动物激素的化学本质合集12篇

时间:2023-08-30 09:15:31

动物激素的化学本质

动物激素的化学本质篇1

【关键词】 激动素 电化学发光 修饰电极 吡啶钌

1 引言

植物激素是一类对植物生长有显著作用的微量有机分子。它们虽然分子量较小,结构较简单,但其生理效应却复杂多样。从影响细胞的分裂、伸长、分化到影响植物的发芽、生根、开花、结果、性别决定、休眠和脱落等[1]。所以,植物激素对植物的生长发育有重要的调控作用。目前植物激素主要包括九类[2],分别是生长素、赤霉素、细胞分裂素、脱落酸、乙烯、油菜素内酯、茉莉酸类、水杨酸及多胺类。这些激素各自有着独特的生理效应,或协调植物的生长发育,或调控植物应对各种逆境,而且九类激素还可以通过增效或拮抗的方式组成复杂的调控体系,使得对于植物生长发育或者应对外界环境的调控机制更加复杂和精细。激动素(又叫动力精),是第一个被发现的细胞分裂素[3]。在20世纪50年代初期,很多科学家开始从生物组织中获取化学物质并研究其各种性质。1954年,米勒发现青鱼dna中有一种微量物质,可以促进细胞浆的移动[4],这种物质被称为激动素。1955年,人们确定这种物质为6?呋喃甲基腺嘌呤(分子式为c10h9n5o)。尽管激动素不是一种天然的细胞分裂素,但后来人们发现它和天然的细胞分裂素有类似的结构[5],即在c6位置都有一个取代的嘌呤环,改变该结构可以减弱或消除其细胞动力学活性。激动素的主要作用是促进细胞分裂,同时 还具有延缓离体叶片衰老、诱导花芽分化和增加气孔开度等作用[1,6]。此外,激动素对离体小麦叶片中蛋白质含量的下降有延缓作用[7];对的花期具有延迟作用[8];对鼠的实验表明,它具有逆转肝纤维化的作用[9]。由此可见,激动素在农业及生物研究方面具有广阔的应用前景。目前,已报道的测定激动素的方法主要有离子交换法[10]、高效液相色谱法、气相色谱?质谱法[11]、荧光[12]、电化学[13~15]等方法。这些方法存在一些不足,如仪器昂贵、操作复杂、灵敏度较低等。

电化学发光(ecl)是指通过电化学的方法在电极表面产生一些特殊的物质,这些物质之间或与体系中其它组分之间通过电子传递形成激发态,由激发态返回到基态产生发光现象,是电化学与化学发光方法相结合的产物。用光电倍增管等光学仪器测量电化学发光过程中发光光谱和强度,从而对痕量物质进行分析 [16]。该分析方法具有灵敏度高、线性范围宽、发光信号易于检测、易于控制和装置简单等特点。吡啶钌[ru(bpy)3]2+是发光效率较高的电化学发光活性物质,近年来它被广泛应用于有机酸,氨基酸和药物的测定[17]。但由于吡啶钌用于溶液相电化学发光体系时,昂贵试剂吡啶钌的不断消耗带来成本高、环境污染和实验装置复杂等问题,使它的应用受到限制。基于电化学发光反应中[ru(bpy)3]2+在电极表面循环使用的特点,把[ru(bpy)3]2+固定在电极表面不仅可以克服上述问题,还可以提高电化学发光强度[18]。 因此,人们提出了许多方法和材料,以将吡啶钌固定在电极表面。在所有的固定化方法中,nafion 是最常用的一种材料,基于nafion的离子交换特性,[ru(bpy)3]2+ 可以通过离子交换作用被固定于纯的nafion膜中[19]。而将[ru(bpy)3]2+固定在碳纳米管/nafion复合物膜修饰电极表面可以使[ru(bpy)3]2+在nafion膜上的电化学发光特性有较大的改善[20]。在这种固定化方法中,nafion充当膜材料、离子交换剂和碳纳米管的溶剂;而碳纳米管在nafion膜中起到吸附吡啶钌、改善膜结构及作为膜中的导电通道等作用。实验发现,激动素对碳纳米管/nafion?[ru(bpy)3]2+修饰电极的电化学发光信号有强的增敏作用,基于此建立了一种高灵敏度测定激动素的电化学发光新方法。

2 实验部分

2.1 仪器和试剂

rec?100型电化学分析工作站,rfl?1型超微弱化学发光/生物发光检测仪,iffs?a型多功能化学发光检测器(以上仪器均为西安瑞迈分析仪器有限公司生产);采用三电极体系:碳纳米管/nafion修饰的石墨电极为工作电极,缠绕铂丝为对电极,ag/agcl电极作参比电极。

