高效焊接方法合集12篇

时间:2023-07-19 09:30:00

高效焊接方法

高效焊接方法篇1

目前我国大多数煤矿为三班连续运转的企业,为保证设备安全、正常的运转,每月厂部都对设备进行检修定保,对于已磨损、能够更换的配件在检修中都要进行更换,更换下来的具有修复价值的构件被送到检修车间进行焊接修复。但有些设备比较大,如四立铲的大臂,牙轮钻的立架,无法拆卸更换但已有开裂迹象,只能在现场紧急抢修。在焊接修复的过程中,焊件受到局部不均匀加热和冷却,容易产生应力和变形;受工作环境条件影响,易引发夹渣、裂纹等焊接缺陷;或是焊前准备、预热、焊后热处理等工作做得不到位等原因,易产生气孔、裂纹等焊接缺陷。这些具有焊接缺陷的焊件进入工作状态后,很快又会出现裂纹,有的裂纹会很快扩展,又要重新进行修复。如此循环不但会增加更多的焊修成本,延误更多的时间,甚至会影响生产任务的顺利完成。为保证焊修工件的修复质量,除了加强焊接技术的应用管理外,还要采取有针对性的措施。

2 产品分析

2.1产品焊接工作量分析

在煤机“三机一架”产品中以刮板输送机和液压支架的质量重,以一套200m左右的中型综采生产线为例,刮板输送机和液压支架的重约为3500t,结构件比重超过70%、液压件的比重达到20%,焊接工作量大(填充金属的重量占结构件比重达4%左右),其焊材的消耗量超过100t。以富氩气体保护焊为主导的焊接工艺情况下,提高焊材的熔化效率(或减少填充金属量)即可提高焊接效率。

2.2产品结构特点分析

(1)刮板输送机主要部件为中部槽,中部槽由两个槽帮、中板和底板焊接而成,共有6条对称的焊缝组成,且两两在同一平面内,易于实现工装定位和焊接自动化。

(2)液压件(立柱和千斤顶)要求高的密封性,焊接可靠性要求高。

以双伸缩立柱为例,外缸壁厚超过20mm,常规以“V”坡口与缸底焊接,填充金属量大、焊接时间长和焊缝晶粒粗大的特点。立柱中缸壁厚一般在40mm左右,由于无缝钢管的尺寸序列和壁厚限制,市面采购困难,以前采用圆柱型锻材或特厚壁钢管金切加工而成,材料成本高,生产效率低,刀具磨损快。

3 焊接方法选择

(1)针对中部槽结构简单、焊缝规则的特点,可采用焊接机器人或焊接专机,辅以焊接变位机,实现自动焊接。某煤矿机械厂采用TANDEM焊接系统,其原理是将两根焊丝按一定角度放在一个特制的焊枪内,由两根焊丝具有各自的电源,可以独立调整参数,最佳的控制电弧。其工艺特点如下:①可以大大提高熔敷速度和焊接效率,保持较低的热输入量,细化焊缝组织,减少焊接变形和焊接应力。

②中板和底板焊接机器人含两套TANDEM双丝焊机,两个机器臂同时施焊,提高焊接效率,减少焊接变形;自带焊接变位机,实现一次装卡,完成中板和底板的焊接,节省焊接辅助时间。

③双丝处于同一焊枪,节约焊接保护气体,降低焊接成本。

(2)采用窄间隙焊接方法,改“V”型坡口为“U”型坡口,可节约焊材30%左右,气体保护熔化极电弧焊的焊接形式应用于外缸与缸底的焊接,采用中低线能量,实现多层多道熔覆而不需清理,降低焊接电能的消耗,提高焊接效率,同时由于焊接热输入量的减少使焊缝晶粒细化,提高焊缝的机械性能和抗疲劳性能,减少缸体漏液现象的发生,提高了液压缸的使用寿命。

(3)对立柱中缸的加工工艺,采用高压无缝钢管堆焊工艺再精车表面的工艺方案代替切屑工艺,减少加工量。利用原有卧式车床的旋转系统实现工件的旋转和焊接速度的控制,车床拖板加持焊枪实现纵向进给,形成半自动焊接系统,提高加工效率,减少工时50%左右。

4 使用效果及效益分析

通过某煤矿机械厂的试验对比,对于中部槽的焊接,采用TANDEM焊接系统的焊接效率是手工半自动焊接的6倍,大大提高焊接效率,降低人工成本,保证焊接质量的稳定性。

通过某煤矿机械厂的立柱的实际数据分析,以年产70000t立柱计算,以φ360×2000m立柱计算(折合约为35000根),采用窄间隙焊焊接立柱外缸可节省焊材35t,按焊材2万元/t,节省费用合计为70万/年。

立柱中缸采用堆焊的方案与金切方案相比,设备及制造费用大致相当,仅考虑材料费用,假设无缝钢管与锻材价格均为2万元/t,单根可节省材料0.2t,则可节省材料费14000万元。同时,采用窄间隙焊和堆焊的方法可以提高效率,降低人工成本。

高效焊接方法篇2

锅炉、压力容器和管道均为全焊结构,焊接工作量相当大,质量要求十分高。焊接工作者总是在不断探索优质、高效、经济的焊接方法,并取得了引人注目的进步。以下重点介绍在国内外锅炉、压力容器与管道制造业中已得到成功应用的先进高效焊接方法。

1 双面脉冲MAG自动焊接生产线

为提高锅炉热效率,节省材料费用,大型电站锅炉式水冷壁管屏均采用光管+扁钢组焊而成。这种部件的外形尺寸与锅炉的容量成正比。一台600MW电站锅炉膜式水冷壁管屏的拼接缝总长已超过万米。因此必须采用高效的焊接方法。在上世纪90年代以前,国内外锅炉炉制造广大多数采用多头(6-8头)埋弧自动焊。在多年的实际生产中发现,这种埋弧焊方法存在一致命的缺点,即埋弧焊只能从单面焊接,管屏焊后不可避免会产生严重的挠曲变形。管屏长度愈长,变形愈大,必须经费工的校正工序。不仅提高了生产成本,而且延长了成产周期。因此必须寻求一种更合理的焊接方法。

上世纪80年代后期,日本三菱重工率先开发膜式水冷壁管屏双面脉冲MAG自动焊新焊接方法及焊接设备,并成功地应用于焊接生产,这种焊接方法在日本俗称MPM法,其特点是多个MAG焊焊头从管屏的正反两面同时进行焊接。焊接过程中,正反两面焊缝的焊接变形相互抵消。管屏焊接后基本上无挠曲变形。这是一项重大的技术突破。经济效益显著。数年后哈尔滨锅炉厂最先从日本三菱公司引进了这项先进技术和装备,并在锅炉膜式壁管屏拼焊生产中得到成功的应用。之后,逐步在我国各大锅炉制造厂推广应用,至今已有十多条MPM焊接生产线正常投运。管屏MPM焊接的主要技术关键是必须保证正反两面的焊缝质量,包括焊缝熔深,成形和外形尺寸基本相同。这就要求在仰焊位置的焊接采用特殊的焊接工艺,脉冲电弧MAG焊(富氩混合气体)。焊接电源和送丝系统应在管屏全长的焊接过程中产生稳定的脉冲喷射过渡。因此必须配用高性能和高质量的脉冲焊接电源和恒速送丝机。这些焊接设备的性能和质量愈高,管屏反面焊缝的质量愈稳定,合格率愈高。实际上,哈锅厂从日本三菱重工引进的原装机只配用了晶闸管控制的第二代脉冲MIG/MAG焊电源,送丝机也只是传统的等速送丝机,管屏反面焊缝的合格率达不到100%,总有一定的返修量,为进一步改进膜式壁管屏MPM焊机的性能,最近国产的管屏MPM焊机配用了第三代微要控制逆变脉冲焊接电源和测速反馈的恒速送丝机,明显提高了反面焊缝的合格率。

2 对接高效焊接法

锅炉受热面过热器和再热器部件管件接头的数量和壁厚,随着锅炉容量的提高而成倍增加,600MW电站锅炉热器的最大壁厚已达13mm,接头总数超过数千个。传统的填充冷丝7IG焊的效率以远远不能满足实际生产进展的要求,必须采用效率较高的且保接头质量的溶焊方法。为此,哈锅和上锅相继从日本引进了厚壁管细丝脉冲MIG自动焊管机,其效率比传统的7IG焊提高3--5倍。后因经常出现根部未焊透和弧坑下垂等缺陷而改用TIG焊封底MIG焊填充和盖面工艺,改进的焊接工艺虽然基本上解决了根部未焊透的问题,但降低了焊接效率,增加了设备的投资,同时也使操作程序复杂化。最近,上锅。哈锅又从国外引进了热丝丁IG自动焊管机。"热丝rig焊的原理是将填充丝在送人焊接熔池之前由独立的恒压交流电源供电。电阻加热至650~800"C高温,这就大大加速了焊丝的熔化速度,其熔敷率接近于相同直径的M7G焊熔敷率。另外,TIG方法良好的封底特性确保了封底焊道的熔质量,因此,热丝/IG焊不失为小直径壁厚管对接焊优先选择的一种焊接方法。然而不应当由此全面否定脉冲MIG焊在小直径壁厚管对接中应用的可行性。曾通过大量的试验查明,在厚壁管MIG焊对接接头中,根部末焊透90%以上位于超弧段,而弧坑下垂起因于连续多层焊时熔池金属热量积聚导致过热。如将焊接电源电弧的功率作精确的控制,则完全可以消除上述缺陷的形成。由于引进的M]G焊自动焊管机原配的焊接电源为晶闸管脉冲电源,无法实现电弧功率的程序控制如改用当代最先进的全数字控制逆变脉冲焊接电源或波形控制脉冲焊接电源(计算机软件控制小),则可容易地按焊接工艺要求,对焊接电弧的功率作精确的控制,确保接头的焊接质量, 我们建议对现有的管子对接自动焊MIG焊机组织二次开发,将原有的晶闸管焊接电源更换成全数字控制逆变脉冲焊接电源,并采用PLC和人机界面改造控制系统,充分发挥MIG焊的高效优势。

3 厚壁容器纵环缝的窄间隙埋弧焊

厚壁容器对接缝的窄间隙埋弧焊是一种优质、高效、低耗的焊接方法。自1985年哈锅从瑞典ESAB公司引进第一台窄间隙埋弧焊系统以来,窄间隙埋弧焊已在我国各大锅炉、化工机械和重型机械等制造厂推广使用,近20年的实际生产经验表明,窄间隙埋弧焊确实是厚壁容器对接焊的最佳选择。

