线套住,线束的安装和支撑应当牢固,以免使用期间绝缘材料因磨损而短路。电路GND通过金属化螺钉以及对应的阻焊亮铜带和结构件良好搭接,对应的结构件不作喷漆处理。使用不锈钢错齿弹垫、棘爪弹垫、止退螺母等紧固件防止装配松动。

3结语

随着社会发展及加工技术的进步,产品的结构形式有了很大变化,从单机到系统,从最初主要使用型材、钣金结构发展到数控铣削成型的零件实现形式,精密加工技术已开始影响电子设备的设计和生产。电子设备的结构及工艺设计是项目研制过程的重要组成部分,直接影响到产品的可靠性、稳定性和品质指标,并不仅是为硬件平台做个外壳那样简单,需考虑多方面的约束因素以选择最合理最可靠的设计技术。综合某系统装备介绍,可了解电子设备的结构形式及设计方法和在工程实际应用时采取的具体措施,对其他电子产品的结构及工艺设计具有一定的指导意义。某系统电子设备装配拆卸简单,生产维护方便,具备较高的标准化、系列化、通用化程度,符合国家标准有关要求。系统通过公司内部功能、性能测试和第三方电磁兼容试验、环境试验、信道试验验证,所有设备均满足研制方案要求。

作者:彭辉 单位:

参考文献

电子设备结构设计篇4

中图分类号:TN02 文献标识码:A 文章编号:1674-098X(2017)02(c)-0071-03

结构设计是为了满足电子产品的各项功能和电性能,使设备在各种既定环境下都能正常工作所进行的设计。它可以把产品的外观直接展现出来,在一定程度上决定了产品的可靠性、寿命及性价比。好的设计应合理满足整机的性能要求,在市场上具有竞争力。

产品的工艺性能直接影响到产品性能和战术技术指标的实现。工艺设计的最高原则是以最少的社会劳动消耗创造出最大的物质财富,这个原则也是企业赖以生存和发展的基础。

无论哪类电子设备的设计都离不开结构,整机结构设计水平的高低和工艺技术的好坏对于产品质量至关重要。电子设备的故障或失效大都可归结为设计上没有想到或没意识到某些细节或约束,一些通用设计的技术、准则、理念和方法必须被予以重视并深入贯彻到产品研发中去。

1 某系统电子设备结构设计

1.1 概述

某系统主要由多路耦合器、终端机和信号分配器组成,采用19英寸标准机柜上架安装方式。各设备遵循标准化、系列化、通用化设计原则,颜色、标识、铭牌、把手和接口连接器选择均符合系统设计规范要求。

根据研制方案确定电气功能、性能及使用环境要求,经研究分析整机结构形式和尺寸约束后,初步进行元器件布局、布线和组装设计,合理选用材料、涂镀、加工手段,采用通用件和标准件,简化制造工艺,积极运用成熟技术。后通过软件进行三维实体建模、装配仿真、应力应变分析、热流分析,进一步优化零部件结构。

1.2 多路耦合器

机箱箱体及内部隔板全选用铝合金板,铣削成型,并通过相互搭接、螺钉拧紧固定。选用铝合金板,是因其具有重量轻、加工定位准确、易开沟槽安装固定屏蔽材料、装配拆卸简便、外形美观等优点。

多路耦合器采用模块化设计理念,将防雷电路、放大电路和功率分配电路分别安装在铝合金板铣削成型的屏蔽盒内,构成单独的防雷模块、放大模块和功率分配模块。为便于器件散热,将散热器紧贴机箱左侧板,电源模块紧贴机箱右侧板,放大模块和功率分配模块固定在散热器上,并分别在安装贴合面涂敷导热硅脂。由于电源模块较重,为满足冲击、振动试验要求,设计固定架使其一侧与底板连接,另一侧包住电源与右侧板。防雷模块安装在前隔板预设位置,并与中隔板和后隔板一起组成隔板部件,组装时将其整体插入机箱。各模块用隔板隔开,分别安装在3个相对封闭独立的隔段内,尽可能避免电源与模块、模块与模块间的电磁互扰。多路耦合器结构形式如图1所示。

1.2.1 终端机

箱体是机箱结构的主体部分,是设备功能模块的安装载体,也是机箱结构的集中受力体。根据安装器件的尺寸、重量和位置,同时考虑振动、冲击对结构强度的影响,参考压铆螺钉、压铆螺母柱的铆接装配要求,核算确定各面板材料及厚度。终端机结构形式如图2所示。

终端机由16个解调模块组成,外部线缆通过航空插座进入机箱并通过双绞塑胶线与母板欧式插座连接。由于结构尺寸的限制,一个航空插座需通过8路音频信号或8路串口数据,为避免设备内部多路信号互相串扰,走线及母板设计尽量将多路同类信号线分开。另外所有解调板都安装了背板进行电磁屏蔽隔离、安全防护和固定,以提高电气连接的可靠性。

导轨支撑部件由托板、导轨和连接条构成,主要起约束解调模块自由度的作用,模块的插拔、固定简单方便。

终端机前面板左、右两侧各开设一个进风口,出风口安在后面板中部,风扇装在机箱外侧向外抽风。由于风扇转动把箱内的热空气强制抽出,使机箱内产生负压,吸引机箱外的冷空气由进风孔口进入,从而形成空气交换。为避免导轨支撑部件阻挡、妨碍空气在箱内流通,导轨上设计有导风孔,冷空气经导风孔流过带走解调模块散发的热量。其基本任帐窃谌仍粗寥瘸林间设计一条低热阻的通道,保证热量迅速传递出去,以便满足可靠性要求[1]。另一方面,设计导风孔还起到减轻设备重量的作用。兼顾电磁屏蔽和良好通风的双重要求,通风开口处分别安装了屏蔽通风窗,为进一步提高屏蔽效果,屏蔽通风窗与箱体固定贴合面还粘结橡胶密封丝网组合衬垫。终端机风道设计如图3所示。

1.2.2 信号分配器

以前设计的机箱大多采用零部件搭接、螺钉拧紧固定的结构形式,为满足强度和电磁兼容性要求,完成箱体组装往往要使用很多螺钉,这使得设备拆卸、装配十分繁琐,维修性不好。为解决此问题,信号分配器设计采用插装结构形式,如图4所示。

根据装配顺序将底板插入前面板、后面板、左侧板和右侧板底部对应的沟槽,推动左、右侧板使其与前、后面板互相卡住,然后用螺钉进行固定。把隔板插入箱内使其与底板和后面板配合,分别将滤波器、电源模块和主板模块安装在隔板分开的两个封闭隔段内,尽可能避免电源对主板模块的电磁骚扰。将盖板榫齿插入前面板顶部后面的沟槽中,往前推动盖板使其后端向下插入左、右侧板卡槽,用螺钉将盖板与箱体固定。信号分配器全部零部件共计12个,结构简单,组装方便。

2 某系统电子设备工艺设计

2.1 概述

某系统电子设备环境适应性要求比较苛刻,设计人员不仅要将“六性”设计理念融入、贯彻到研发工作中去,还需清楚产品的工艺流程。电子设备环境适应性主要取决于所选材料、构件、元器件的耐环境能力和结构设计、工艺设计采取的耐环境措施是否合理和有效[2]。装联工人应积极主动地提出合理化建议,配合工艺人员共同完善产品设计,这样才能使设备满足低温、高温、湿热、盐雾、霉菌、振动、冲击、颠震等环境试验要求。

装配、组装质量不仅影响设备外观,而且影响系统的性能,可以说系统的质量直接体现在焊接和组装上。应合理安排装配顺序,注意前后工序的衔接,连接应牢固可靠,安装方向、位置要正确,不损伤设备单元和零部件,不损伤面板等机壳表面涂覆层,确保电性能稳定和机械强度足够。

2.2 通用工艺技术

根据各种材料在实际应用中的表现,内部设计规范应明确禁止使用预镀锌钢板。以前钣金件多采用冷轧钢板,加工后进行镀锌工艺处理,但其防护能力还是偏弱,长时间使用时会产生锈斑腐蚀,相关零件要求全部换成奥氏体不绣钢,新产品设计不再使用冷轧钢板。除钝化处理外,奥氏体不绣钢零件可不再做其他表面处理。

电磁兼容设计应采取主动预防、整体规划、“对抗”与“疏导”相结合的方针[3]。某系统电子设备的箱体材料全部选用铝合金板材,机加工后进行导电氧化处理,使机箱内表面形成理论上连续的导电面。

箱体搭接缝隙处全部安装橡胶芯金属丝网屏蔽条,这种屏蔽条既有很好的弹性,又抗永久压缩形变,在潮湿及盐雾环境中具有很强的抗电化学腐蚀性能。由于屏蔽条有弹塑性,按设计尺寸截取时不要用力拉伸,可先从一端塞入沟槽并顺着按压到另一端再截取,剪切屏蔽条时应使其端头的橡胶芯微缩在丝网内,切忌安装后屏蔽条端头的橡胶芯露出金属丝网很长。

在设备通风开口处安装屏蔽通风窗,利用截止波导原理解决通风和屏蔽这对矛盾。具体设计可参考GJB 1046-1990《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》(6.2.2.3截止波导通风孔)。

电源线穿过箱体会使机箱整体屏蔽效能降低,为提高设备电磁兼容性,电源输入接口采用将航空插座与电源滤波器做成一体的结构形式。在滤波器与后面板安装固定面粘接扭角铍铜簧片或导电衬垫,使壳体和机箱贴合并保证接触良好,输入输出线不能靠得太近,引线尽量短且不能交叉,电源线不要与其他电缆捆绑走线。电源输入接口旁边就近设计安装安全的螺栓,并将电源线安全地连接。

带有螺纹连接、压合、搭接、铆接、点焊、单面焊接等组合件,原则上不允许进行电化学处理,不同金属材料组合在一起的部件不能进行溶液处理,这些组合件应尽可能采用涂漆,或分别进行电化学处理后再组装。所有电化学处理都应在零件状态(即非组合件)下进行。