1.0 g/l的激动素储备液:称取激动素(北京鼎国生物技术有限公司)25 mg,用0.1mol/l naoh溶解并用二次蒸馏水定容至25 ml棕色容量瓶中,于冰箱中4 ℃避光保存;吡啶钌(sigma 公司)储备溶液(浓度约为1.0×10-3mol/l): 量取适量吡啶钌,用二次蒸馏水溶解后,储于棕色瓶中避光保存;nafion(aldrich公司),用乙醇稀释成5.0g/l备用;多壁碳纳米管(深圳纳米技术进出口有限责任公司);水为二次蒸馏水,其余试剂均为分析纯试剂。

2.2 修饰电极的制备方法

将适量碳纳米管粉末超声分散在一定浓度的nafion溶液中,形成较稳定的悬浊液。移取10 μl上述悬浊液均匀滴涂在处理过的洗净石墨电极表面,在室温环境中放置电极至溶剂蒸发电极表面干燥,然后把该电极浸在1.0×10-4 mol/l吡啶钌溶液中约0.5 h,电极取出后用蒸馏水充分冲洗其表面,再在0.1 mol/l磷酸盐缓冲溶液中循环伏安扫描至电流稳定。

以上述准备好的修饰电极为工作电极进行相关电化学及电化学发光测试。

3 结果与讨论

3.1 吡啶钌的固定化

采用循环伏安法研究了固定在碳纳米管/nafion复合物膜修饰电极表面的吡啶钌的电化学行为。分别测定了裸石墨电极、纯nafion修饰电极和碳纳米管/nafion复合物膜修饰电极在含有1.0×10-4mol/l吡啶钌的磷酸盐缓冲溶液中的循环伏安行为。实验表明,吡啶钌在此3种电极上的循环伏安响应在形状上相似,这说明通过简单的复合物膜修饰电极浸入吡啶钌溶液中可以有效固定吡啶钌,并且固定在电极上的吡啶钌能保持其良好的电化学行为。但吡啶钌在此3种电极上的氧化还原峰电流值明显不同,裸电极上的电流强度最小,纯nafion修饰电极次之,复合物修饰电极的电流强度最大。另外,固定吡啶钌的修饰电极在磷酸盐缓冲溶液中连续多次扫描对吡啶钌的氧化还原电流值没有明显的影响,此结果表明,此修饰电极具有较高的稳定性。这些结果和文献[18]报道一致。

3.2 激动素的电化学行为

实验时,把裸石墨电极先后分别放入ph=9.0的磷酸盐缓冲溶液和含有一定浓度激动素的相同ph的磷酸盐缓冲溶液中,其循环伏安曲线如图1所示。结果说明,在不含激动素的缓冲溶液中得到的循环伏安图(a)上没有出现氧化还原峰,而含有激动素时所得的循环伏安图(b)在0.8~0.9 v位置处出现了明显的氧化峰。这表明在适当条件下激动素可以发生电化学氧化反应。同时,激动素的循环伏安图上只有氧化峰而无相应的还原峰,这说明激动素在石墨电极上的氧化反应为不可逆反应。此结果与文献[15]报道类似。

3.3 激动素对吡啶钌氧化过程的催化作用

实验考察了激动素对固定于碳纳米管/nafion复合物膜中的吡啶钌电化学行为的催化作用。图2表示碳纳米管/nafion?吡啶钌修饰电极分别在0.1 mol/l磷酸盐缓冲溶液(ph=9)中的循环伏安曲线(b)和在含有一定浓度激动素的0.1 mol/l磷酸盐缓冲溶液(ph=9)中的循环伏安曲线(a)。由图2可以看出:加入激动素后所得的循环伏安曲线与没加激动素所得曲线相比,吡啶钌的氧化峰电流大大增强,而还原峰电流明显减小。这表明吡啶钌对激动素的电化学氧化反应有催化作用。此现象与三丙胺对吡啶钌电化学行为的催化作用类似,由此可知激动素对吡啶钌的电化学发光增敏作用与三丙胺一致。

图1 裸石墨电极分别在ph=9的磷酸盐缓冲溶液(a)和含有激动素的ph=9的磷酸盐缓冲溶液(b)中的循环伏安曲线.(扫速为0.05 v/s)(略)

fig.1 cyclic voltammograms of bare graphite electrode in phosphate buffer solution (ph=9) with (b) and without kinetin(a)(scan rate: 0.05 v/s)