为进一步提高窄间隙埋弧焊的效率,国内外推出串列电弧双丝窄隙埋弧焊工艺与设备,但至今未得到普遍推广应用。这不仅是因为增加了操作的难度,更主要的是交流电弧的焊道成曙坎佳,不利于睨渣,容易引起焊缝夹渣。

最近,美国林肯(Lincoln)公司向中国市场推出交流波形参数(脉冲宽度、正半波电流值、脉冲频率,脉冲波形斜率)可任意控制的AC/DCl000型埋弧焊电源。采用这种新一代的计算机控制埋弧焊电源,可使串列电弧双丝埋弧焊的工艺参数达到最佳的组合。不但可以获得窄间隙埋弧焊所要求的焊道形成,而且还可进一步提高交流电弧焊丝的熔敷率。可以预期,波形控制AC/DC埋弧焊电源的问世必将对串列电弧双丝窄间隙埋弧焊的推广应用作出积级的贡献。

高效焊接方法篇3

中图分类号:TM273 文献标识码:A 文章编号:1009-914X(2017)14-0236-01

1.机电设备焊接的要求分析

分析机电设备焊接的要求,需要从如下三个方面进行探讨。

首先,严格执行机电设备的安装焊接标准。相关标准是机电设备安装和焊接的规范和依据,机电设备的安装和焊接应严格执行安全生产,并实施质量控制过程。然后有效规范设备安装,确保活动有序进行,充分发挥焊接规范和规范的标准。并重视实施和实施焊接标准,防止事故发生,提高机电设备的安装焊接水平奠定基础[1]。

其次,实施机电设备安装焊接规范。在实际工作中,我们更加重视技术标准的制定和实施,包括安装焊接操作的安全标准、技术管理法规和电气安全管理条例。严格执行这些标准,使用这些要求指导安装机电设备焊接工作。

第三,提高机电设备安装焊接人员的质量。无论是哪一种焊接规范,严格执行和实施员工,使其能够促进有效运作。在规范的实施中不应随意下调,严禁更改各种规格,防止偏离标准的实施,确保安装机电设备焊接工作起到提高焊接水平和技术管理效果的作用。

2.机电设备安装焊接的质量控制策略分析

2.1 机电设备的产品类型

机电设备产品焊接工作量需要予以重视,在机电设备的安装和焊接过程中,在工程中采用了刮板输送机和液压支架,以200m的综采生产线为例。刮板输送机和液压支架的重量约为3500t,结构件的比重超过总重量70%,液压元件占比重约20%,整个安装焊接工作任务体积,焊接耗材超过100t。焊接工艺选择由氩气保护焊为主,可显著提高熔焊效率,提高焊接质量。根据机电设备产品结构特点。刮板输送机的主要部件是中间槽,中间凹槽由两个插槽、中间板和底板焊接,由六焊缝组成。而这些焊缝是对称的,使其能够双双分布在同一平面内,这具有优势,使刀具状态和焊接自动化更容易实现。

2.2 机电设备安装焊接方法的选择

对于焊接方法的选择也是需要重视的一个工作,需要根据不同部位的实际情况使用不同的焊接方法。对于中槽结构的焊接质量控制。中槽具有结构简单、焊缝规则等特点,焊接机器人或焊接机用于焊接过程中的自动焊接。该焊接方法具有以下特点:大大提高了熔敷速度和焊接效率,但也能保持低热量输入,使焊缝显微组织细化,从而减小焊接变形和焊接应力。另外,两臂机器人可以同时焊接,大大节约了焊接时间,提高了焊接效率。对于窄间隙焊接方法的质量控制措施。该方法将v型槽转换为u型槽,可节省30%%的焊接材料,并将气体屏蔽电弧焊的焊接形式应用于外筒和底焊,采用中低线能量。实现多层多通道熔覆层的无清洗情况,大大降低了焊接功耗,提高了焊接效率。同时,由于焊接热输入的减少,焊缝晶粒细化,提高了焊缝的力学性能和疲劳性能,减少了气缸体泄漏的发生,提高了液压缸的使用寿命[2]。还需要正确选用焊接工艺。对于立柱缸,在加工工艺选择时,采用高压无缝钢管的堆焊工艺,使用表面的精密加工工艺替代刀具切削加工,从而降低了处理能力。另外,为了实现工件的转动和控制焊接速度,原有的卧式车床转动系统可用于实现这两种目的。采用车床和握炬实现纵向加料,形成半自动焊接系统,减少工作,提高焊接效率。

2.3 对于其他部件安装的焊接质量控制

在进行工作的过程中,必须严格的实施机电设备安装的焊接标准。安装焊接人员严格履行其职责,对焊接规范的要求,确保有效施标准。包括安装焊接管理标准,焊接操作标准,安全管理和焊接质量控制标准。应严格按照实施要求,充分发挥焊接规范和约束,促进焊接水平的提高。也需要提高机电设备安装焊接人员的质量。相关单位应重视引进高质量、扎实的焊接专业基础知识,加强焊接队伍建设,促进各种工作的顺利开展。重视焊接人员的培训,使他们严格遵守规范履行职责,加强职业道德教育,培养文化素质,员工协调沟通,进而提高自己的责任感,更好地完成机电设备的安装焊接工作。在施工的过程中需要改进安装机电设备的焊接措施。根据焊接工作需要,完善和完善设施,包括焊接施工设备、焊接安全防护设施、焊接人员安全防护设施等,防止焊接事故。为使各种设施合理,重视焊接施工检验和检验工作,有效保障设备安全,提高焊接生产水平。加强焊接工艺的协调。注重员工的协调与合作,做好建筑材料、设备、人员的协调工作,最大限度地减少损失,不仅保障焊接施工的安全,而且还要促进机电设备的焊接安装效率最大化。

2.4 采用先进的水电机组安装焊接技术

中国电机组的安装主要通过全方位的多焊接点的接头安装该机组,本机电焊接方法不先进合理,并具有相当多的焊接操作,这将使水电机组安装,需要耗费大量人力进行重焊操作。机电设备安装人员在安装大型水轮机组设备时,在实施全位置机电设备焊接时,员工通常会使用电烧嘴压力焊接技术,第一台电焊机接通电源,让焊用全预热,可以开始对接焊点,需要焊接材料对接,并加入焊剂的对接点然后通过点焊夹具固定,然后焊点可以为两段电源连接,使焊剂发热,并达到1800℃以上的发热温度,当焊剂冷却固定时,完成单元的每件焊接。但是,在实际机电设备安装和焊接过程中,整个焊接操作基本上是在开放的环境下,在这种情况下,许多外界不利因素会影响焊接施工的操作。因此,安装水电时,机组应采用对称分流转轮机和混合多单元流涡轮偏心技术进行水电活动。在焊接和安装水电机组时,适用于使用10m以上的机器直径,保持发电机组稳定。

3.结语

综上所述,本研究简单针对机电设备安装焊接质量的控制策略进行分析。笔者认为,落实机电安装焊接的质量控制措施是十分重要的,它能够有效提高产品的质量,也能够促进机电设备综合效率的提升,所以在实践过程中可以发挥出更加广泛和实际的价值。在实际工作当中,应该不断的发现问题解决问题要积累安装焊接的相关经验,进一步提高安装焊接的水平,以便于促进机电设备更好的发展。

高效焊接方法篇4

前言

激光是辐射的受激发射光放大的简称,由于其独有的高亮度、高方向性、高单色性、高相干性,自诞生以来,其在工业加工中的应用十分广泛,成为未来制造系统共同的加工手段。用激光焊接加工是利用高辐射强度的激光束,激光束经过光学系统聚焦后,其激光焦点的功率密度为104-107W/cm2,加工工件置于激光焦点附近进行加热熔化,熔化现象能否产生和产生的强弱程度主要取决于激光作用材料表面的时间、功率密度和峰值功率。控制上述各参数就可利用激光进行各种不同的焊接加工,这种焊接工艺在未来工业事业中将会得到广泛的应用与研究。激光焊接与传统的焊接方法相比,激光焊接尚存在设备昂贵,一次性投资大,技术要求高的问题,使得激光焊接在我国的工业应用还相当有限,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线和柔性制造。其中,激光焊接在汽车制造领域中的许多成功应用已经凸现出激光焊接不同于传统焊接方法的特点和优势,也为许多大功率激光器制造商和激光焊接设备制造商提供了更为诱人的经济效益前景。

1.激光焊接的一般特点

激光焊接是利用激光束作为热源的一种热加工工艺,它与电子束等离子束和一般机械加工相比较,具有许多优点:激光束的激光焦点光斑小,功率密度高,能焊接一些高熔点、高强度的合金材料;激光焊接是无接触加工,没有工具损耗和工具调换等问题。激光束能量可调,移动速度可调,可以多种焊接加工;激光焊接自动化程度高,可以用计算机进行控制,焊接速度快,功效高,可方便的进行任何复杂形状的焊接;激光焊接热影响区小,材料变形小,无需后续工序处理;激光可通过玻璃焊接处于真空容器内的工件及处于复杂结构内部位置的工件;激光束易于导向、聚焦,实现各方向变换;激光焊接与电子束加工相比较,不需要严格的真空设备系统,操作方便;激光焊接生产效率高,加工质量稳定可靠,经济效益和社会效益好。

2.激光焊接工艺与方法

2,1双/多光束焊接。双/多光束焊接的提出最初是为了获得更大的熔深和更稳定的焊接过程和更好的焊缝成形质量,其基本方法是同时将两台或两台以上的激光器输出的光束聚焦在同一位置,以提高总的激光能量。后来,随着激光焊接技术应用范围的扩大,为减小在厚板焊接,特别是铝合金焊接时容易出现气孔倾向,采用以前后排列或平行排列的两束激光实施焊接,这样可以适当提高焊接小孔的稳定性,减少焊接缺陷的产生几率。