钢铁件在喷涂前应进行磷化处理,铝件喷涂前应进行氧化处理(铸铝合金可采用喷砂处理),以增加涂层附着力。

体积和质量较大的模块、晶振、线圈可用硅橡胶封装或加固管脚。尽量降低元器件的安装高度,缩短其管脚引线。导线穿过金属孔或靠近金属零部件时需用绝缘套管将导线套住,线束的安装和支撑应当牢固,以免使用期间绝缘材料因磨损而短路。电路GND通过金属化螺钉以及对应的阻焊亮铜带和结构件良好搭接,对应的结构件不作喷漆处理。使用不锈钢错齿弹垫、棘爪弹垫、止退螺母等紧固件防止装配松动。

3 结语

随着社会发展及加工技术的进步,产品的结构形式有了很大变化,从单机到系统,从最初主要使用型材、钣金结构发展到数控铣削成型的零件实现形式,精密加工技术已开始影响电子设备的设计和生产。

电子设备的结构及工艺设计是项目研制过程的重要组成部分,直接影响到产品的可靠性、稳定性和品质指标,并不仅是为硬件平台做个外壳那样简单,需考虑多方面的约束因素以选择最合理最可靠的设计技术。综合某系统装备介绍,可了解电子设备的结构形式及设计方法和在工程实际应用时采取的具体措施,对其他电子产品的结构及工艺设计具有一定的指导意义。

某系统电子设备装配拆卸简单,生产维护方便,具备较高的标准化、系列化、通用化程度,符合国家标准有关要求。系统通过公司内部功能、性能测试和第三方电磁兼容试验、环境试验、信道试验验证,所有设备均满足研制方案要求。

⒖嘉南

电子设备结构设计篇5

关键词:高原型,结构设计

Abstract:Our country is a plateau, mountainous country, China's main plateau of loess plateau, eastern yunnan-guizhou plateau, the qinghai-tibet plateau. Because each plateau geographical latitude, the ground is not the same as the nature of the different, climate also have a difference. In our plateau has advantaged wind, light resources, to clean the use of renewable energy has very good natural conditions. Therefore, in recent years, with a number of wind power projects, the wind, and photovoltaic project-light-store project into the plateau, renewable energy projects in the highlands of new construction speed up, in the future will be in China's plateau form "plateau of the wind", "plateau optical valley" the unique scenery.

Keywords: plateau type, the structure design

中图分类号:S611文献标识码:A 文章编号:

引言:

由于高原运行环境与普通低海拔环境有很大差异,作为产品结构设计人员需要针对高原的环境特点进行特殊的结构处理来满足设备在高原环境的安全可靠运行。本文结合我公司的风、光变流器变器以及SVG设备等产品的在高原环境下的应用情况分析高原型电力电子设备结构设计要点。首先介绍了高压环境的主要特点;接着针对高原环境特点对设备的性能影响分析;根据高原环境对设备性能影响的分析从结构设计方面提出具有的解决办法,其中结构设计也主要考虑从散热、绝缘、凝露以及机械结构件及材料的设计考虑等方面处理。

(一)高原气候特点:

高原具有较恶劣的自然气候条件,对电力电子的设备性能影响较大,高原气候的主要特点有:

(1)空气压力或空气密度低;

(2)空气温度较低,变化较大;

(3)空气绝对湿度较小;

(4)雷暴日多;

(5)太阳幅射照度(紫外线)较高;

(6)降水量较少;

(7)年大风日多;

(8)土壤温度较低,且冻结期长。

以上特点是行业内针对高原气候形成的普遍共识,但我国的高原地区分布较广,各高原地区的气候也存在差异。其中尤其以西南地区的云贵高原气候存在一定的特殊性。云贵地区河流众多,地形复杂,山谷间的水汽不易发散,在清晨和傍晚经常起雾。在相对湿度接近饱和的情况下,昼夜温差将造成严重的凝露。而且,云贵高原的高湿季节持续时间较长。因此,设备在高原气候应用必须考虑各高原地区的气候差异。

(二)高原气候条件对电力电子设备性能的影响:

 空气压力或空气密度对性能的影响:

气压低 电气间隙的击穿电压降低绝缘强度降低

空气稀薄风流量减小相对散热能力减弱

 空气温度较低及温度变化对性能的影响:

温度低冻结器件寿命受影响

温度变化大凝露爬电

 空气湿度对性能的影响:

湿度小电气间隙的击穿电压降低绝缘强度降低

湿度大积水爬电

 太阳幅射照度(紫外线)较高对性能的影响:

紫外线高破坏功率器件的空间电荷区电场器件失效

紫外线高有机保护材料老化绝缘强度降低

(三)高原型电力电子设备的结构设计要点:

1. 高原型电力电子设备绝缘的设计:

空气压力或空气密度的降低,引起外绝缘强度的降低。在海拔至5000m范围内,每升高1000m,即平均气压每降低7.7~10.5kPa,外绝缘强度降低8%~13%.根据安规(如IEC60664-1)对绝缘的相关规定:由系统电压、过压等级和绝缘等级确定所需电气间隙距离,并按海拔高度进行修正。

电气间隙修正系数

15 000 12.00 6.67

平均绝对湿度随海拔升高而降低。绝对湿度降低时,电工产品的外绝缘强度降低,因此要考虑工频放电电压与冲击闪络电压的湿度修正。湿度修正以零海拔时的平均绝对湿度:11g/m3为基准,具体修正按GB311.2中有关规定。

我司的高原型设备严格执行安规审查,按照海拔4000m考核电气间隙与爬电距离,保证足够的电气间隙与爬电距离。

其中结构布置时分项审查主要有:

单板:PCB改板,加大电气间隙

主功率回路:增加绝缘防护

隔离带:一次回路与二次回路隔离,确保电气间隙符合要求,如设置变压器隔离、UPS隔离等

配电器件:更换部分器件,如用高原型断路器替换普通型断路器。所有配电器件逐一分类审查:开关类、接触器类等。

同时结构件设计时候优化导电体形状,加大电气间隙与爬电距离。严格按照标准测试验证,测试电压5000Vdc/1min,漏电流

2. 高原型电力电子设备散热设计:

空气压力或空气密度的降低引起空气介质冷却效应的降低。对于以自然对流、强迫通风或空气散热器为主要散热方式的电工产品,由于散热能力的下降,温升增加。在海拔至5000m范围内,每升高1000m,即平均气压每降低7.7~10.5kPa,温升增加3%~10%.

空气温度最高值与平均值随海拔的升高而降低。高原环境空气温度的降低可以部分或全部补偿因气压降低而引起的电气设备温升的增加。环境空气温度补偿值为 0.5K/100m。

高原环境对采用空气冷却方式的电力电子设备的散热有利也有弊,所以散热结构设计时候要综合考虑双方面的影响。设计要点:保证良好的风道设计;高可靠性的器件选择;合适的散热风机选择;合理的器件布局;增加柜内扰流措施。

3. 高原型电力电子设备凝露处理的设计:

高原环境温差变化大容易产生凝露现象,我司主要通过以下方式来解决凝露问题

 加热除湿

通过加热除湿装置使柜内温度高于环境温度,实时检测柜内温度湿度,严格控制湿度小于85%。

 增大爬电距离

在易发生爬电的位置增加安全栅格。

 将可能的放电点密封

密封放电点,使之与外部完全隔离。

 柜内扰流

增加扰流装置,使凝露不易发生。

 三防处理

对单板喷涂三防漆。

4. 高原型电力电子设备机械结构件及材料的设计考虑:-

对于器件内部机械传动件,如操作手车、脱扣器等要考虑高原温度变化大而造成材料变形对公差的影响,这些在设计对应器件时要加以考虑;

绝缘材料的选择,应尽量选用受温差变化不大和防老化程度高的绝缘材料(如DMC或SMS模塑料等),在保证高强度的同时,变形量和老化程度较小,适应其对绝缘配合要求较高的地方。

参考文献

[1] JB/T7573-94《高原环境条件下电力电子产品通用技术条件》

[2] 安规IEC60664-1

电子设备结构设计篇6

近些年,生物实验室发生很大改变,相关部门对重点实验室的建设于管理也投入更多资金。为进一步提升科研工作质量,很多单位陆续购置了高端、昂贵的电子设备,若不能规范应用这些设备或管理能力不足,则将会削弱其效能。在实验室内,通常是集中布设电子设备,鉴于此,可以采用无线通信技术自动化管理这些设备,本课题规划设计了一个电子设备控制与管理系统[1]。本系统使用了射频识别技术,整合低频与高频两个时段,将电子标签设定为管控信息的载体,视线对生物实验室的管理,视线节约开资、管理便捷化等目标。

1 系统技术

1.1C++语言

从宏观层面上分析,C++为C的超集,也可以将C看成是C++的子集,这主要是C在出现时间方面占据优势。依照常规而言,C++编译器能精确的编译任何类型的C程序,但C++和C之间还是存在一定差异。比如,C++增设了C不具备的关键词;C++内new与delete为配置内存的运算符;C++内有try/catch/throw异常处理机制。

1.2RFID

射频识别技术(RFID)为一种自动识别技术,其基于无线射频形式完成非接触式的双向数据通信,辨识目标对象并捕获相关信息,电子标签为RFID。RFID在读取电子标签中存有的信息前期,需将无线电波发射给读写器,借此方式精确二全面的辨识电子标签内的物件、人的身份信息等。

1.3B/S结构

B/S结构中文即浏览器和服务器结构。其是整改C/S结构后而形成的一种结构。利用改结构开发软件能视线一次到位,相关人员可以冲破时间、地点的约束性,随时采用Internet/Intranet、LAN等介入形式访问系统,操作数据库,且改结构还能较好的管理访问权限与数据平台,维护数据库运作的安全性[2]。

1.4SQLServer数据库

SQLServer具有B/S体系结构,于服务器于客户机间采用SQL语言传送服务器处理的结果于客户机发出的请求。

2 系统设计

2.1 系统架构

该系统共包括电子设备监控、控制管理、管理与历史记录管理模块。整体架构图见图1 所示[3]。

2.2 系统各模块的设计

2.2.1 设备监控模块该模块是监控系统内各电子设备的一类模块,其内囊括了监视数据、设备信息监视、状态监视及质量监视子模块,其中设备监视数据子模块其它三个子模块功能实现的依托。DInfo类为电子设备的信息类,录入着电子设备的基本信息,包括产品名称、编号、购置日期、售价、所属类别等;Status类对应的是设备状态类,功能一记录设备运行状态为主,若电子设备运行时出现错差,则其将会快速记录错差的位置、成因及时间;Quality类为设备的质量类,记录着质量信息,针对设备质量设定一个标准函数;Monitork类是设备的监视类,设定的监视数据函数为setMonitor,负责监视功能函数monitor[4]。2.2.2 设备控制管理模块改模块包括操作控制、质控管理及操控与质控定制子模块。该系统主要利用RFID技术设计控制模块,该类技术的运作原理复杂度不是很高,在标签被整合至磁场后,捕获解读器发射出的射频信号,利用感应电流捕获的能量传送出存储于芯片内的产品信息,或为标签主动传送出的送某一频率的信号,解读器捕获信息并解锁密码后,将其传送到中央信息系统内处理相关数据信息。RFID系统的基本工作流程可以做出如下阐述:首先,利用发射天线把读写器设定数据对应的无线电载波信号发射至外部;当RFID标签被整合至发射天线的作业区时,标签被激活后快速传送自身信息代码。2.2.3 设备管理模块其是管理电子设备基础信息的模块,研究类以设备信息类DInfo类为主,记载着设备的基本信息,操控DInfo类的有add、delete、scan与分别对应增添、删除、查找与整改设备。2.2.4 历史记录管理模块该模块主要包括三个类,一是日志类Log,其功能主要是录入系统日志,LDescription、showLDescription函数的功能分别是录入、呈现日志内容,为管理人员查阅创造便利条件;二是警告类AlertoAlert类,measure、alert是主要的函数类别,对应的功能分别是测评警告级别、告警;三是历史操作记录Record类,RDescription、showRDescription函数功能分别是记录、呈现设备的既往操作情况。

2.3 设计数据库

通过专研既往系统设计情况,发现数据库是否能成功设计关系系统设计成败。本管理与控制系统在设计过程中,导入了模块化理念,科学整合不同模块是系统功能正常发挥的重要保障。操作各个模块,其是也是操作数据,故而系统在设计过程中,应把数据库设计安放于首要位置,给予访问数据高效性、降低冗余度、提升系统运转速度等因素较高重视。SQLServer2008 能高效率的组织各类型数据,可以直接把结构化与非结构化文档数据存储于数据库内,查找、检索、同步、汇报于分析数据。可以将数据存储于任何类型的设备上,无需考虑数据具体存储的方位。一是提升数据关系的设计水平。结合本系统的现实运作需求,数据库为运用过程提供服务,满足系统的业务运作需求是数据库设计应达到的第一条标准要求,精确的阐述不同数据之间的关联性。利用合理表结构,布置物理存储区、增设引索等形式,促进数据信息快速读取过程,最大限度的提升查找速率,具备良好的拓展性,在特殊情景下结合需求拓展数据结构。因被系统内各实体的属性偏多,故而未能整体呈现出全部的E-R图,图2 呈现出部分实体的E-R图。二是设计数据表,表1 为电子设备的信息表。

3 系统整体实现

设备控制与管理系统应用的上位机语言类型为C++语言,基于MyEclipse下完成编译,采用了B/S结构,大批量应用了MFC类库,SQLServer2008 作为数据库,该类数据库有益于提升系统内存储数据信息的安全性与高效性。本系统选用了RFID技术,该技术能透过所有障碍物完成射频识别,能更为便捷的调控电子设备,从根本上维护系统常态化运作过程。本系统的整体结构图见图3 所示。该系统的一些基础设施有软件设备、硬件设备、有关操作系统及SQLServe:数据库等等,其能为系统正常运行提供基础支撑。在具体研发设计阶段,应考虑系统在现实工作的提出的具体需求,把其细化为四大功能模块,即电子设备监控、控制管理、管理与历史记录管理模块。

4 结束语

电子设备控制与管理系统的设计师一个复杂过程,需投入大量人力资源,并且在具体设计阶段,还需结合实验室设备管理的现实需求,探究影响系统运作效率的各种因素,重视不同子模块之间的联系与配合,借此方式促进系统安稳运作过程,进而更科学的配置资源,提升其利用效率,为电子设备安全、高效、规范运作提供强大支撑。

参考文献

[1]武越,常冬林,任晓宇,等.电子设备单机产品正压泄复压试验方法研究[J].真空,2020,57(04):50-53.

电子设备结构设计篇7

摘要:为了改善机载电子设备结构的动态特性,提高其工作可靠性,结合有限元分析软件,对机载电子设备进行模态分析。根据模态分析的基本理论,采用ANSYS Workbench软件建立了机载电子设备的有限元仿真模型,通过对其振动特性进行有限元分析,计算出机载电子设备的固有频率和对应的振型,从而避免其在使用中发生共振现象,为机载电子设备的进一步优化设计提供了有价值的参考,同时可以有效降低机载电子设备设计成本,缩短研发周期。

关键词 :机载电子设备;ANSYS Workbench;有限元;模态分析

中图分类号:TN802?34 文献标识码:A 文章编号:1004?373X(2015)20?0075?03

ANSYS Workbench based modal analysis of airborne electronic equipmentHOU Yanyan1,CAO Keqiang1,NAN Qinbo2,LI Xiaogang1

(1. College of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China;2. Training Division,Air Force Engineering University,Xi’an 710051,China)

Abstract:To improve the dynamic characteristics of the airborne electronic equipment structure,and its working reliabili?ty,the modality of airborne electronic equipment is analyzed in combination with the finite element analysis software. Accordingto the fundamental theory of modal analysis,the finite element simulation model of airborne electronic equipment was estab?lished by means of ANSYS Workbench software. The inherent frequency and corresponding vibration mode of the airborne elec?tronic equipment are calculated by finite element analysis of the vibration characteristics,and the resonance phenomenon of theequipment in use is avoided,which provides a valuable reference for further optimization design of airborne electronic equip?ment,and can reduce the design cost of airborne electronic equipment effectively and shorten the developing cycle.

Keywords:airborne electronic equipment;ANSYS Workbench;finite element analysis;modal analysis

0 引言

振动现象是机载电子设备在使用中无法避免的问题之一[1?2]。强烈的振动会引起共振而使机载电子设备的电性能下降、元器件失效,甚至会使元器件产生疲劳损坏[3]。为了避免共振的产生,确保机载电子设备能够安全可靠地运行,有必要对机载电子设备进行模态分析,研究其结构振动的固有频率及其相应的振型。计算机仿真技术的快速发展,给模态分析提供了有力的工具。将仿真技术引入机载电子设备的模态分析中不但可以减少物理试验中花费的人力、物力和财力,而且能在结构设计前对其性能进行定量预测及方案优化,降低成本,缩短电子设备研发周期。美国ANSYS公司开发的大型有限元分析软件ANSYS,集结构、流体、电场、磁场、声场分析于一体[4],包括ANSYS Workbench,ANSYS Mechanical,ANSYS CFD 等多个系列,可广泛应用于航空航天、电子、机械制造、汽车工业、石油化工等工业领域以及科学研究中。本文通过ANSYS Work?bench 软件对机载电子设备进行有限元建模和模态分析,找到其固有频率和对应的振型,为机载电子设备的进一步优化设计提供有价值的参考,同时,模态分析结果也为后续随机振动分析提供理论基础。

1 模态分析理论基础

模态分析是动力学分析的基础,它的最终目标是识别出系统的模态参数,即模型的固有频率和固有振型,从而为结构系统振动特性分析、振动故障诊断以及结构动力特性的优化设计提供依据[5]。对于一个n 自由度线性定常系统,其基本振动方程为:

位移向量;f (t) 为激励向量。

结构的固有模态由结构本身的特性、材料特性所决定,与外载荷无关;进行模态分析时,结构阻尼较小,对固有频率和振型影响甚微,可忽略。因此可以将式(1)简化为无阻尼自由振动方程,即:

展开式(6)可得到关于λ 的n 次多项式方程,解此方程可得到一系列特征值λi ,以及各特征值对应的特征向量?i ,它反映结构以ωi 固有频率振动时的振型。由于机载电子设备结构比较复杂,对其建立整体数学模型解析模态很难实现,因此利用有限元分析软件进行求解。

2 有限元模型的建立

2.1 CAD三维模型的简化与导入

在不影响设备结构特性的前提下,按照简化原则,对CAD 三维模型进行简化,并将其导入到ANSYSWorkbench 软件中,导入的CAD 三维模型如图1 所示。它由前面板、后面板、壳体、内部电路板1和电路板2组成,其中前面板包括一些开关和显示屏;后面板包括电源变换器、滤波器、电连接器等;壳体包含壳体和支架;电路板1包括PCB板和37个元器件;电路板2包括PCB板和40个元器件。

2.2 材料设置

导入CAD 三维模型后,查找机载电子设备的各部件材料信息,对所有材料结构进行设定,主要部件材料设置如表1所示。

2.3 网格划分

材料属性设置好后,对机载电子设备进行网格划分,采用了扫掠、单元大小控制及多区域划分法,分别对前面板、后面板、壳体、内部电路板1和内部电路板2进行网格划分,以保证网格质量能够满足要求。最终计算得到59 840个节点,22 381个单元,划分网格后得到有限元模型如图2所示。

3 模态分析

正常结构的固有频率有无数多个,并且随着阶数而递增,且阶数越低的固有频率越接近于实际结构[6?7]。因此选择前6阶的固有频率和振型作为研究对象对机载电子设备进行分析。

3.1 模态计算

利用ANSYS Workbench软件进行机载电子设备模态求解,由于壳体振型非常小,因此将壳体隐藏,得到机载电子设备前6 阶固有频率如表2 所示,振型如图3~图8所示。

3.2 计算结果分析

从图3~图8振型图首先可以明显看出,前面板和后面板第1阶~第6阶的振型都很小,说明前面板和后面板的刚度和强度设计符合要求。

从图3、图4振型图可以看出,在第1、第2阶固有频率下,振型最大的部位分别发生在电路板2和电路板1的中部位置。从图7、图8 振型图可以看出,在第5、第6 阶固有频率下,振型最大的部位分别发生在电路板1 的左边缘和前中部位置。说明电路板在设计时尽量不要在振型最大部位安装重要元器件。

从图5、图6振型图可看出,在第3、第4阶固有频率下,支架、电路板1和电路板2的振型都比较大,说明此时危险系数比较高,所以在使用时尽量避免共振发生。

4 结语

建立了机载电子设备有限元模型,通过仿真分析可得出了如下结论:对机载电子设备进行模态分析,求出机载电子设备前6阶固有频率和振型,为后续随机振动分析提供理论基础;在进行机载电子设备结构设计时,采用有限元仿真分析方法计算其固有频率和振型有利于发现机载电子设备的振动问题,并及时进行优化改进,可缩短机载电子设备研发周期,降低成本;利用振型图和动画显示可直观地分析机载电子设备的动态特性,发现薄弱环节,为机载电子设备的结构设计、优化提供有价值的参考。

参考文献

[1] STEINBERG D S. Vibration analysis for electronic equipment[M]. New Jersey:John Wiley & Sons,2000.