2.2激光-电弧复合焊。激光-电弧复合焊是近年激光焊接领域的研究热点之一。该方法的提出是由于随着工业生产对激光焊接的要求,激光焊接本身存在的间隙适应性差,即极小的激光聚焦光斑对焊前工件的加工装配要求过高,此外,激光焊接作为一种以自熔性焊接为主的焊接方法,一般不采用填充金属,因此在焊接一些高性能材料时对焊缝的成分和组织控制困难。而激光一电弧复合焊集合了激光焊接大熔深、高速度、小变形的优点,又具有间隙敏感性低、焊接适应性好的特点,是一种优质高效焊接方法。其特点在于:可降低工件装配要求,间隙适应性好;有利于减小气孔倾向;可以实现在较低激光功率下获得更大的熔深和焊接速度,有利于降低成本;电弧对等离子体有稀释作用,可减小对激光的屏蔽效应,同时激光对电弧有引导和聚焦作用,使焊接过程稳定性提高;利用电弧焊的填丝可改善焊缝成分和性能,对焊接特种材料或异种材料有重要意义:激光与电弧复合焊的方法包括两种,即旁轴复合焊和同轴复合焊。旁轴激光电弧复合焊方法实现较为简单,但最大缺点是热源为非对称性,焊接质量受焊接方向影响很大,难以用于曲线或三维焊接。而激光和电弧同轴的焊接方法则可以形成一种同轴对称的复合热源,大大提高焊接过程稳定性,并可方便地实现二维和三维焊接。

3.激光焊接过程监测与质量控制

激光焊接过程监测与质量控制一直是激光焊接领域研究和发展的一个重要内容,利用电感、电容、声波、光电、视觉等各种传感器,通过人工智能和计算机处理方法,针对不同的激光焊接过程和要求,实现诸如焊缝跟踪、缺陷检测、焊缝成形质量监测等,并通过反馈控制调节焊接工艺参数,从而实现高质量的自动化激光焊接过程。

3.1激光焊接过程监测。利用各种传感器对激光焊接过程中产生的等离子体进行检测是常用和有效的方法,如图1所示。根据检测信号的不同,激光焊接质量检测主要包括以下几种方式:光信号检测,检测对象为激光焊接过程中的等离子体(包括工件上方和小孔内部)光辐射和熔池光辐射等。从检测装置的安装来看,主要包括与激光束同轴的直视检测、侧面检测和背面检测。使用的传感器主要有光电二极管、光电池、CCD和高速摄像机,以及光谱分析仪等。声音信号检测,检测对象主要为焊接过程中等离子体的声振荡和声发射。等离子体电荷信号,检测对象为焊接喷嘴和工件表面等离子体的电荷。利用光电传感器检测激光焊接过程中等离子体光辐射强度的变化是激光焊接过程监测与控制的重要方法之一。国内外研究工作表明,利用光电传感器可以自动检测出焊接过程中因激光功率、焊接速度、焦点位置、喷嘴至工件表面距离、对接间隙等工艺条件的波动引起的焊缝熔深和成形质量的变化,不仅可以诊断出诸如咬边、烧穿、驼峰等焊缝成形缺陷,而且在一定工艺条件下还可以检测焊缝内部质量,例如,气孔倾向的严重程度。

高效焊接方法篇5

1.1模糊控制模糊控制(FuzzyControl,FC)作为一种比较成熟的非线性智能控制方法,被最早引入到焊接过程的控制中,FC的实质是吸取了人类思维判断事物时所表现出来的模糊性特点,利用模糊语言变量、模糊集合和模糊逻辑推理为基础,使用模糊集合中的隶属函数、模糊关系、模糊推理和决策等工具推导出控制动作应用于被控对象[3]。图2所示为一种典型的模糊控制器工作模型,它将清晰量偏差e先进行模糊化处理变为模糊量E,经过模糊推理形成后得到一个模糊量U,最后进行清晰化处理形成确定的控制量ui作用于控制对象。从事焊接控制研究的专家和学者认为模糊控制的特点适合于焊接过程的控制,在焊接领域有广阔的应用前景,已经在焊接质量检测、焊缝跟踪和焊接设备等多方面使用。高延峰等人设计了一种具有预测功能的模糊控制器,主要是为了解决焊接机器人在弯曲转角处焊缝跟踪困难的问题,其设计思想是通过焊枪偏差和倾角信息来确定焊枪移动走向和焊缝方向之间的夹角,利用线性化模型预测焊枪移动至下一点的位置,采用加权最小二乘方法预测焊缝下一点位置,同时根据模糊控制理论实现焊接小车转弯时车轮和横向滑块之间的协调控制,在轮式移动焊接机器人弯曲角进行跟踪焊接的试验中取得较好的跟踪精度和焊接效果[4]。在熔化极气体保护焊中,为了控制焊接热输入和熔滴过渡的形式,得到更好的焊接效果,Aghakhani,Masood等人针对ST37不锈钢材料利用模糊逻辑建立了一个5因素的预测模型,该预测模型能够确定送丝速度、电弧电压、焊丝伸出长、焊接速度和气体流量之间的关系[5]。Malekjamshidi,Zahra等人设计了一种新型的基于模糊逻辑控制的恒流焊接电源,该智能化弧焊电源具有热启动、防卡死和空闲待机等节能功能,同时保证焊接过程中的恒定直流输出波动较小,焊接质量高,在移动焊接领域有广泛的应用空间[6]。华南理工大学的王瑞超和薛家祥利用自适应模糊逻辑控制设计了一款数字脉冲MIG焊接电源,该焊接电源采用双闭环控制,能够灵活、精确控制实时能量输入,通过试验表明,所设计的控制策略能够有效地适应电弧长度的变化,实现理想的一脉一滴熔滴过渡,焊接过程稳定,电弧声柔和,无飞溅产生,焊缝良好[7]。模糊控制是目前在弧焊电源中应用领域最为广泛的智能控制方法,从焊接质量检测、焊缝成形预测、焊接过程控制和焊接效果评价等都有成功的案例。尽管从理论上已经证明模糊控制能够以任意精度逼近任何非线性函数,是一种性能优良的非线性控制方法,但受到当前技术水平的限制,确定模糊逻辑中的隶属函数还主要依靠人为因素和经验,没有形成统一的理论指导,模糊变量的分类和模糊规则数不能太多,导致模糊控制的精度还需要进一步提高。

1.2神经网络神经网络也称为人工神经网络(ArtificialNeuralNetwork,ANN),是一种模仿生物神经网络的结构和功能的数学模型,它具有分布式存储信息、并行协同处理和自主学习的特点,常用来对输入和输出间复杂的关系进行建模,探索数据的模式。神经网络目前在焊接过程建模控制、焊接质量和接头性能预测、焊接熔池图像处理以及焊缝跟踪等方面都有一定的应用。图3所示为一种多层结构神经网络。输入层有众多神经元,接收大量非线性输入信息,输入的信息被称为输入向量。输出层输出的信息称为输出向量,是信息在神经元节点中传输、分析、权衡后形成的结果。隐藏层又称为“隐层”,位于输入层和输出层之间,是由众多神经元节点和链接所组成的层面。隐藏层可以有1层,也可以用多层。隐藏层的神经元节点数目不定,一般来说,数目越多神经网络越复杂,非线性特征就越显著,神经网络的健壮性就会越强。IrvingB在文献[8]中介绍了神经网络技术应用于电弧焊、激光焊、电阻焊、电子束焊和搅拌摩擦焊等各种焊接方式的工艺优化情况,并且认为利用神经网络模型能够有效节省成本,降低焊接操作人员的工作量,增强工作效率。Pal,Sukhomay等人设计了一种多层神经网络模型来预测脉冲熔化极惰性气体保护焊焊件的极限拉伸应力,该模型通过输入脉冲电压、反馈电压、脉冲宽度、脉冲频率、送丝速度、焊接速度6个测量参数和平均焊接电流和电压的均方根值来得到极限拉伸应力输出值,通过对比发现该模型预测值比多元回归模型得到的值更准确[9]。刘立君等人采用电弧声对焊接过程熔透性进行监测与诊断,发现电弧声特征参数是诊断成败的关键,通过采用神经网络的特征评价和特征选择方法,利用神经网络的训练结果对特征参数进行评价能有效对特征参数降维,通过试验验证了该方法的可行性和有效性[10]。针对熔化极气体保护焊在工业生产中的广泛应用,闫志鸿等人以低碳钢为焊接对象,研究其焊缝成形过程的建模与仿真方法,文献[11]利用BP神经网络建立了该过程的动态模型,揭示了脉冲熔化极气体保护焊过程的焊缝成形规律,提出了一种利用神经网络模型考察熔池正面特征参量与反面宽度之间关系的方法,验证了熔池特征参量的有效性与可靠性。从国内外最新的相关文献来看,报道的神经网络技术在焊接过程中的应用多数是焊接过程建模及控制。通过研究发现,以采集效果较好的焊接试验数据作训练样本对神经网络进行训练,建立一个焊接工艺参数能自动优化、在线调节的神经网络,可以指导焊接过程,获得外形美观、高强度、高质量的焊缝。但是,神经网络的软硬件技术还不成熟,实时性较差,网络模型中的隐含层数目难以精确确定,同时,采用的算法还欠缺稳定性,收敛性也比较慢。

1.3遗传算法遗传算法(GeneticAlgorithm,GA)是一种参照生物界的适者生存、优胜劣汰遗传进化规律演化而来的搜索算法[12]。其主要特点是不存在求导和函数连续性的限定,直接对对象进行操作。算法最初是参考进化生物学中的遗传、自然选择、杂交以及突变等现象,这些现象具有良好的全局寻优能力和内在的并行性,在寻优方法上采用概率化思想,事先不确定的规则,利用算法自动获取和优化搜索空间,自适应地调整搜索方向。遗传算法的自寻优性质被人们广泛地应用于机器学习、自适应控制、信号处理、组合优化和人工智能等领域。KimD和RheeS希望找到一种在没有确定的数学模型的情况下,通过优化焊接工艺参数来确定熔化极气体保护焊的焊缝几何形状的方法。在文献提到的遗传算法寻优中,4个输入参数分别是焊缝根部间隙、送丝速度、电弧电压和焊接速度,输出参数是焊缝高度和熔深,当输入参数的数量为4,16,16和16时,总的搜索目标点可以达到16384个,是一种通过较少的试验结果数据获得最优工艺参数的方法[13]。为了焊接带有防锈层的奥氏体不锈钢,YoganandhJ等人利用多元回归方法设计了一个GMAW焊接数学模型,使用遗传算法对参数进行了优化,试验取得良好的焊接效果[14]。SathiyaP等人用直径1.2mm焊丝焊接奥氏体不锈钢薄板也采用遗传算法进行工艺参数优化。通过试验采集气体流量、电弧电压,焊接速度、送丝速度、焊缝高度、宽度和熔深等数据建立一个回归分析数学模型,遗传算法优化的工艺参数能在尽量减少焊缝高度和宽度的前提下获得较深的熔深效果[15]。遗传算法在焊接中的应用主要表现在焊接工艺参数最优值的搜索功能方面,利用少量的试验数据,通过不断地进行全局寻优,能准确、高效地确定适用于最佳焊接效果的工艺参数。

1.4群智能算法为了使焊接过程能被更好的控制,取得高质量的焊接效果,人们除了使用模糊控制、人工神经网络控制和遗传算法外,还把模拟退火算法(Simulat-edAnnealingMethods,SA)、蚁群算法(AntColonyOptimization,ACO)和粒子群算法(ParticleSwarmOptimization,PSO)等智能优化算法应用于弧焊电源的控制中。模拟退火算法是基于Monte-Carlo迭代求解策略的一种随机寻优算法,工作原理是考虑了固体物质的退火过程和一般组合优化问题之间的相似性。算法执行过程是从某一较高初始温度出发,随着温度数值的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解。KatherasanD等人研究药芯焊丝电弧焊工艺时,为了得到满足要求的焊缝宽度、熔深和接头强度,用模拟退火算法和遗传算法联合进行送丝速度、电弧电压、焊接速度和焊枪倾角的参数优化,焊接后的效果良好,能大大提高生产效率[16]。焊接接头的质量受焊接熔深的影响很大,因此,准确预测和获得最大化的熔深是非常必要的。文献[17]提到一种不锈钢钨极氩弧焊的熔深预测与优化模型,该模型是3层前馈性神经网络,4个输入参数是焊接电流、焊接速度、保护气体流量和焊枪倾角,输出参数是焊缝熔深,模型经过模拟退火算法优化训练后能精确预测熔深。群智能算法是计算机工作者受蚂蚁群、鱼群、蜂群、鸟群等具有社会性特点的动物群体行为启发,通过对社会性动物生活的模拟产生的一系列对于传统优化问题的解决方法,焊接领域中研究较多的是蚁群算法和粒子群算法。文献[18]把蚁群算法应用于自适应焊接机器人中,通过焊接机器人双目立体视觉系统和小型线性激光发射器检测焊缝位置和方向,蚁群算法能根据焊接机器人手臂移动角度增量给出优化后的焊接工艺参数指导焊接轨迹。曲线焊缝和马鞍形焊缝的试验结果显示,基于蚁群优化算法的自适应焊接机器人比传统的PID控制和模糊控制焊接精度要高。粒子群算法优化用于神经网络训练参数的优化已取得了不错效果,Malviya等人在熔化极惰性气体保护焊中就采用了粒子群优化神经网络结构[19]。KatherasanD在药芯焊丝电弧焊中建立了送丝速度、电弧电压、焊接速度和焊枪倾角为输入参数,焊缝宽度、强度和熔深为输出参数的神经网络模型,焊接试验数据采用粒子群算法进行优化,实现了在较窄的焊缝上得到最大的熔深[20]。

高效焊接方法篇6

0 引言

激光焊接与传统的焊接方法相比,激光焊接尚存在设备昂贵,一次性投资大,技术要求高的问题,使得激光焊接在我国的工业应用还相当有限,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线和柔性制造。其中,激光焊接在汽车制造领域中的许多成功应用已经凸现出激光焊接不同于传统焊接方法的特点和优势,也为许多大功率激光器制造商和激光焊接设备制造商提供了更为诱人的 经济 效益前景。

1 激光焊接的一般特点

激光焊接是利用激光束作为热源的一种热加工工艺,它与 电子 束等离子束和一般机械加工相比较,具有许多优点:①激光束的激光焦点光斑小,功率密度高,能焊接一些高熔点、高强度的合金材料;②激光焊接是无接触加工,没有工具损耗和工具调换等问题。激光束能量可调,移动速度可调,可以多种焊接加工;③激光焊接自动化程度高,可以用 计算 机进行控制,焊接速度快,功效高,可方便的进行任何复杂形状的焊接;④激光焊接热影响区小,材料变形小,无需后续工序处理;⑤激光可通过玻璃焊接处于真空容器内的工件及处于复杂结构内部位置的工件;⑥激光束易于导向、聚焦,实现各方向变换;⑦激光焊接与电子束加工相比较,不需要严格的真空设备系统,操作方便;⑧激光焊接生产效率高,加工质量稳定可靠,经济效益和社会效益好。

2 激光焊接工艺与方法

2.1 双/多光束焊接 双/多光束焊接的提出最初是为了获得更大的熔深和更稳定的焊接过程和更好的焊缝成形质量,其基本方法是同时将两台或两台以上的激光器输出的光束聚焦在同一位置,以提高总的激光能量。后来,随着激光焊接技术应用范围的扩大,为减小在厚板焊接,特别是铝合金焊接时容易出现气孔倾向,采用以前后排列或平行排列的两束激光实施焊接,这样可以适当提高焊接小孔的稳定性,减少焊接缺陷的产生几率。

2.2 激光-电弧复合焊 激光-电弧复合焊是近年激光焊接领域的研究热点之一。该方法的提出是由于随着工业生产对激光焊接的要求,激光焊接本身存在的间隙适应性差,即极小的激光聚焦光斑对焊前工件的加工装配要求过高,此外,激光焊接作为一种以自熔性焊接为主的焊接方法,一般不采用填充金属,因此在焊接一些高性能材料时对焊缝的成分和组织控制困难。而激光-电弧复合焊集合了激光焊接大熔深、高速度、小变形的优点,又具有间隙敏感性低、焊接适应性好的特点,是一种优质高效焊接方法。其特点在于:

可降低工件装配要求,间隙适应性好。

有利于减小气孔倾向。

可以实现在较低激光功率下获得更大的熔深和焊接速度,有利于降低成本。

电弧对等离子体有稀释作用,可减小对激光的屏蔽效应,同时激光对电弧有引导和聚焦作用,使焊接过程稳定性提高。

利用电弧焊的填丝可改善焊缝成分和性能,对焊接特种材料或异种材料有重要意义。

激光与电弧复合焊的方法包括两种,即旁轴复合焊和同轴复合焊。旁轴激光-电弧复合焊方法实现较为简单,但最大缺点是热源为非对称性,焊接质量受焊接方向影响很大,难以用于曲线或三维焊接。而激光和电弧同轴的焊接方法则可以形成一种同轴对称的复合热源,大大提高焊接过程稳定性,并可方便地实现二维和三维焊接。

3 激光焊接过程监测与质量控制

激光焊接过程监测与质量控制一直是激光焊接领域研究和 发展 的一个重要内容,利用电感、电容、声波、光电、视觉等各种传感器,通过人工智能和 计算 机处理方法,针对不同的激光焊接过程和要求,实现诸如焊缝跟踪、缺陷检测、焊缝成形质量监测等,并通过反馈控制调节焊接工艺参数,从而实现高质量的自动化激光焊接过程。

3.1 激光焊接过程监测 利用各种传感器对激光焊接过程中产生的等离子体进行检测是常用和有效的方法。根据检测信号的不同,激光焊接质量检测主要包括以下几种方式:

3.1.1 光信号检测。检测对象为激光焊接过程中的等离子体(包括工件上方和小孔内部)光辐射和熔池光辐射等。从检测装置的安装来看,主要包括与激光束同轴的直视检测、侧面检测和背面检测。使用的传感器主要有光电二极管、光电池、ccd和高速摄像机,以及光谱分析仪等。

3.1.2 声音信号检测。检测对象主要为焊接过程中等离子体的声振荡和声发射。

3.1.3 等离子体电荷信号。检测对象为焊接喷嘴和工件表面等离子体的电荷。

高效焊接方法篇7

中图分类号:P755文献标识码: A

一、半自动焊接方法

半自动焊接是焊丝连续送进,电弧的运动由焊工手工操作的焊接方法,设备比较简单,移动方便,焊接准备时间短,焊接操作灵活,焊接质量稳定可靠,生产效率高,适用于全位置焊接。半自动焊接方法很多,目前主要有CO2气体保护半自动焊,药芯焊丝CO2气体保护半自动焊及自保护药芯焊丝半自动焊等。为了选出适合于焊接API规范的大口径长输管道的焊接方法,本文对目前常用的半自动焊接方法进行全位置管道焊接的试验研究。

1、CO2气体保护半自动焊接

CO2气体保护半自动焊接采用实芯镀铜光焊丝,纯二氧化碳气体,焊丝本身对电弧不起保护作用,完全依靠二氧化碳气体保护电弧及熔池,以防止空气的侵入,同时二氧化碳气体又起到使电弧稳定燃烧的作用,由于二氧化碳气体保护焊的电弧气氛是氧化性气氛,因此对铁锈、油污不敏感,焊缝含氢量低,但是对熔敷金属的合金元素烧损严重,所以焊丝中含有较高的锰和硅等合金元素。

2、药芯焊丝CO2气体保护焊

药芯焊丝CO2气体保护焊的焊丝中含有相当于焊条药皮成分的焊药,焊丝中的焊药在电弧燃烧时产生气体和熔渣,熔渣堆焊接熔池有保护作用,气体具有稳定电弧燃烧和保护电弧气氛的作用,焊药中的合金元素对熔敷金属有冶金作用,能够改善焊缝金属的化学成分从而改善焊缝金属的机械性能。药芯焊丝气体保护焊比实芯焊丝CO2气体保护焊最大的优点是熔敷金属的机械性能好,焊缝的熔合性好。

3、自保护药芯焊丝焊接

自保护药芯焊丝焊接是一种技术含量很高的焊接方法,该焊接方法完全焊丝中的焊药在电弧燃烧时产生的气体和熔渣保护电弧和熔池防止空气的侵入,并使电弧稳定燃烧,对熔池金属具有冶金作用;该焊接方法与手工电弧焊一样具有抗恶劣环境的能力。自保护药芯焊丝焊接时的电弧吹力大,熔深大,熔敷效率高,熔渣少,易清理,焊缝金属的机械性能好。生产效率高。自保护药芯焊丝下向焊用于管道全位置焊接时,焊道薄,焊接层次多,后一层焊道对前一层焊道有热处理作用,焊接速度快焊缝金属的机械性能好。焊缝X射线探伤合格率高。自保护药芯焊丝下向焊与合适的管道打底焊工艺相配合用于大口径长输管道的焊接将会有很好的前途。