[2] 李朝旭.电子设备的抗干扰设计[J].电子机械工程,2002(1):51?52.

[3] 吴薇.机载电子设备的抗振动设计[J].压电与声光,2008(1):19?21.

[4] 凌桂龙,丁金滨,温正.ANSYS Workbench 13.0[M].北京:清华大学出版社,2012.

[5] 杜子学,朱兴高,胡启国.跨座式单轨车辆转向架构架模态分析[J].机械设计与制造,2011(11):222?223.

[6] 沈永峰,郑松林,冯金芝.公路客车车架与车身骨架强度及模态分析[J].现代制造工程,2013(7):90?95.

[7] 娄心豪,王燕,苗晋玲.某型引信的结构样机与模态分析[J].航空兵器,2013(3):48?51.

电子设备结构设计篇8

1.引言

机载通信电子设备一般为独立设备,是机载电子系统中重要的组成部分。军用设备通常在非常恶劣的环境下服役,工作环境、使用要求和用户要求比其他电子设备更为严苛,因此,其结构设计要求具有特殊性。

为适应现代战争作战要求,机载平台通信系统一直维持高科技化的发展,对军用机载通信电子设备要求越来越高。对于机箱结构设计需要满足多功能、高性能、高可靠性、小型轻量化、通用化、维修快速化等要求。军用通信设备研制周期短,产品变化多,往往是电路设计、结构设计同时并行,多专业同时协调优化设计,以成熟可靠的机箱设计技术为基础,才能实现高效率、高品质的产品设计。

2.设计要求

军用机载通信设备的环境条件是用户根据GJB 150A、GJB 367A或HB 5830系列标准,结合设备的实际使用、运输、贮存环境制定的。

机箱的结构设计,首先应满足工作环境以及技术指标要求:

1)机箱的结构设计方案应简捷,且细节设计到位。零部件加工工艺性良好,机箱具有良好的操作维修性,便于装配、调试、使用、维修。机箱的内部走线工整,牢固。

2)机箱的模块化设计程度高,继承性高。结构设计应尽量采用通用件、标准件。

3)机箱的结构设计方案应充分考虑散热,对于功率放大器件等热耗大的器件,应在方案设计阶段阐明采取的热设计措施。

4)机箱应具有足够的刚强度,能适应搬运和运输过程中的振动环境,机载通信设备在飞机行驶中的振动环境下能正常工作。同时,还应能适应在使用、搬运、装卸和和运输等过程中可能遭受的非重复性冲击。

5)机箱的结构设计应遵循小型化、轻量化要求,采用减重设计。

6)机箱应有电磁兼容性设计。

7)机箱应进行三防设计,保证在气候恶劣的环境下长期服役。

3.机箱结构设计要点

机箱是实现设备技术指标要求的基础,通常也是结构设计的主要对象。通信设备通常为独立的箱壳式机箱,按结构形式可细分为钣金式机箱、铣制机箱、焊接机箱、模块化铝材机箱等。除另有规定外,军用机载电子设备的机箱尺寸其附件应符合GJB 441和GJB 780的规定。

军用机载通信设备通常置机舱内,根据GJB 376A要求,机箱的外观为黑色(无光泽)。设备外观及内部模块都应有标识,名牌安装于设备明显位置,内容清晰、耐久,除非特殊规定,不使用不干胶作为设备名牌。机箱的结构设计应充分考虑“三化”的要求,采用模块化的设计,最大化统一螺纹规格,尽量采用标准件、通用件。机载设备的机箱要求小型化、轻量化设计,结构方案设计阶段需采用减重措施。为满足机箱安全性要求,机箱外观不应有尖锐棱角,外壳的不连续性(盖板、窗口等)应尽可能少,外露器件(接插件等)要有防护措施,前面板安装把手可以在前面板向下放置时能保护面板上的突出器件,外部安装的不连续使用的插座均应装保护罩,前后面板排布要美观合理,设备超过10kg时考虑用双把手,所有紧固件都要有效防松脱,机箱还应有漏电保护措施等。

3.1 钣金结构机箱

钣金结构是军用机载通信设备机箱的常见形式,其结构简洁、规则、对称、重量轻,而且有成本低和便于加工的优点。钣金结构的机箱整体是由折弯零件装配而成,具有良好的刚、强度。结构设计时要注意以下几点:

1)材料选择塑性好的防锈铝,机箱用料厚度一致。

2)折弯内缘半径过小会引起开裂,而过大会产生回弹。应以工艺要求为设计依据,合理设计折弯内径,利用现有的折弯模具加工。

3)考虑钣金零件机械加工的工艺性,如单边折弯高度不宜过小,冲孔落料直接要有安全间距,以及弯边冲孔边距合理等问题。

4)钣金折弯后以弯边为基准的尺寸公差应放至0.3mm较为经济,应合理设计机箱外形、孔位等尺寸的精度,避免公差过高增加不必要的成本。

图1是钣金结构机箱,图2为铣制结构机箱。

3.2 铣制结构机箱

铣制机箱在军用机载通信设备中非常普遍。铣制机箱结构灵活、复杂,突破了其他种类传统机箱的局限性。现代通信设备呈小型化、多功能化、外观时尚化的发展趋势,铣制机箱适应性强,而且机箱铣加工成薄板和加强筋的形式利于增强整体刚度和减重。设计时要注意以下几点:

1)铣制机箱螺纹全部属于紧固连接螺纹,应合理布置紧固处的间距,铝合金强度不够时应采用不锈钢螺套来增强螺纹强度。

2)机箱应避免使用沉头、半沉头螺钉,且必有防松脱措施。

3)机箱的零部件设计,应便于加工和装夹,仅在必要时提高精度。

4)机箱外部的门、板应方便拆卸。装配、维修方便,避免使用特制工具。

3.3 焊接结构机箱

焊接机箱框架牢固且刚、强度高,焊接缝强度高于基材的一半。军用设备工作于恶劣的机械环境中,焊接机箱在抗冲击和振动的性能优越。军用机载通信设备机箱的焊接结构常采用真空钎焊,其他种类的焊接也多有应用。焊接机箱结构设计时要注意以下几点:

1)航空铝合金中3A21、5A06、5A05、6061、6063适用于手弧焊、电子束焊、点焊。在真空钎焊炉加热温度不大于800℃的条件下,只有3A21、6063适合用于钎焊(因为钎焊温度低)。

2)采用铝合金3A21、6063焊缝致密度较好,但应避免垂直焊缝,焊接面的宽度不小于10mm。焊前用不锈钢或与母材同材质的螺钉紧固被焊零件,螺钉间距20-30mm为宜,精度要求高处采用不锈钢圆柱销定位。

3)机箱采用等厚度的板料焊接,不等厚时应设计过渡区以达到等厚。使用手弧焊主要用V型坡口,板厚度不大于3mm可以不设计坡口。

4)焊后加工会削弱焊缝强度,应避免焊后加工。

图3是焊接结构模块化的机箱,图4为模块化结构机箱。

3.4 模块化机箱设计

模块化设计是军用通信设备的显著特点。欧美有SEM-E、ASAAC标准模块规范等,国内也制定了GJB 1422、HB 7091和HB 7092等针对航空机载电子模块的标准。模块化结构设计=通用模块(大量)+专用模块(少量)+模块连接器。结构设计人员只需注重专用的结构形式和接口设计,而不必从头开始,可以有效简化设计程序,缩短研制周期。

通信电子设备常见的模块划分:电源模块、接口及数据处理、终端模块、信道模块、功率放大模块。模块间的电路互联主要有低频、射频,有时会有光纤等模块化结构设计时要注意以下几点:

1)模块的结构设计应是有效的利用空间,尺寸与重量尽量小,一般能够单人手持。

2)模块应是可维修、更换的,并且在正常安装位置或从设备卸下时都能较容易地对其调试测试。模块上应使用快速分离式连接器,分离时不需要使用工具(或只需一般手工工具)。同一模块接插件数量较多时,应考虑到插拔受力。

3)盲插模块需用导向装置和定位销的导向与定位,安装模块时可轻易对准,而且一定要有防插错的措施。盲插模块接插件要有浮动量,对于射频接口浮动量以1.5mm为宜,避免过小或过大。

4)固定模块用的紧固件应容易拆卸,要防止紧固件掉入设备,尽量使用松不脱组合螺钉。

4.结构设计关键技术

4.1 热设计

军用机载电子设备热设计的基本理论和计算方法以及热可靠性分析与鉴定的方法在GJB/Z 27、QJ 1474均有详述。机载通信设备内部的高密度集成电路和功率放大部位热密度很高,散热设计往往是结构设计的关键技术。