二、半自动焊焊接质量的控制

曲率半径相对较大,比较有利于半自动焊操作,而现在的焊接对象管径小,曲率变化较大,半自动焊操作难度增大,焊接质量控制要严格。

加大焊接前的管端清理工作,确保管端两侧25mm内的防锈漆和油污清理干净。管口组对时严格控制错边量,错变量控制在壁厚的0.15倍以内。错变量超标,严重影响焊接质量。在管道焊接施工过程中,应考虑环境温度、湿度和风速对不同焊接方法的影响,采取必要的措施保证焊接质量。在环境温度较低且湿度较大的地段,应加强焊前预热和层间预热,减缓焊缝的冷却速度,使焊缝中的气体充分溢出;风速较大的地方可以制作专用防风棚,减小风对焊接过程的影响。加强焊接材料的管理,严格控制焊接材料的质量,杜绝变质焊接材料的使用。适当加大焊接电流,放慢焊接速度,增加焊接热输入,以改善熔渣溢出条件。调整焊枪角度,正确运条,有规律地搅动熔池,促使熔渣与铁液分离。

选择合适的焊接坡口角度,对口间隙不宜过大,钝边不易过小,焊接电流适当,在焊接过程中要调整好电流,尤其是在焊缝的5点位和7点位。当焊接坡口角度小、钝边过大或对口间隙过小时,应加大焊接电流,适当放慢焊接速度,增加焊接热输入。清根要彻底,每个接头点要打平,清根时,要将根焊道打磨成“U”行槽。

每条焊缝宜采用连续焊接,不得随意中断。如因故中断,在继续焊接前,首先应确认焊缝无裂纹,同时采取预热措施,方可继续施焊。

三、管道半自动焊工艺选择

1、管道焊接的半自动填充盖面焊

实心焊丝CO2气体保护半自动焊进行全位置焊接时,要从管道底部引弧向上焊接,每层焊道的厚度较厚,可达4~5mm,焊接速度较慢,每分钟只有6~10cm,对有层间温度要求的材料不能满足要求,同时由于CO2气体保护焊的熔池冷却速度快,焊熔深较浅,焊缝的抗拉强度和屈服强度较高,延伸率和冲击韧性有所下降,甚至在弯曲试验时从熔合线发生断裂。因此,认为实芯焊丝CO2气体保护焊不适合于X60等材质的油气长输管道的焊接。

药芯焊丝CO2气体保护半自动焊熔敷金属的机械性能虽然好,但是由于熔敷金属的过渡为颗粒过渡,焊工不易掌握,因此也不适合于管道焊接。

自保护药芯焊丝半自动下向焊,该方法采用自保护药芯焊丝,没有外加的保护气体,完全依靠焊丝中的焊药在电弧燃烧时产生的气体及熔渣保护焊接电弧及熔池,并对熔敷金属有冶金作用,此方法的电弧吹力较大,焊接熔深大,抗风能力强。焊接时电弧自上而下运动,焊接速度快,每层熔敷金属的厚度较小,需要多层多道焊接。

2、管道打底焊工艺

CO2气体保护焊由于二氧化碳气体对熔池的冷却作用,使得短路过渡时焊接熔池特别小,容易控制,因此也适合于管道打底焊,近年来还发展了专门用于管道打底焊接的能够控制电流波形的STT下向焊设备,已开始用于管道打底焊接。不论何种二氧化碳气体保护焊打底方法都有一个共同的弱点,就是对管道的组队要求高,必须非常严格的控制对口间隙以及钝边,否则容易产生烧穿、未熔合、未焊透等焊接缺陷,另外CO2气体保护焊打底要求焊工必须全神贯注的盯着熔池,控制电弧始终在熔池上方燃烧,否则容易产生穿丝现象,也就是焊丝直接穿进管道内,形成异物,这对以后的调试运行有极大的危害。

CO2气体保护表面张力(STT)下向焊打底。CO2气体保护焊的熔滴过渡在小电流情况下是一种频率很高的短路过渡;表面张力过渡是采用弧焊电源外特性的波形控制技术,使得焊接规范随熔滴的形成、长大、和过渡而改变,使熔滴的过渡不同于一般的短路过渡需要爆断小桥,而是依靠表面张力平缓的过渡到熔池中去,电弧由上而下运动,不作横向摆动或仅作轻微的横向摆动,这样可以形成一层薄而均匀的打底焊道。实践证明用这种方法进行管道打底焊接焊缝成形好,合格率高,焊接效率高。表面张力焊接是CO2焊接技术的新发展,特别适合于管道打底焊。

结束语

半自动焊焊接方法是综合了焊条电弧向下焊的灵活、手法简单,焊层薄、缺陷少以及半自动药芯焊丝自保护向下焊,焊接电流大,熔深大,焊接速度快,自保护效果好,缺陷少,抗风能力强,生产效率高,盖面层成形美观的共同优点。该焊接方法不仅改变了传统焊接方法速度慢、焊口合格率低的不足之处,同时提高了油气管道工程施工的生产效率和焊口质量。

高效焊接方法篇8

中图分类号:F253.3 文献标识码:A 文章编号:

一、铁路无缝线路钢轨焊接的方法

无缝线路工程在钢轨的搬运、铺设及焊接方面有高标准,高要求,这也是无缝线路铺设过程中的重点与难点。过去,钢轨长度受到制造、运输、铺设及养护等步骤的制约。改进发展后,各国普遍都用分步焊接钢轨的方式。此方法首先需要选择距离适中的地点,建立焊接工厂。其次,把从制造厂运来的标准铁轨加工成适合短途运输及承受能力强的长钢轨。最后,在工地开展焊接工作,使之成为无缝线路。

目前,钢轨焊接主要运用的方法有接触焊、气压焊、铝热焊、电弧焊。普遍而言,焊接工厂采用接触焊的方法,利用≤30m的短钢轨的拼接,焊接成200~500m的长钢轨。然后通过铝热焊、气压焊或电弧焊,将其焊成800~1500m的单元轨。另外,要求对跨区间无缝线路进行3次铝热焊接。可见,不同的焊接方式有其各自的特点。下面,通过的焊接原理和使用原则等方面,对各种焊接方式的优缺点进行分析:

(1)接触焊。其工作原理是利用通电电流对电阻效益所产生的大量热源熔接器件。通过顶锻后最终完成焊接步骤。其优点在于焊接速度快,质量高。由于其对设备要求繁琐,耗费功率较大,焊接一次所需成本较高,所以一般被工厂所采用。

(2)气压焊。其工作原理是通过气体燃烧所带来的热量,将铁轨端部处于融化或塑性状态。接着利用顶锻压力焊连已受焊器件的端点。此方法不仅一次性投资小、耗电少,而且效率高、功效好,多被应用于现场焊接操作。在焊接接头断面时要有精湛的技术,并要求纵向移动钢轨作为辅助工作。所以无法进行超长钢轨和跨区间无缝线路焊接。

(3)铝热焊。其工作原理是运用铝的化学性质,将其与金属氧化物混合后置入坩埚中剧烈燃烧,利用反应放出的热量将钢轨融化为钢水流入砂模中。设备简易,操作容易是它的优点。性能不强,试验不准是它的缺点。

(4)电弧焊。其工作原理是运用电焊条或焊丝接触钢轨端面后发生电弧电热熔化,静止冷却一定时间后,最终生成对焊焊头。此方法普遍用于现场维修。它主要的优势在于焊接金属的性能、硬度、耐磨强度赶超标准钢轨材料。目前,国外已能较好的使用电弧焊方法。由于其焊接耗时久,稳定性差、需要有高素质专业人才进行操作实施。所以,处于萌芽阶段的我们,正在对此方法做更深一步的探究。

二、国内外钢轨焊接技术应用现状

全球都力争发展无缝线路钢轨焊接技术,他们风格迥异,特点全然不同。如:

日本高速铁路钢轨焊接有三个步骤,第一,运用闪光接触焊和气压焊,将25m/50m的标准钢轨厂间焊成200m长钢轨,第二三次,主要使用铝热焊、强迫成型电弧焊和气压焊,铺设出800~1500m超长无缝线路。近几年,德国铁路部焊接钢轨接头时,大部分采用 “短时预热快速铝热焊法”。不仅加快了铝热焊预热的速度,而且改良了焊头的材质特性,增加其稳固性。当今,德国已建立出SKV焊接方法。法国着力于研究高速铁路钢轨焊接技术,在厂内采取高效的接触焊接法,在工作点利用移动式接触焊和QPCJ铝热焊接。QPCJ铝热焊具有严密的13个步骤,包括到焊接现场前的准备、在现场工作时的流程、对轨道的检查、对钢轨端头焊接的要求、钢轨端头是否对正、提前预备好砂模、预热标准钢轨、充足的焊药包、浇注成形、拆除砂模和推瘤、热打磨及冷打磨,最后一步为收尾检查。每一项都详细规定并标注解释。

对于跨区间无缝线路技术的研究,国外归纳出两种模式:一是在厂内将锰钢辙叉两端焊接过渡轨一块,消除了锰钢辙叉与碳素钢轨之间的焊接困难。二是采用新创立的钢轨组合式辙叉,在厂内将钢轨焊联成整体辙叉并给予热处理。

我国于1957年开始涉入钢铁焊接,到目前为止,取得令人颇为满意的成绩。当今我国正使用大剂量三片模定时预热焊法等新材料、新技术,新产品,为进一步提高钢轨性能而不懈努力。另外,移区间联合接头这一环节常常采用动式小型气压焊机。现场焊接多采用了法国拉伊台克国际公司的QPCJ铝热焊接技术。焊接设备国产化的研究应成为今后钢轨焊接技术研究的重点,从而不断提高焊接水平,为我国高速铁路的钢轨焊接储备必要的技术实力。

三、如何改善钢轨焊接质量

(1) 完善钢轨焊接制度

由于钢轨焊接制度对质量方面规定的缺乏,导致屡屡出现铺后断折的现象。为延长钢轨实用期,需增设对过程的监管与调控。通过对各焊轨企业资质、焊工素质、设备器材、焊接方法的调查,筹划出一套完整的钢轨质量要求规定。同时,还应增设无缝线路焊接计划,保证跨区间无缝线路的有效实施,建立一套标准的钢铁质量体系,是保证无缝线路正常运行的关键。