设备机箱在方案阶段的设计方法,多数借助数值传热学仿真技术模拟热环境辅设计。最常用的热分析软件有FLOTHERM和ICEPAK,它们利用计算流体动力学(CFD:Computational Fluid Dynamic)和数值传热学仿真技术来模拟电子设备中的流体流动、热传输以及热辐射(边界条件),并以此计算电子设备周围的流场、温度场、压力场。热分析软件的瞬态分析计算量非常大,因此绝大多采用稳态的分析的方法,而且允许有较大(30%左右)的误差。

军用机载通信设备的工作环境温度,以技术协议为依据,温度范围可达-50℃~+75℃。不少设备考虑占空比的因素后,平均热功率仍不少于200W,机箱强迫风冷散热方式被普遍采用。机箱的热设计设计时要注意以下几点:

1)冷却空气的入口应远离其他设备热空气的出口。

2)机箱结构设计时应考虑机箱内的热耗分布,为机箱内部单元设计传热、散热的途径,必要时采用热绝缘或热屏蔽措施。功放管等器件热耗突出,在机箱热设计中要着重分析。

3)选择风机时,应具备合适的风机尺寸和风量,还要考虑到风机的噪声(转速)、电磁干扰、振动、振幅等因素对机箱内的影响,要充分考虑风机的可靠性。鼓风产生的风压大、风量集中,很适用于局部冷却,应尽量使风机保持良好的工作点;抽风产生的风量大、负压分布均匀,对流道结构的要求比鼓风低,但要避免气流“短路”。通过风机的特性曲线找出合适的工作点,作为仿真结果的对比。风机有工作温度范围,不能超限值工作,有时必要配置风机的控制电路。

4)强迫风冷若不满足要求,则首先应优化散热器的几何参数。增加肋片高度和肋片数,可以增加散热表面积。但当肋片增加到一定数量时,肋片间距变小,导致流过肋片的风量变小,同时肋片间的温度会相互影响,所以,增加表面积须考虑流动阻力。

5)热设计与其他设计(电气设计、结构性设计、可靠性设计)要同时进行,当出现矛盾时应权衡解决,但不得损害电气性能。

4.2 隔振设计

军用机载通信设备对隔振的要求很高,必要时会使用多级隔振技术。机箱通常选用刚度较大的隔振器,而不耐振的器件则选用刚度小的局部隔振器或采用加固的方式。机载通信设备减振系统中,钢丝绳隔振器、金属网阻尼隔振器、金属干摩擦式隔振器(即无谐振峰隔振器)比较常见。对振动敏感的器件通常采用体积小的橡胶隔振器或隔振垫。具体隔振设计时应注意以下几点:

1)机箱的设计应增强结构的刚性(应对较低的激振频率),避免悬臂结构和明显的应力集中。

2)机箱中重量大于7g的独立器件,均应考虑隔振加固,无法安装隔振器可用有弹性的胶状物质充在需要隔离的部位。

3)紧固机箱的安装架采用铝合金钣金结构,尽量用铆接或螺纹连接,以提高阻尼。应避免使用焊接,以防开裂。

4)选择隔振器须符合设备机箱的环境要求,尺寸尽量小、隔振效率尽量高。根据设备总重量及设备重心位置,遵循几何对称布置原则,确定每个隔振器的实际承载量。隔振器不超过额定载荷使用,如果各支撑点的载荷相差较大,则应采用同一型号不同刚度的隔振器。安装隔振器的部件应该具有最高的强度,隔振器间距应尽可能大,但要避免设备在静载荷、动载荷下发生弯曲变形。

4.3 电磁兼容设计

通信电子设备多是对静电放电和磁场敏感的设备,应采取诸如接地、隔离、屏蔽等措施以提高电磁兼容性。结构的电磁兼容性设计应与设备电气设计同步进行,并按照GJB/Z 25标准开展设计。机箱电磁兼容设计时应注意以下几点:

1)通信设备主要是高频屏蔽,对此屏蔽体材料须选用良导体,如铜、铝等,还需进行表面处理,增加表面导电能力(对于低频屏蔽体选用磁性材料,如铁等)。

2)机箱上必有接地装置(通常为通用件),用于接地的所有金属或其它电气连接件导电处应良好紧固接触,无间隙以及油漆等涂料。

3)机箱盖板的紧固件间距,通常使用1/4屏蔽波长。

4)机箱选用的导电材料应考虑抗腐蚀能力,并满足环境条件。导电橡胶条粘接用703硅橡胶分段单点粘接,每隔2.5cm~5.0cm分一点,切忌整段粘接。

4.4 三防设计

机载设备机箱考虑到材料的强度、刚度,一般选用铝镁合金作为主要材料。三防设计是机箱结构设计的重要一环,设计的相关要求应符合GJB/Z80标准。军用机载电子设备的机箱均需满足GJB 150A所规定的湿热、盐雾、霉菌试验要求,三防设计时应注意以下几点:

外表防护层选用氟聚氨酯漆,其耐候性优于丙烯酸聚氨酯漆。外表油漆不撒花比撒细花耐霉菌能力好。

2)机箱中所用不锈钢零件须进行钝化处理,铜合金进行镀镍、镀银或镀金。

3)因为会变色,镀银通常用于机箱内部。在没有导电性能要求的地方,可用三防漆防护镀银层。

4)机箱外部接插件外壳首选不锈钢材质钝化,其次是防锈铝合金表面镀镉。

5)机箱的接地柱和有相对运动的器件,不能涂敷三防漆和油漆。

5.结束语

本文是在实际工程中总结经验,概况阐述了军用机载通信设备机箱结构设计技术的要点,对同类产品的结构设计具有一定的参考借鉴意义。技术进步要通过不断创新,只有遵从科学原理,不断总结经验和成果,方能减少设计创新的风险,增强产品的竞争力。

参考文献

电子设备结构设计篇9

一、电子商务系统

1.电子商务。电子商务(EC,Electronic Commerce)是利用电子数据交换(EDI,Electronic Data Interchange)、电子邮件、电子资金转帐及Internet的主要技术在个人间、企业间和国家间进行无纸化的业务信息的交换。通过简单、快捷、低成本的电子通信方式,买卖双方互不谋面地进行的各种商务活动。由于电子商务拥有巨大的商机,从传统产业到专业网站都对开展电子商务有着十分浓厚的兴趣,电子商务热潮已经在全世界范围内兴起。

2.电子商务系统。电子商务系统是支持企业完成电子商务全部业务的系统,涉及到企业的各个方面,是一个综合的系统,不同类型企业的电子商务因业务要求不同而对电子商务系统的要求也有较大差异。电子商务系统主要有企业内部信息系统(Intranet)、电子商务基础平台、电子商务服务平台、电子商务应用系统、电子商务应用表达平台和安全保障环境六个部分组成。

二、电子商务系统的设计

电子商务系统设计的主要任务是从电子商务系统的总体目标出发,根据系统规划和分析阶段产生的文档,考虑到技术、经济和系统实现的内外环境和主客观等方面的条件,确定电子商务系统的总体结构和系统各组成部分的技术方案,合理地选择计算机和通信的软硬件设备,以确保电子商务系统的总体目标实现。

1.电子商务系统的设计原则。(1)技术的先进性。电子商务系统的设计技术发展十分迅猛,先进的技术在电子商务中占有十分重要的地位,电子商务系统的竞争力与技术的先进性密切相关,电子商务系统设计应采用最新的技术成果、立足先进的技术,从而使系统有较高的技术起点。(2)系统的兼容性。很多企业目前都已经完成企业信息化建设,并产生了较好的经济效益。电子商务系统良好的兼容性可以使电子商务企业有效地利用现有的资源、设备和信息,发挥其功能,最大限度地节约企业投资成本,更大程度上实现企业信息的增值。(3)系统的安全性。电子商务系统的安全主要是通过技术手段确保主机、网络设备、存储设备等物流实体的安全和交易过程中的信息安全。(4)系统的开放性。电子商务系统良好的开放性可以有利于电子商务的独立运转。

2.电子商务系统运行平台的选择与设计。系统平台的设计主要包括计算机硬件、计算机网络环境、网络通信设备和其他辅助设备、计算机软件的设计和选择。(1)计算机硬件。计算机硬件的选择包括服务器设备、网络设备和信息存储设备等的选择。服务器的性能直接决定电子商务系统的处理能力。网络设备主要用于电子商务系统局域网建设、电子商务系统和Internet的联接。电子商务服务访问速度的快慢与网络设备密切相关。(2)网络基础环境。计算机网络是电子商务的重要组成部分。通过计算机网络来实现系统内外信息传递和共享。电子商务系统的网络基础环境包括Internet、Intranet和Extranet三个部分。其中Internet部分是企业电子商务系统的用户访问通道。(3)计算机软件。电子商务系统的灵魂是计算机软件。电子商务系统的软件平台的选择与设计主要有网络操作系统、Web服务器软件和中间件软件等。软件的选择主要从功能、适用性、软件之间的配合能力等方面加以考虑。

3.电子商务系统支持平台的设计。电子商务系统支持平台设计主要涉及供应链管理(SCM,Supply Chain Management)、客户关系管理(CRM,Customer Relation Management)和企业资源计划(ERP,Enterprise Resource Planning)等信息系统的设计。(1)供应链管理。供应链管理主要由采购管理、产品管理、库存管理、销售管理、销售机构管理、客户关系管理、预算管理、信息管理和系统管理等功能模块组成。(2)客户关系管理。客户关系管理软件系统可划分为接触活动、业务功能和数据库三个组成部分。(3)企业资源计划。企业资源计划系统的管理模块主要包括生产控制(计划、制造)、物流管理(分销、采购、库存)、财务管理(会计核算、账务管理)和人力资源管理等四个方面的内容。