(2)合理应用整体道床

整体道床结构是一种新型的轨下基础,它不仅有整体性强、易维修、高质量等优势,还可以无缝线路铁轨的潜力充分发挥出来。碎石道床轨道的横向阻力取决于碎石对轨枕的约束力。倘若道床中的轨枕有横向位移倾向时,整体受力部分都会产生阻力。整体道床结构主要由钢筋混凝土搭建构成,其抗横向阻力效果明显优于碎石道床,整体道床结构单个普通扣件横向阻力值约在45kN,可明显提升无缝线路的稳定性。

(3) 全面提高企业素质

全面考察焊轨施工现场,对符合标准的施工队颁发许可证并定期进行监督。提高员工个人素质、设备条件、管理体系、质量性能等方面,可学习国外分级制模式,有效开展业内竞争活动。其次,监管施工现场。派监理人员对施工过程进行监督和管理,即实行监理制。使其能保质保量高效的完成目标任务。另外,监理人要定期进行考核,必须做到持证上岗。另外开展技术培训工作。 加强铁路焊接钢轨的规定的同时,需要焊工人员的合作与配合。所以,对焊工和管理人员应开展全面的培训教育,通过考试,演讲等形式,使人员提供技术水平和管理能力,能做到自主发现问题并有效改正小问题。从严格控制作业机制过程,从而彻底转变被动解决问题的困难局面。

四、总结

通过分析,发现国内无缝线路的施工过程都未符合《钢轨焊接接头技术条件》的要求。对于焊接钢轨的方法,不仅要明确如何合理使用方法,更要在实践中充分体现所选方法的优势。目前,我国大量的钢轨焊接设备和材料仍依赖进口,我们应把先进的技术和思想融合在焊接钢轨中来,完善焊接法律,制定质量标准,达到无缝线路钢轨实用性强的目标。对于国内外现状,对几种可行措施进行述评,强调了研究国产化焊接设备的重要性,同时提出了建设性意见,希望对铁路无缝线路钢轨焊接技术起到一定的促进作用。

参考文献:

[1]高速铁路无缝线路钢轨焊接技术的研究 周奕 上海铁道科技 2009年第三期

高效焊接方法篇9

中图分类号 TG4 文献标识码A 文章编号 1674-6708(2014)112-0110-02

塑料作为现代化工艺的材料,应用到从日常生活用品到高科技或者军事的生产生活领域中。而塑料实现其自身价值的方法则是通过将材料制成各种工业制品来完成,因此对于塑料来说对其进行工艺加工成型对其价值的体现具有重大意义。由于在塑料加工的过程中,受到一定客观因素的影响,很多结构复杂的塑料不能一次成型。利用焊接加工的方法则可以有效的解决这个难题,将多个零部件有效的连接起来。完成整个塑料零件的制作。当下,焊接的办法也很多,本文主要针对常规的焊接办法进行详细介绍和分析。

1 超声波焊接

超声波焊接,顾名思义是利用超声波原理,对塑料进行焊接的一种焊接办法。它主要是通过焊接物垂直振动产生热能,并软化塑料的内部结构而产生粘性而完成焊接工作。这种焊接办法的优势就在于,焊接质地均匀牢靠、焊接效果美观、强度大不易变形。在进行超声波焊接时,由于塑料的材质不同,因此在焊接的过程中由于其化学性能和物理性能的不同,所焊接出来的效果并非处于完美状态。此种焊接办法主要适用于汽车行业中。

2 激光焊接

激光焊接办法是在传统焊接办法的基础上衍生而来的新的焊接办法,他主要是通过零件互相接触,激光束透过材料表面,吸收零件的热量并熔化,最终使两个零件紧密相互连接。这种焊接办法成为现代工业中常用普遍的焊接办法,它的优势在于,焊接缝在精度上极为精确、焊接效率高、产生杂质少、容易控制、延伸范围广等。这种焊接办法适用于医疗器械、汽车、包装行业等社会工业领域中。

3 热板焊接

热板焊接是指通过利用外在条件,加热两个塑料焊接体的焊接面,使其达到熔点,软化后,将两个塑料体融合在一起的焊接办法。这是在焊接办法中最为常规和简便的焊接办法。但是这个办法在操作时候受到一定限制,因为它主要适应于同类性能塑料的焊接。对于不同种热性能塑料的焊接,运用此种办法不易控制,造成了一定的加工难度。它的优势在于,制作工艺简单、操作简便、焊接成本低、对同类塑料的焊接易控制等。这种焊接办法主要适用于家电、汽车、塑料包装制品等方面。尤其在蓄电池和汽车内饰灯方面的应用极为广泛。

4 摩擦焊接

摩擦焊接的完成主要是通过两个焊接物体,通过摩擦产生热,达到熔点后,并在冷却后,二者形成有效结合的统一体。此种焊接办法在焊接的过程中应注意,两个塑料抵紧的压力不要过大,摩擦时间不宜过长。否则会产生熔融塑材外溢等现象。这种焊接办法的优势在于焊接效果好、质量高、接缝密集、操作设备简单、易操作、适用范围广、易控制等。它的适用范围主要集中在汽车半轴、气门、连身齿轮、安全气囊、前悬架等方面。目前这种生产工艺广泛的应用于国外的汽车生产行业中,国内少有涉及,依然以传统的焊接工艺为主。

5 振动焊接

振动焊接也是在摩擦生热的原理的基础上来完成焊接的,但是它区别与摩擦焊接的是:它的摩擦是在物体的表面通过直线运动来完成的,而区别与超声波焊接的是振动频率较低。它是两个塑件在线性直线运动产生振动,这种焊接办法主要广泛适用于体积较大,结构较为复杂的焊接生产工艺中。振动焊接几乎适用于所有热性塑料的焊接。这种焊接办法可以广泛的应用于汽车、塑胶、以及管路等生产行业中。

6 高频焊接

塑料的高频焊接主要是根据高频电场作用的原理进行的。它主要是通过在高频电场的作用下高聚物的极性分子产生强烈震荡,这使得分子间不断摩擦生热,并形成熔融状态。促使两个塑体间产生粘性而连接到一起。这种焊接办法的优势在于它的性能良好灵活、焊接时定位准确、操作使用简便、适用于较小零部件的加工等。目前它主要的适用范围是皮具、手表、帐篷、热水袋、帐篷、输液袋、帐篷、体育用品以及文具等。

7热风焊接

热风焊接是通过对焊接面与焊接条的抬升接触来完成焊接的,它的原理是在利用热气流提成并与母体相互融合。此种焊接办法在焊接的过程中焊接质量的高低不仅仅取决于焊枪的位置和运动,还取决于焊接的材质、焊条尺寸和截面形式等。这种焊接办法的优势就在于焊接设备简单、成本低、主要适用于大型复杂焊接物体上。但是它的缺点就在于不易控制,操作周期过长等。这种焊接办法主要适用于大批量生产加工行业。

8 感应焊接

感应焊接不同于其他的焊接办法,它与其他焊接办法具有本质上的区别。它是通过在被粘合的塑体表面间放入金属嵌件来完成的,并施加一定压力使它们粘合在一起。随后将其置放在高频磁场内,使其受到热传感效应而熔融并结合,最后通过冷却成型来完成焊接。在焊接的过程中物体的推向力与升温速度成正比。感应焊接的优势在于形势多样化,效率高、时间短、它的缺点在于焊接强度低于其他的焊接办法,并在此焊接过程中,对于焊接设备的投资过大。它适用的范围是热性塑料。

9 结论

通过对以上各种塑料加工办法的介绍和分析,可以看出每种方法都是利弊共存。并不是每种方法都适用于同一个塑体,这就要根据具体需要和具体材质来进行分析和采用。塑料焊接的应用正朝着社会化的方向发展,它是每个行业的需要。它发展的过程也是由传统单一的焊接办法,发展成具有多样性、便利性的焊接办法。它的发展趋势逐渐向自动化、机械化方向发展。对于各种塑料的焊接技术而言,焊接成本是它们的决定因素。批量的大小对每个零件生产成本的影响不同,这就意味着批量的大小可以直接影响零件的生产成本。焊接技术的不断完善和工艺水平的不断提高,已经形成一种新型的加工产业,不断的为人民和社会服务。

参考文献

[1]陆阳飞.张旭东.塑料涂料研究进展[J].上海涂料,2012,46(8):12-13.

高效焊接方法篇10

中图分类号:P755.1 文献标识码:A

焊接技术是在高温或高压条件下,使用焊接材料(焊条或焊丝)将两块或两块以上母材(待焊接的工件)连接成一个整体的操作方法。焊接技术作为制造业中传统的基础工艺和技术,虽应用到工业中的历史并不长,但发展却非常迅速。短短几十年间,焊接技术已被广泛应用于航空航天、汽车、桥梁、高层建筑、造船以及海洋钻探等许多重要工业领域,并且为促进工业经济发展做出了重要贡献,使得焊接已经成为一个重要的制造技术和材料科学的重要专业学科。

一、焊接技术发展的现状

(一)焊接生产率是推动焊接技术发展的重要驱动力

连接简单的构件以及制造毛坯是最初的焊接方式,随着技术的不断更新,焊接已成为制造业中一项不可代替的基础工艺以及生产精确尺寸制成品的生产手段。目前,焊接技术最需要的就是有效的保证焊接产品质量的稳定性及提高劳动生产效率。提高生产率的途径有两种:一是提高焊接熔敷率,焊条电弧焊中的铁粉焊条、重力焊条、躺焊条等工艺以及埋弧焊中的多丝焊、热丝焊均属此类,其效果显著。二是减少坡口断面及熔敷金属量,其中窄间隙焊接效果最显著。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝或三丝进行焊接。无论接头厚度如何,均可采用对接形式,所需熔敷金属量会数倍、数十倍地降低,从而大大提高生产率。窄间隙焊接的关键是保证两侧熔透和电弧中心自动跟踪处于坡口中心线上。为解决这两个问题,世界各国开发出多种不同方案,因而出现了种类多样的窄间隙焊接法。如果能够在以下方面取得进展,焊接方法的先进性会得到更高的评价:提高熔敷速度,减少生产周期,提高过程控制水平,减少返修率,减少接头准备时间,避免焊工在有害区域工作,减小焊缝尺寸,减少焊后操作,改进操作系数,降低潜在的安全风险,简化设备设置,高效快速优质焊接方法将成为主力军。