4.电子商务应用软件设计。电子商务应用软件系统的设计分为数据库设计和应用软件的设计两个方面。(1)模块设计与子系统划分。模块是执行一个定义功能的计算机程序的可确定的部件,是构成系统构架的主要部件,是可执行的实体。根据数据流程图转换而来的模块结构图的划分是基于层次结构的,要求模块间的耦合度小,模块自身的内聚度大。(2)数据流程设计。模块结构图仅仅提供了程序内部的结构,模块内部数据流程和逻辑也需要设计。模块算法设计的方法主要有程序流程图、结构化语言和伪码等三种。(3)代码设计。以数字或字符来代表各种客观实体谓之代码。一个好的代码设计方案对于系统的开发工作是一件重要的事情,可以使很多机器处理变得很方便,而且可以把计算机现在很难处理的工作变得较为简单。(4)数据库设计。通过大量的数据获得开展电子商务活动所需要的信息是电子商务系统的一项主要任务,因而必须存储和管理大量的数据。因此建立一个良好的数据组织结构和数据库,使整个系统可以迅速、准确、方便地调用和管理所需的数据,是电子商务系统开发工作好坏的主要衡量指标之一。

数据组织结构和数据库设计,就是要根据数据的用途不同、统计渠道、使用要求和安全可靠性来决定数据的整体组织形式,并决定数据的结构、类别、组织方式和保密级别等问题。一个好的数据组织结构和数据库要充分满足组织的各级管理要求,并应该使得后续系统开发方便、快捷,易于维护和管理。

5.控制、输入和输出的设计。控制、输入和输出的设计包括完整性控制、系统输入设计和输出设计。(1)完整性控制。完整性控制是建立在系统内的机制和过程,用于确保系统和系统内信息的安全。系统完整性控制由系统访问控制、输入完整性控制和输出完整性控制等三部分组成。(2)系统输入设计。系统输入设计的目的是输入新的无错误的数据到系统,或用无错误的数据更新系统数据信息。一是要确定用于输入的设备或方式;二是要设计输入格式。(3)系统输出设计。系统输出设计在系统设计中占有很重要的地位,因为只有通过输出用户才能使用计算机系统对数据加工处理的结果。及时、准确地输出各种信息,是电子商务开发的最终目标。一要设计输出方式;二要确定输出信息的内容;三要保护输出信息;四要设计报表的原型。

参考文献:

电子设备结构设计篇10

中图分类号: TN911.7?34 文献标识码: A 文章编号: 1004?373X(2014)15?0148?02

Research on lightweight design of airborne electronic equipments

LI Yu, WEI Qiang

(China Academy of Electronics and Information Technology, Beijing 100041, China)

Abstract: With the increasing complication of airborne electronic equipments, the lightweight research is exigent due to the limitation of airborne space resource. The lightweight research in the process of airborne electronic equipment development is discussed in the aspects of system top?design, overall?layout, hardware design and new materials, which has a certain guiding significance for lightweight of the current engineering projects.

Keywords: lightweight design; airborne electronic equipment; weight control; hardware design

机载信息化武器装备是适应现代战争需要,为执行特定作战任务,对飞机平台进行改装,加载电子装备研制而成。飞机平台资源有限,加装的电子装备在功耗、空间等方面都受到苛刻的限制,尤其是重量(本文所述“重量”一词按标准规定应为“质量”,但为避免与习惯用法发生误解,本文仍用“重量”),不仅关系到载机的飞行性能与飞行安全,更直接影响整个机载武器装备的作战性能与战技指标发挥。电子装备轻量化就是在保证电子装备功能/性能的前提下,尽可能降低整个系统的重量,从而减少对平台的资源占用,其轻量化工作紧迫而意义重大,必须严格贯彻载机的重量控制要求,从顶层设计出发,通过资源共享、功能共用、模块化设计、大规模应用复合材料等手段,从根本上保证电子装备的功能与性能,减轻重量,并降低功耗、空间方面的需求。

1 电子装备轻量化评价指标

电子装备的轻量化程度与当前的技术发展状况紧密联系,轻量化工作是设计、工艺、材料技术集成的工程,受到多种学科、技术的发展制约。评价一套电子装备是否轻型,是否有潜力进一步降低重量,需要有一套评判指标。目前,针对电子装备的轻量化水平并没有明确的评价方法,无法判断电子装备进一步轻量化的潜力,因此,十分有必要开展电子装备轻量化评价指标体系的建立工作。本文初步提出以下两个参数作为评价指标,后续研究工作中会逐步补充完善:

(1) 结构重量占比。电子装备中的结构(除板卡、接插件、线缆等元器件之外的壳体、机箱、机架等)重量与整个电子装备总重量之比。这一参数可以在一定程度上代表电子装备在设计、工艺等方面技术先进度,可以反映出电子装备的结构质量利用率,进一步指出轻量化工作的方向。在航天领域,当此参数达到10%~15%后,一般认为轻量化潜力已不大,电子装备行业的相关数据尚有待开展统计分析。

(2) 轻质材料占比。轻质材料重量在整个电子装备总重量中的比例。轻质材料主要指可以取代钢、铝合金等常用材料的钛合金、镁合金、复合材料等,其特点是密度较小、刚度、强度较好。轻质材料占比这一参数可以很好的体现轻质材料在电子装备中的应用程度,有效挖掘材料在电子装备轻量化工作中的价值所在。

2 轻量化设计

在电子装备的整个研制过程中,轻量化工作应该贯穿始终,在系统设计、总体布局、硬件设计等环节要特别给予重视。

2.1 系统设计

在系统设计阶段,顶层架构设计在综合考虑使用需求、成本、技术可实现性等因素的基础上,对系统功能、性能统一设计,提高系统的集成度,最大限度的减少系统设备的规模和数量。

采用标准化的硬件模块和总线架构,通过功能综合设计与集成,是提高系统集成度的有效途径之一。这样,可以大幅减小设备的种类和数量,将系统设计成一个通用化、模块化的高度集成系统,采用一系列通用的、标准化、系列化的现场可更换模块(LRM),通过组合和加载软件,为系统功能实现提供软/硬件平台,充分实现软、硬件资源的共享。

2.2 总体布局设计

机载电子装备的众多设备安装到飞机平台的有限空间内,无论舱内还是舱外,都必须开展总体布局设计。设计过程中,要充分考虑载机的重心平衡问题,尽量使总体布局合理,每个分系统设备应该尽量集中布置,分系统之间有电缆互连关系的设备要靠近布置,减少互接电缆的长度,同时合理布局线缆敷设路径,保证线缆连接距离最短。

2.3 硬件设计

开展电子装备具体硬件设备详细的设计时,要采用先进的设计思想,并充分运用CAE,CAD等计算机辅助手段,采用多学科综合优化设计理论,在保证结构刚度和强度的前提下,追求最佳几何尺寸,充分发挥结构效率,使整个电子装备的硬件结构设计更加精确、合理,保证结构重量占比降到最低,有效降低设备重量。图1所示为某操作台优化设计实例。

图1 结构优化实例

对于雷达等大型探测天线,其重量占整个电子装备重量的比重较大,对这类设备的轻量化工作,直接影响整个装备的减重效果,必须采取多种措施,充分开展结构设计。

对电子装备与飞机平台之间的接口,尽量采用一体化的设计思想,设计简便可靠的连接方式,减少接口的结构预埋件与安装件。在保证刚强度的前提下,尽量减少载机在电子装备安装位置处的改装与补强工作,有效控制整机的重量。

3 新型材料

电子装备的轻量化工作,除了需从系统架构上进行模块级的高度综合集成,从结构上进行最大程度的优化设计外,新型材料的应用也会对装备轻量化工作产生显著影响。新型材料应用技术已成为电子装备轻量化的关键所在。表1所示为当前几种新型材料与传统合金钢、铝合金材料的性能比较。

表1 结构材料性能比较

[材料\&拉伸强

度 /MPa\&拉伸模

量 /GPa\&比强度

/(MPa/(g/cm3))\&比模量

/(GPa/(g/cm3))\&密度

[/(g/cm3)]\&合金钢\&1 200\&206\&152.9\&26.3\&7.85\&铝合金\&420\&72\&151.1\&25.9\&2.78\&钛合金\&1 000\&116.7\&221.2\&25.8\&4.52\&镁合金\&300\&45\&172.4\&25.9\&1.74\&高模量碳/环氧树脂\&1 049\&235\&656\&146.9\&1.6\&高强度碳/环氧树脂\&1 471\&137.3\&1014\&94.7\&1.45\&]

3.1 钛合金

钛合金具有强度高、重量轻和优异的耐腐蚀性,特别是比强度高、比刚度高,可设计,在航天航空、舰船、军工等领域中获得越来越广泛的应用,是现代机载电子装备设计中减轻结构重量的重要途径。

3.2 镁合金

镁合金具有重量轻、吸震性能高、良好的铸造和切削性能、高散热性、高电磁扰屏障等优点,尤其是Mg?Li合金,兼有强度、韧性和可塑性方面的优势。镁合金化学镀Ni?B产品目前已成功用于计算机、通信、消费类电子、军工等诸多领域,是取代钢铝材的最佳选择。

3.3 复合材料

先进复合材料是20世纪60年代崛起的一种新材料,目前在航空航天结构中获得了广泛的应用。先进复合材料具有比强度和比模量高、性能可设计和易于整体成形等优异特性,对减轻飞机结构重量具有特殊重要的意义。目前飞机结构中主要使用的碳纤维复合材料,是以碳或者石墨纤维为增强体的树脂基复合材料。碳纤维复合材料具有以下优良的性能:密度小、比强度/比模量高,线膨胀系数低、良好的耐疲劳、耐化学腐蚀性和较高的热稳定性。复合材料的组件化、整体化设计可以大大减少零件数量,减少连接件和连接过渡区附加重量、减少装配,是减轻结构重量的有效技术途径。与常规金属结构相比,碳纤维复合材料的减重效果可达20%~40%。

在电子装备的研制过程中,依据具体设备的设计要求,合理选择轻型材料,可以有效减轻重量。图2所示为某型号机载电子装备的综合集成机架,整体采用碳纤维复合材料,重量只有16.6 kg,以前结构类似的铝合金同类产品重量约30 kg,减重达44.67%。

图2 碳纤维复材综合集成机架

4 结 语

机载电子装备日趋大型化、复杂化,其轻量化工作是一项系统工程,目前缺乏系统的理论研究,更多的是依靠工程经验,迫切需要建立完整的评价标准,后续还需要围绕这些问题开展深入研究。

参考文献

[1] 李兴乾,白明生,苟仲秋,等.载人航天器系统重量控制方法研究[J].航天器环境工程,2012,29(2):201?204.

[2] 王周让.航空工程材料[M].北京:北京航空航天大学出版社,2010.

[3] 沈真.复合材料结构设计手册[M].北京:航空工业出版社,2001.

[4] 王哲.飞机结构设计过程中重量控制[J].飞机设计,2001,3(1):127?129.

电子设备结构设计篇11

输电线路信息模型作为输电线路设计、施工、运维全生命周期的数据载体,在输电线路工程的各个阶段具有重要的作用。在设计输电线路信息模型的存储格式时需要考虑模型使用平台间的差异和不同阶段对模型数据内容扩展性的要求。模型物理文件的逻辑结构必须符合输电线路工程特点及使用要求,物理存储结构需要满足在不同阶段进行数据扩展的要求。

目前,输电线路工程中所涉及的设备模型及各类数字化成果均以离散的文件进行存储。这些数据文件缺乏统一的存储格式,往往只能在专有的软件平台进行使用。数据成果需要在不同的软件平台间传递时只能通过人工录入的方式将数据导入,整个过程浪费大量的人力且很容易产生错误。

为了解决上述问题,本论文将针对输电线路不同阶段的业务需求,采用多层级模型存储结构实现设备几何模型和属性参数的统一存储,以此为基础建立输电线路信息物理存储的标准格式。通过建立标准的信息模型物理存储格式,各个软件平台只需要针对真个标准开发相应的数据接口就可以实现对输电线路信息模型数据的共享和传递。

1 输电线路工程现阶段数据情况分析

输电线路工程数据主要包括设备模型、属性参数、图纸及附属文件等。这些数据在输电线路设计、建设、运行阶段中被广泛的使用。由于这些数据没有统一的数据结构和标准的数据打包方式,所有数据文件以离散方式存储。在不同阶段的软件平台中传递时往往需要根据不同的软件平台要求进行数据的录入,这个过程既耗费人力又容易产生错误。

目前国内对于信息模型存储格式的研究主要集中于系统架构的理论研究上,且对于标准存储格式的认识还停留于简单的数据文件堆砌层面,尚未提出一个符合输电线路工程应用要求的设备信息分层分类体系与信息交互体系存储框架。

本论文从对输电线路信息模型逻辑结构分析入手,对信息模型的物理存储结构设计和模型数据打包方法展开论述。最终形成适用于多平台的输电线路信息模型存储格式标准定义。对输电线路信息模型逻辑结构的准确分析能够为构建物理模型存储格式提供依据,输电线路呈现出复杂的网状结构特性,不同设备间的从属关系和拓扑结构是信息模型的关键。通过分析理清输电线路工程中各个设备的关系脉络,并以此为基础设计信息模型的物理存储结构。

2 输电线路信息模型逻辑结构分析

信息模型中数据存储格式的定义需要充分考虑输电线路工程本身的技术特点。输电线路工程是由多个线路段组成,每个线路段包含若干耐张段。耐张段按照档进行划分,由杆塔、导地线、基础、金具及各类附属设备设施构成。输电线路信息模型逻辑结构应当符合输电线路工程本身的特点,根据系统分类、设备分类、部件分类的层级关系,形成输电线路工程设备对象的逻辑结构树状图。分类方法参考现行的各类设备编码规范,界定和规范电网工程中涉及到的需要描述的设备对象和层次划分方法。

输电线路设备模型对象由具体的特征属性、三维模型和非结构化数据组成,这些数据描述了同种类型设备自身的特征。在输电线路工程中通过引用输电线路设备模型对象的方式实现对设备模型对象的复用。通过模型对象引用的方法实现对输电线路信息模型的分层管理。输电线路设备模型对象层只关注设备本身的特征。在输电线路工程应用层关注设计、施工、运维等相关信息与分类,从而达到分层细化管理,减少最终数据冗余的目的。如图1所示。

该逻辑框架中每层次分别处理相应的数据,属性链中描述设备族、设备模型、工程模型中使用的基本属性以及属性组合,包括设备族引用的自身物资属性,设备模型层引用的三维属性和厂家属性,工程模型层引用的设计、运维属性等。设备族使用属性链描述了具体设备本身所具有的特性以及设备逻辑层次关系。设备模型引用具体设备族中设备并确定了设备对应厂家信息、三维模型信息等。工程模型引用具体的设备模型并确定对应的设计、运维信息,同时还构建整个工程设计对象逻辑树状结构。

属性链中描述设备族、设备模型、工程模型中使用的基本属性以及属性组合,包括设备族引用的自身物资属性,设备模型层引用的三维属性和厂家属性,工程模型层引用的设计、运维属性等。

设备族使用属性链描述了具体设备本身所具有的特性以及设备逻辑层次关系。

设备模型引用具体设备族中设备并确定了设备对应厂家信息、三维模型信息等。

工程模型引用具体的设备模型并确定对应的设计、运维信息。同时还构建整个工程设计对象逻辑树状结构。

3 输电线路信息模型物理结构设计

要想使信息模型能够在不同的软件平台中进行传递就需要建立一个标准化的信息模型物理存储结构,这个结构应该是开放的、可扩展的。不同的软件平台能够根据标准的存储结构对文件进行解析并提取平台需要使用的数据,同时各个平台能够根据统一的存储标准在信息模型中增加数据供其他平台使用。

在进行物理结构设计时要充分考虑输电线路工程的逻辑结构。根据逻辑结构分析输电线路信息模型对象由特定具体的特征属性、三维模型和非结构化数据组成。这些属性信息仅仅是自身内部特征属性,区分并确定一类对象。线路工程引用信息模型对象来进行设计,若工程中出现多个相同的线路设计对象,线路工程设计对象则引用同一个信息模型对象减少设计数据冗余。

输电线路工程物理模型存储结构用于描述输电线路信息模型数据组成结构并组织具体工程数据。物理模型通过对逻辑框架的分析,确定工程数据存储结构和存储规范,指导具体工程如何归档数据。通过对输电线路信息模型逻辑结构的分析,输电线路工程物理模型结构框架如图2。

原始模型定义具体原始的三维模型数据,并通过自身引用构建复杂三维模型实体。设备模型引用原始模型定义的三维模型,并定义设备自身相关的特性数据。若设备由多个带有自身特性的部件构成,可以通过自身引用构建。组合模型引用设备模型定义的设备,并定义工程相关的设计数据。同样可以通过自身的引用模型的组合。

为了实现该框架,需要考虑两方面问题。一是如何对单独每层模型中的数据进行存储;二是在物理存储过程中如何实现不同层次之间的引用关系。两者结合决定物理存储结构。逻辑框架中使用引用来建立各层次之间的关系。这样可将其他数据通过组合的方式来归为自己使用,每层中只需关注自己本层的应用以及数据。

4 输电线路信息模型打包方法

为了将离散的数据文件变成最终的信息模型,需要对数据文件进行打包行政最终的信息模型物理,文件格式框架如图3所示。文件框架由三个区块构成:表头、索引域与存储域。表头中包含FILE_DESCRIPTION、FILE_NAME、FILE_SCHEMA等属性参数,通过读取表头信息可获取关于文件创建时间、创建工程师以及文件数据排列格式规范版本等信息,为有效读取后续具体工程数据提供基础支持;索引域按输电线路信息模型逻辑结构分为四级,可有效提高数据查询读取的速度。同时,索引域描述了对应级别数据的处理过程,为第三方应用程序有效提取数据提供支撑;存储域是具体工程设计数据与属性数据的存储区块。

4.1 索引域

第一级索引包含工程名称、工程类别等信息,用于描述工程属性以及工程类别;第二级索引指向不同类型的电网工程(变电工程、输电工程),描述单一类型的电网工程形成属性、数据地址等信息。多个或单个二级索引组合构成一级索引,二级索引对应输电线路信息模型逻辑结构中的工程模型层;工程模型由多个实体设备模型组合形成,因此设计第三层索引指向工程模型中不同的设备模型,该级索引对应输电线路信息模型逻辑结构中的设备模型层;同理,设备模型由设备族实例化后形成,因此设计第四级索引描述设备模型中设备族元素的数据特征。

4.2 存储域

存储域中的数据严格遵循索引结构,进行分区块存储。如图3所示,数据存储呈现嵌套的结构,按索引级别从低往高进行嵌套。一级区域首先描述工程整体的参数,然后分区块表达各类工程;同理,二级与三级区域首先描述该级数据描述内容的综合信息,然后依次由下一级数据组合而成;四级区域是对设备族的描述,设备族由多个属性链构成,而属性链存储与本地应用模型库中,因此设备族是数据存储区域的最后一级。在组装工程时,应用程序读取设备族成分,抽取本地属性链库,形成设备族元素,然后依次向上组装,最后形成完整的工程模型。

5 输电线路信息模型实例

本文通过构建220kV架空输电线路工程一个标段的电网信息模型对相关技术的可行性、实用性、先进性进行分析和论证。架空输电线路工程的设备包括杆塔、绝缘子串、基础、金具、导地线。按照电网信息模型的四层结构模型对工程进行划分。

最底层为设备的原始几何模型和所有属性参数定义,这些元数据构成电网信息模型的最小数据单元。构成输电工程设备的零部件模型包括:角钢、螺栓、节点板、金具、绝缘子、钢筋等;基本属性参数定义包括所有设备对应的参数名、数据类型等定义。

上一层为设备族,该层数据是由底层几何模型通过引用方式构建而成,通过对几何模型的引用能够有效的减小单个工程设备模型的数据量。以绝缘子串为例,设备族数据由所引用底层几何模型的唯一标识符和该模型在设备族中的相对位置关系构成。

在设备族之上是工程设备模型,工程设备模型由设备几何模型和属性参数组成,几何模型引用自设备族,属性参数引用底层属性参数定义并进行赋值。

最上层为工程模型,通过将设备模型层的数据赋予坐标位置信息及工程属性得到最终的输电线路工程模型。

采用本结构生成的架空输电线路工程其物理存储空间大小比传统建模方式小50倍以上,以220kV双联绝缘子串2NP21Y-4040-16P为例,该绝缘子串共使用绝缘子模型30片,连接金具及线夹共13个。单个部件模型大小平均为1.5Mb,整个绝缘子串模型共计1.5*43= 64.5Mb,使用信息模型四层结构后该绝缘子串模型根据部件引用原则仅需要使用1片绝缘子模型,其他连接金具数量也降为8个,模型总计1.5 * 1 + 1.5 * 9 = 15Mb左右。通过对比可以直观的发现,采用新的模型组织结构能够大大降低模型所占物理存储空间,有效的控制模型应用成本。

6 结语

通过研究输电线路信息模型在不同平台间的数据传递技术实现了输电工程数据在设计、施工、运维不同阶段的数据交互。采用统计技术量化管理对象与管理行为,实现设计研发、计划、组织、生产、协调、销售、服务、创新等职能的综合运转。依托数字化技术,可促进传统输电工程在各个方面的技术更新,使企业在持续动态多变的全球性市场竞争环境中生存发展并不断扩大其竞争优势。

参考文献

[1]刘皓,肖少辉,,周敏,尹华政. 三维数字化移交在青藏直流工程中的应用研究[J]. 电力勘测设计,2012,03:62-65.