(二)焊接过程自动化、智能化

国外焊接技术发展速度快,国内焊接技术发展存在较大差距。工业发达国家焊接机械化、自动化率水平由1996年的19.6%增加到2008 年的70-80%以上,目前焊接技术与现代制造技术、焊接科学与工程、焊接自动化与焊接机器人不断融合,焊接技术已经向自动化,智能化方向发展。焊接过程自动化,智能化以提高焊接质量稳定性,推进焊接自动化进程,学习、吸收、借鉴、提高是十分重要的环节,应加强现有工艺的学习和提高。但是我国目前的工艺大多数都为手工操作,存在一定的局限性。目前我国焊接的自动化率还不到30%,相对而言,焊接生产的机械化以及自动化水平非常低,但是如果能够在学习的基础上利用现代的自动化技术进行嫁接改造,往往可以实现一定的突破。20世纪90年代以来,我国逐渐在各个行业推广气体保护焊来取代传统的手工电弧焊,现在已经取得了一定的效果。目前我国在焊接生产自动化、过程控制智能化、研究和开发焊接生产线以及柔性制造技术、发展应用计算机辅助设计以及制造技术等方面取得了很大的进步。计算机技术、控制理论、人工智能、电子技术及机器人技术的发展为焊接过程自动化提供了十分有利的技术基础,并已渗透到焊接各领域中,取得了很多成果,焊接过程自动化已成为焊接技术的生长点之一。焊接过程控制系统的智能化是焊接自动化的核心问题之一,也是未来开展研究的重要方向。

(三)热源的研究和开发

热源是可提供热能以实现基本焊接过程的能源,热源是运动的。在焊接过程中,热源以点线面等传热方式来传导热能。焊接热源具有如下特点:能量密度高度集中、快速实现焊接过程、保证高质量的焊缝和最小的焊接热影响区。当前,焊接热源已十分丰厚,如电弧焊、化学热、电阻热、高频感应热、摩擦热、电子束等离子焰、激光束等。焊接热源的研讨与开拓始终在延续,焊接新热源的开发将推动焊接工艺的发展,促进新的焊接方法的产生。每出现一种新热源,就伴随一批新的焊接方法出现。焊接工艺已成功地利用各种热源形成相应的焊接方法,今后的发展将从改善现有热源,使它更为有用、便利、经济合用和开发。

(四)节能技术

随着社会的发展,节约能源已经成为各行各业首要考虑的问题,焊接行业也不例外。焊接产业发展节能、环保的焊接已成为必然的趋势;同时,高效焊接工艺的应用,对提高焊接效率,节约能源消耗意义很大。为了顺应节约环保的要求,手弧焊机以及普通的晶闸管焊机正在逐步被高效节能并能自动调节参数的智能型逆变焊接取代,同时为了适应当今淡化操作技能的趋势,焊接的操作也逐渐趋向智能化简单化。

二、现代焊接技术的任务和展望

(一)寻求解决制约焊接新材料、新结构的应用途径

在研究开发新材料的焊接技术时,应从材料的研制与焊接技术两个方面着手。由于先进的材料在实际焊接过程中并不一定容易焊接,因此造成材料的高性能和良好的焊接性要求之间的矛盾,而往往这又是难以协调的,所以要把矛盾的主要方面指向材料的研制,并且在研制高性能材料时,要把焊接性纳入材料高性能的技术指标。因此,寻求解决制约焊接新材料、新结构的途径时,焊接工程师必须和材料工程师进行合作,使新型材料的焊接质量更好、成本更低、生产效率更高、焊接产品更受市场欢迎。

(二)提高焊接产品质量,使焊接不再成为制造过程中的“薄弱环节”

在实际焊接工程中,形成了焊接是制造过程中的“薄弱环节”这一固化思维,我们必须消除这种老化思维的影响,提高焊接质量。为此,焊接界将进行长期的研究工作,开发新的焊接工艺,进一步提高焊接质量控制的智能化技术水平,使焊缝达到“零缺陷”,并提出实现这一目标的可行性方法。

(三)改善焊接能效,提高生产效率,降低焊接成本

新材料的研制将向着高效能、高性能和有益于保护环境的方向发展,焊接界将研究出更佳的焊接工艺,研制出更优良的焊接电源并开发出相应的控制技术,提高自动化程度,扩大机器人的应用范围;减少废品率和返修率,降低焊接成本,提高生产效率,彻底消除“焊接是制造工序障碍”的观念。

(四)全面改善焊接生产环境,提升焊接行业的整体形象,吸引高素质人才的加盟

新材料的研制、先进焊接工艺的应用不仅降低了材料与能源的消耗,而且将焊接对自然资源的影响降到最低程度,通过消除烟尘、噪音和辐射,使焊接工作环境更具吸引力;新型焊接技术的应用、焊接自动化及机器人的发展和多种高新技术在焊接领域中的应用,必将改变焊接行业的负面影响,吸引更多的年轻科技工作者,保证焊接技术领域的人才需求。

三、结语

焊接技术进步的需求是在经济和社会等多方面因素影响下形成的,这显著地促进了高效材料和设备的开发以及自动化技术的应用,规模生产和专业化生产开创新局面,高效快速优质焊接方法成为主力军,一个明显的趋势是在传统焊接过程中使用更先进的控制和监测技术。焊接新方法和先进材料技术的引入,提高了焊接技术的水平,同时也提出了新的挑战。国内外专家认为,焊接作为一种精确、可靠、低成本并采用高科技连接材料的方法,在未来的数十年内仍旧是制造业的重要加工工艺。我们广大焊接工作者任重而道远,务必树立知难而上的决心,抓住机遇,为我国焊接自动化水平的提高而努力奋斗。

参考文献:

[1]李洪涛.浅析中国焊接技术的现状与发展[J].黑龙江科技信息,2009(05).

高效焊接方法篇11

中图分类号:C35文献标识码: A

焊接属于特殊专业,必须持有特种专业的操作证书才能上岗,对技术要求也较为严格。在焊接过程中如果操作不当,或是由于其他原因经常引起焊缝的产生,一般这些焊缝在受到温度的影响的时候会产生收缩,最终导致结构变形。当变形量在允许值内时则可以不予处理,一旦变形量超出正确的范围,则需要对产生的焊接变形进行矫正,部分焊接变形的材料在矫正后则会因无法使用而废弃,即使能再正常使用的也导致了作业时间增加,所以无论哪种情况都会导致成本上的浪费,因此对于预防和控制焊接变形的发生,有效的减少或是避免焊接变形的发生机率,从而有效的提高作业效率,降低生产成本。

1 焊接变形产生机理

焊接变形产生的原因是多方面的,多数情况下在焊接过程中,各个部件在焊接过程中加热和冷却都呈现着不均匀性,这样就会导致金属在受热时产生热胀效应,而在冷却时即发生收缩,而且热胀冷缩还不均匀,这样相互连接的各部件之间而会产生相互制约的应力,当应力不均匀时则会导致变形的发生。焊接应力是导致焊接变形的主要因素,所以需要对焊接应力进行有效的掌握,从而控制好焊接变形。焊接变形通常情况下就是由于金属在焊接过程中由于加热和冷却的不均匀从而导致应力的产生,在应力作用下发生的变形即为焊接变形,焊接变形的变形量也不是固定的,其会由于所选择的焊接工艺不同而有所不同。在焊接过程中,焊接的焊缝的基板会有局部加热的情况发生,这样就会导致这部分的温度发生较大的变化,而焊接结束语,这部分的温度则需要冷却到正常的室温下,而在冷却焊缝金属也会出现正常的收缩,从而恢复到正常的体积下。但是在实际焊接过程中,焊缝的材料与基材的材料会存在不同,材料的不同其收缩的力度也会出现不同,这样在收缩过程中应力则会集中产生了焊缝与基材中间,使焊缝部位产生较大的应拉力,而当这部分应拉力集中在一起时,则会导致焊接部位出现变形或是变薄的问题,而当焊接金属的屈服应力集中释放时,则会形成焊接永久变形的产生。同时在焊接温度与室温接近时,整个基板所产生金属膨胀力和收缩应力则会出现无约束的情况,从而导致变形的产生。即使在焊接过程中利用固定的工件或是使用抗收缩的工具,但在这些工具对应力进行约束时,也会导致有多余的应力释放出来,从而导致基板发生迁移,使焊接的工件变形。

2 控制变形的方法

焊接的质量好坏,直接影响着焊接钢材工件的使用性能,所以在工程实践中,我们需要利用科学有效的方法来对焊接变形进行有效的控制,采取相应的消除变形的方法和手段,从而有效的提高钢材的焊接质量。

2.1 改进焊接结构

合理选择焊缝结构的形式和尺寸,避免焊缝的不均匀布置和集中分布,减少不必要的焊缝,都能有效控制焊接变形。为了避免焊缝集中、双向、三向相交,应采用刚性较小的节点焊接形式。为的是减小焊接缝交叉点处或者焊接缝集中点的热量和应力,以减小焊缝变形。为了保证结构具有足够的承载能力,在设计节点焊接缝时,应采用相应的坡口形状和尺寸,以满足较小焊缝的尺寸需求,减少焊缝截面积和结构焊缝的变形。

2.2 采用刚性固定法

对于刚性较小的焊接件,合理采用刚性好的夹具、支撑件、焊胎等辅助器具加以固定可以减小焊件的变形。

2.3 预留收缩变形余量

根据理论计算和现场经验,对焊件预先预留收缩变形量或加工量,保证焊后能够达到设计尺寸要求。

2.4 采用反变形法

反变形是指在焊接前将钢材结构装配成与焊接变形方向相反、大小相等的预先变形,来抵消焊接后结构形成的变形。根据理论计算和现场经验,预先把焊件人为地加工或设置产生一个变形,使这个变形与焊后发生的变形方向相反而数值相等,这样变形与反变形就能在焊后得到抵消。

2.5 采用合理的焊接方法

不同的焊接方法带来不同的线能量,选用线能量比较低的焊接方法,可以有效地减小焊接塑性压缩区,从而减小焊接变形。在对钢材施焊时,为了便于操作和确保焊接质量,应尽量避免将焊缝设置在仰焊位置。在无法避免的情况下,就需要焊工全方位掌握焊接操作工艺。

2.6 采用合理的装配焊接顺序

对焊件适当的划分为部件、组件进行组焊后,再进行部分间的焊接,提高了组对的精度,减少了焊接变形。

2.7 焊前预热和焊后消应力处理

当前焊接过程中为了有效的减少焊接变形的发生,通常会采用将焊前对焊接母材预热的方法,这样提高焊接母材的温度,使其与焊缝金属之间的温差尽可能的减小,这样在有效的防止了焊接收缩时内应力的增加,降低了变形的可能。这是一种在焊前对焊接变形进行提前控制的方法,可以有效的保证焊接的质量,对纠正焊接变形也起到了积极的作用。

3 减少焊接变形的其他方法

3.1 水冷块

在薄板焊接中,采用水冷块可带走焊接工件的热量。采用铜焊或锡焊将铜管焊接到铜制夹具,通过水管进行循环冷却,以减少焊接变形。

3.2 楔形块定位板

“定位板”是钢板对焊时的一种有效控制焊接变形的技术。定位板的一端焊在工件的一块板上,另一端将楔形块楔入压板,甚至可采用多个定位板排列,以保持焊接时对焊接钢板的定位、固定。

3.3 消除热应力

为了减少焊接变形和残余应力的影响,设计和焊装工件时应注意以下几点:

1)不进行过量焊接;

2)控制好工件的定位;

3)尽可能采用间断焊接,但应满足设计要求;

4)尽可能采用小的焊脚尺寸;

5)对于开坡口焊接,应使接头的焊接量最小,并考虑双边坡口替代单边坡口接头;

6)尽可能采用多层多焊道焊替代单层双边焊交替焊接。在工件中和轴处开双面坡口焊接,采用多层焊,并确定双面焊接顺序;

7)采用多层少焊道焊接;

8)采用低热输入焊接工艺,意味着较高的熔敷率和较快的焊接速度;

9)采用变位机使工件处于船形焊位置。船形焊位置可使用大直径的焊丝和高熔敷率的焊接工艺;

10)尽可能在工件的中和轴设置焊缝,并对称施焊;

11)尽可能地通过焊接顺序和焊接定位使焊接热量均匀扩散;

12)向工件的无约束方向焊接;

13)使用夹具、工装和定位板进行调整、定位;

14)向收缩的相反方向预弯工件或预置焊缝接头;

15)按序列分件焊装和总焊装,可使焊接围绕中和轴一直保持平衡。

结束语

焊接作为特种作业行业,其技术含量较高,为了有效的保证焊接的质量,对焊接变形的控制是较为关键的一个环节。导致焊接变形产生的因素较多,如材料、结构、焊接环境等孝会直接影响到焊接变形的产生,所以在实际焊接工程作业过程中,需要根据焊接现场的条件、结构、环境等各个因素进行有效的分析,从而制定出合理的焊接方法并做好提前预防措施,尽量控制或是避免焊接变形的发生。这就需要具有较高的焊接技术水平,同时还要具有较丰富的经验,这样焊接工人在焊接时才能有效的将焊接环境、焊接材料和控制变形的方法和措施有效的结合起来,并在工作中具有时刻预防和控制变形的意识,只有这样才能有效的降低或是消除焊接变形的发生,提高焊接的质量。

【参考文献】

[1]冀振.焊接变形的预防与控制[J].科技情报开发与经济,2012(17).

高效焊接方法篇12

中图分类号:[TU279.7+6]文献标识码: A 文章编号:

引言:在西气东输项目实施的过程中,天然气高压管道在输气路线大规模的建设。此类高压输送管道是一项现场焊接安装工程,主要采用手工下向焊焊接工艺,而该工艺在我国之前的天然气管道铺设中尚未大规模采用,因此有必要对该项技术的应用进行相关探讨。

下向焊焊接工艺概述

1.1下向焊焊接工艺的特点

它是一种手工电弧焊焊接工艺方法,主要用于压力钢管的焊接,其焊接方法是:在管道水平放置固定不变的情况下,焊接热源从顶部中心开始向下焊接,一直到底部中心。

1)优点:

该工艺采用向下焊专用焊条,该类焊条用独特的药皮配方设计,与传统的向上焊焊条相比,具有电弧吹力大,焊接时熔深大,打底焊时可以单面焊双面成型、焊条熔化速度快、熔敷效率高等优点,超声波探伤、射线拍片合格率高。相对于自动焊又克服了在野外较差的自然条件下使用设备复杂、操作不便的不足。

2)缺点:

焊条价格较高;向下焊时熔深较浅,焊道间打磨工作量增加。随着管道壁厚的增加焊道层数迅速增加,焊接时间延长和劳动强度加大。

1.2下向焊焊接工艺适用范围

该方法适用于低合金高强度钢的薄壁大直径管道。在野外作业时,在达到一定质量要求的前提下,比手工电弧焊速度快,也比手工氢弧焊抗环境影响能力强。

在长输管道建设中的发展和应用

下向焊焊接工艺在长输管道建设中不断发展,得到了广泛的应用,现己成为一门较为成熟的工艺。60年代后期,该工艺主要使用纤维素焊条,但是当用于大直径、厚壁管的焊接时,其焊接速度反而比不上向上焊,因此下向焊焊接方法也在不断发展和完善,出现了以下几种工艺。

2.1混合型手工下向焊焊接工艺

根据前述对焊接材料的分析,低氢型焊条由于焊缝金属中含氢量和含氧量较低,在相同条件下,其韧性较纤维素焊条好,但速度慢,由此产生了混合型手工下向焊焊接工艺。该工艺是采用纤维素型焊条根焊、热焊和低氢型焊条填充焊、盖面焊的焊接方法,可充分发挥两种焊条的优点,适用于钢级较高的管道焊接。在国际管道建设上使用较多,美国、加拿大、荷兰及瑞典等国家在80年代后期的长输管道手工焊中广泛采用;在我国也有应用实例。可以预见,随着管道工程对管材提出更高的要求,高强度、高韧性的大口径钢管应用日益广泛,混合型下向焊焊接方法会逐步成为长输管道现场焊接的主要方法。

2.2复合型下向焊焊接技术

复合型下向焊是指对根层与热焊层采用下向焊、对填充层与盖面层采用向上焊的焊接方法,它主要用于壁厚较大的管道。如前所述,壁厚较大的管道,采用下向焊焊接方法,焊接层数多,反而不能发挥其焊接速度快的优势,因此考虑采用复合型的焊接方法,可发挥两种工艺的优点。

2.3下向焊焊接技术中的不同工艺在我国的应用

1993年建成投产的达连河一哈尔滨煤气管道是我国第一根采用低氢下向焊技术的管道干线工程,管径为630x7一720x7,材质为A3F钢,全长247.45km,最大工作压力为21.6MPa。陕京输

气管道工程,线路工程用钢管管材为APISLX60级,管径660mm,壁厚7.1一14.3mm;沿途环境比较恶劣,要求焊接接头具有较高的低温冲击韧性,通常的全纤维素焊接工艺难以满足该要求,经过综合性能比较、实验和焊接工艺评定,采用混合型手工下向焊焊接工艺,获得了成功。苏州工业园区输水管道工程,该工程所用的钢管规格为D1400,壁厚14mm。若采用单一的下向焊方法,一道焊口需要7一8层,而采用复合型下向焊方法,只需4一5层,这样,根层与热焊层采用下向焊,可加快焊接速度,而填充层与盖面层采用向上焊的焊接方法,可减少层数,由此一道焊口可节约焊接时间约30mm,可降低焊工的劳动强度,提高工作效率。因此该工程即采用了该项工艺。

3.下向焊焊接工艺在天然气管道建设应用过程中应注意的问题

3.1采用合理的焊接工艺

输气管道宜采用低氢型向下焊条,通过上述分析可以看到这样从焊条上很好地保证了焊接质量,但降低了焊接速度,提高了工程造价。因此建议应根据所选用的管材、壁厚、现场施工条件等因素,进行综合比较,采用合理的焊接工艺。

3.2应用下向焊工艺,关键在于选用工艺性能满足要求的焊接材料

下向焊技术使用的电焊条主要为纤维素型和碱性低氢型两大类。纤维素型电焊条主要特点是药皮发气较早且多,浸润性好,根焊成形好,过渡圆滑,同时,其对口间隙小,焊接速度快,效率高的优势也很突出,焊缝气孔也较少见。

碱性低氢型下向焊电焊条目前国内还没有生产,国际上应用较为普遍。该焊条焊缝金属中含氢量和含氧量较低,在相同条件下,其抗冷裂性和韧性均较纤维素焊条好,并且焊缝金属具有良好的综合力学性能。但是低氢型焊条的电弧吹力不及纤维素焊条大,焊接操作不便,焊接速度慢,电焊条端头必须有引弧剂,出气孔的儿率还是较高;若停弧,剩下的电焊条无法使用,对焊接设备和操作水平要求较高。

3.3焊接顺序

管道下向焊宜采用流水作业,小直径时,每层由两名焊工同时自顶部开焊,较大直径时,一名焊工自管顶开焊,另一名焊工自3时位置处开焊,直径≥N700时,推荐由三名焊工同时焊接, 以缩短根焊时间,保证层间温度,另外从不同位置开焊,能有效保证对口间隙不会变化。

3.4焊前预热

对焊接区域进行预热有利于打底焊时不粘条,焊接电流稳定,坡口两侧熔合良好。应依据所选用钢材等级和工艺评定规定,决定是否需要预热。如果要预热,可采用在管接头坡口两侧100mm范围内进行火焰预热的方法,温度为100~200℃,应均匀上升,要对温度进行测量控制。

3.5管道组对

宜选用内对口器,可实现根焊道一次完成。

3.6焊接设备

全位置下向焊对焊接设备有严格要求,所用的电焊机应引弧容易,燃烧稳定;焊接时飞溅小,不粘条,焊缝成形美观,体积小,重量轻,以适应野外施工的要求。

结语

加强对下向焊焊接技术的探讨,有助于提高该项技术在天然气管道建设中的运用水平,从而在管道建设中获取最佳的经济效益和社会效益。

参考文献:

曾乐:现代焊接技术.上海技术出版社,1992

陈学武等:长输管道向下焊焊接工艺,焊接,1999(10)

友情链接