[2]吴志力,韩文军.电网工程数字化移交工作的必要性和迫切性[J].电力建设,2014,35(2):66-69.

[3]胡君慧,盛大凯,郄鑫,齐立忠.构建数字化设计体系,引领电网建设发展方向[J].电力建设,2012,33(12):1-5.

[4]梅念,陈东,杜晓磊,杨媛, 王赞, 程炜. ±400kV青藏直流联网工程换流站三维数字化移交[J].电力建设,2012,33(5):21-24.

[5]于恒友,刘波,彭子平.基于HBase的输电线路综合数据存储方案设计[J].电力科学与技术学报,2014,29(2):58-64.

[6]王奇,钱海,常安,宋云海,邓红雷,林冰垠,李述文.基于数字电网统一功能架构的高压输电架空线路专家系统的设计与实现[J].华东电力,2014,42(4),698-703.

[7]李晓骏,邱家驹.基于三维GIS技术的输电线路地理信息系统的设计与实现[J]. 电力系统及其自动化学报,2003,15(1):5-9.

[8]齐书情.动态提高输电线路容量系统数据采集及处理系统的设计与实现[D].上海交通大学,2008.

[9]张建平,余芳强,李丁.面向建筑全生命期的集成BIM建模技术研究[J].土木建筑工程信息技术,2012,4(1):6-14.

[10]李晓骏.数字输电网络的关键技术研究[D].浙江大学,2003.

电子设备结构设计篇12

中图分类号:TP750 文献标识码:A 文章编号:1009-914X(2015)19-0315-01

前言

在进行电子电气产品的设计时,合理的机械结构设计是其中一项重要的组成部分,而通常情况下,电子电气的机箱与机柜以及仪器仪表的外壳部分都属于机械结构的基本范畴之内,而产品的机械结构通常会为电子电气部分提供有效的安装与支撑以及联接传动等功能,为电气产品中的各个零部件与电气的连接与元器件之间提供良好的兼容性。

一、电子电气产品机械结构的基本设计要求

(一)机械结构的尺寸与强度要求

在进行电子电气产品机械结构的基本设计时,要求设计人员必须严格依据电子电气的原件与各种装置所需要的实际空间,来确定将电子电气产品机械结构的基本尺寸,尺寸系列需要依照通用的标准以及实际的定型尺寸,并充分的考虑产品的标准化与互换性。而机械结构的强度要求则需要设计人员必须根据产品的负荷大小以及产品实际的抗冲击能力,来进行相应的强度设计检验,并充分的结合结构件的连接方式,采用恰当的结构形式来进一步提高电子电气产品机械结构件的强度[1]。

(二) 机械结构的安装与防护要求

合理的机械结构安装通常需要充分考虑用户的实际需要,合理改变其安装方式,并要求选择恰当的固定方式与锁紧方式,确保机械机构安装能够更加符合电器标准与要求,而在电子电气产品机械结构的外壳防护方面,则必须依据设备的实际使用环境与设备对于防尘防雨的要求,来进一步确定其防护等级,通常情况下,户外设备以及在恶劣环境下使用的机械设备的防护等级较高。

(三) 机械结构的散热与布线要求

这就要求我们必须依据设备的实际负荷情况以及发热量的大小来进行合理的通风散热设计。当机壳中所形成的热量过大时,则需要我们采用合理的散热风机与冷却装置来对其进行有效的散热工作,而当机壳中所产生的热量较小时,则可以使用散热板来实现散热工作。此外,配线布线是实现电子电气产品中电气连接的重要途径,在进行各个部件与功能模块的空间布置方面,要求我们必须充分的考虑元气件的电气连接情况,并对接线走线的布局和位置进行正确的连接,为了有效的解决各个线路之间的干扰,就要求我们在进行布线活动之前,将线路进行有效的分类,把高功率与低功率的线路分为两个部分,促使总体的布线情况负荷电气的实际需要。

二、电子电气产品结构的工艺性设计要求

工艺通常指的是将产品的原材料与半成品来转变成相应的成品的过程与手段,是把具体的实践经验转变成理论化的过程。任何的产品在生产过程中都要充分的考虑其工艺的可行性以及市场的经济效益特征,而作为电子电气产品中的重要结构部分,其机械结构通常也可以作为一个独立的产品来进行相应的研发与生产以及销售工作。现阶段,我国已经有许多的企业与厂家将机械产品中的机箱机柜以及仪器仪表的外壳等作为自己的产品来进行研发与生产销售,这就要求其必须充分的考虑机械产品加工装配的难易程度以及外购和外协的可行性需求,同时要考虑机械结构的标准化需求与通用化需求,确保机械结构能够具备一定的系列化以及结构的继承性,并要求其能够依据企业中所拥有的设备情况以及实际的加工水平,来对其制定相应的加工文件。

三、电子电气产品机械结构中的电磁兼容设计

(一)电磁兼容设计要点

所谓的电磁兼容是指在有限的时间与空间以及频谱资源的背景下,促使各种系统和设备之间能够有效的实现共存,且不允许其发生性能的降低与降级现象。通常情况下,电磁的兼容主要包括电磁敏感与电磁干扰两个方面,电磁敏感所研究的主要是电气产品自身所具有的抗干扰能力,而电磁干扰则主要研究的是促使产品免受干扰的有效措施。一般来说,电磁干扰往往需要具备三个基本要素,第一是要求其必须有充分的电磁骚扰源,第二是要求其必须具备有效的电磁敏感设备,第三是要求其必须要具备一定的电磁传播通道。因此,要想有效的解决电磁干扰问题,就要求我们必须合理的从这三个方面入手来对干扰源进行有效的抑制,从而切断干扰因素的传播途径,促使敏感设备的抗干扰能力得到更好的提高。

(二)电磁兼容的接地设计

电磁兼容的接地设计通常分为机壳接地与信号接地等形式,其中机壳的接地是为了能够有效的实现设备的安全接地,从而对操作人员进行充分的安全保护,并能够进一步将因静电积累而成的电荷进行有效的泄放,避免因电位的升高而造成的机械放电,确保设备的安全性。而设备的信号接地则是为了为设备提供全部或者部分的电路电平参考平面,其中最理想的接地平面指的是零阻抗力与零电位的物理实体,其能够有效的保证任何的电流在通过它时都不会产生压降。

1、 接地线的线径与长度设计:接地导线的截面大小通常需要依据导线中可能出现的电流大小来进行设置。当系统的工作波长较小,且小到能够与接地线的长度相比时,就会形成一定的驻波,使得这个时候的接地线就成为了一根终端短路的传输线,起不到有效的作用。而在电厂与变电站中的电磁干扰通常来源于高压的工频干扰,当电器完成接点的吸收与释放之后,冲击电流就会产生一定的电磁干扰,所以说,机柜机箱的接地线长度一定要和干扰波相匹配[2]。

2、 接地线的接地电阻设计:要求系统的接地电阻要小,一般情况下要求其小于0.01欧姆,这就要求我们进行接地线的搭接工作。搭接通常指的是在两个金属面之间,建立起有效的低阻抗通道,促使搭接完成后的两个金属面能够成为一个等电位面,从而实现电路与机壳以及接地系统之间的有效连接,使其在很大程度上能够呈现出电感性。同时要求其无论进行怎样的线路搭接,都要求接触面必须没有漆塑和氧化膜,并确保接触面良好以及接触电阻要小[3]。

(三)电磁兼容的屏蔽设计

屏蔽功能可以有效的抑制由空气来进行传播活动的电磁波干扰,并能有效的将电磁波的辐射限制在一定的范围之内,同时也能合理的避免外来辐射的影响。电磁兼容的屏蔽设计主要包括磁场屏蔽、电场屏蔽以及电磁场屏蔽这三个重要的方面,其中磁场屏蔽主要是依靠具有低磁阻的高导磁率材料来将磁通进行有效的分路设计,使得屏蔽体内部的磁场能够得到有效的降低。而电场屏蔽则主要是为了降低耦合电容,要求屏蔽版要有良好的接地,且屏蔽体的形状最好能够实现全封闭,从而获得更好的屏蔽效果。电磁场的屏蔽则通常会与反射损耗以及干扰源频率都有直接的关系,在进行屏蔽设计时,通常需要对其进行全面的综合考虑。

四、结语

对电子电气产品的机械结构进行良好的设计活动,不但能够直接的关系到电子电气产品的性能情况,而且可以有效的提高整个电子电气设备的使用性能,从而进一步提高产品的附加值,本文中就电子电气产品结构设计中所涉及的相应问题进行探讨分析,来为电子电气产品的结构优化与性能提高提供有效的理论依据。

参考文献

友情链接