图2 碳纳米管/nafion?吡啶钌修饰电极在含有激动素的磷酸盐缓冲溶液(a)和空白缓冲溶液(b)中的循环伏安曲线(ph=9)(略)

fig.2 cyclic voltammograms of carbon nanotube/nafion?ru(bpy)2+3 in phosphate buffer solution with (a) and without kinetin (b)(ph=9)

3.4 激动素对吡啶钌电化学发光的增敏作用

实验分别测定了吡啶钌修饰电极在ph=9的磷酸盐缓冲溶液和含有5×10-6g/l激动素的相同磷酸盐缓冲溶液中的电化学发光信号。结果表明:激动素的加入使吡啶钌弱的电化学发光信号大大增强,而且随着激动素加入量的增加,电化学发光信号持续增大,说明了激动素对吡啶钌的弱电化学发光具有明显的增敏作用。

3.5 实验条件的优化

3.5.1 ph的选择 本实验以0.1 mol/l k2hpo4/nah2po4缓冲溶液为介质,分别用裸石墨电极和固定有吡啶钌的修饰石墨电极考查了在各种ph时激动素自身的电化学行为、激动素对吡啶钌的电化学反应的催化程度、以及对吡啶钌电化学发光增敏程度的影响。结果发现,在酸性介质中时,几乎看不出激动素的氧化峰,而在偏碱性介质中时,激动素有明显的氧化峰(图3)。这表明激动素在碱性介质中才易于被氧化,这与文献 [15]报道一致。而此时吡啶钌的氧化峰电位也比酸性介质中的偏负,峰电流比酸性介质中大(图4),即碱性介质中激动素对吡啶钌的催化效果也更好。

图3 裸石墨电极在含相同浓度激动素的不同ph的磷酸盐缓冲溶液中的循环伏安曲线(略)

fig.3 cyclic voltammograms of kinetin at bare graphite electrode in phosphate buffer solutions with different ph

扫速(scan rate): 0.05 v/s。

实验中同时考察了不同ph的介质对激动素增敏的吡啶钌电化学发光信号的影响。结果发现,当ph较小时,随着ph的增大,增敏的电化学发光信号逐渐增大;当ph=9.2时,激动素增敏的吡啶钌电化学发光信号达到最大;而随后随着ph的增大增敏的电化学信号开始下降(图5)。上述实验现象说明激动素对吡啶钌的电化学发光信号的增敏作用与其脱质子过程有关,这与文献[21]报道的三丙胺和吲哚乙酸对吡啶钌电化学发光信号的增敏作用类似。本实验选择ph 9.2的0.1 mol/l k2hpo4/nah2po4缓冲溶液为介质。

图4 碳纳米管/nafion?吡啶钌修饰的石墨电极在含相同浓度激动素的不同ph的磷酸盐缓冲溶液中的循环伏安曲线(略)

fig.4 cyclic voltammograms of kinetin at carbon nanotube/nafion? ru(bpy)2+3 modified graphite electrode in phosphate buffer solution with different ph

扫速(scan rate): 0.05 v/s. 1. ph 9.1; 2. ph 8.7; 3. ph 6.7; 4. ph 4.7.

图5 缓冲溶液质ph对电化学发光信噪比的影响(激动素: 5 ×10-6 g/l)(略)

fig.5 effect of ph on ecl signal/noise (kinetin: 5 ×10-6 g/l)

3.5.2 电解方式的选择 电化学发光的分析特性与激发信号的施加方式关系极为密切,其主要原因是电化学发光物质的产生速度在扩散层中的动态分布以及电化学反应与电化学发光反应相匹配的程度等步骤受电化学激发方式的调控[22]。本实验主要考察了循环伏安、线性扫描、恒电位和阶跃脉冲等电解方式对激动素增敏的吡啶钌电化学发光行为,结果发现循环伏安法呈现出更好的电化学发光分析特性,稳定性好,且信噪比较高,所以实验中采用循环伏安作为最佳电化学激发信号。

3.5.3 扫描速度的选择及电极反应过程 将碳纳米管/nafion?吡啶钌修饰电极放入含5.0×10-6 g/l激动素的磷酸盐缓冲溶液(ph=9.2)中,记录不同扫描速率时的循环伏安曲线(图6a)。实验发现,随着扫描速率的增加,吡啶钌峰电位正移,峰电流增大,并且峰电流与扫描速率的平方根成正比。这些实验结果表明:吡啶钌体系的电极反应为扩散控制过程。实验同时考察了扫描速率分别为0.25、0.16、0.1、0.05和0.025 v/s时的电化学发光信号稳定性及信噪比(图6b),发现扫描速率较小时电化学发光信号更稳定,信噪比也更高。所以本实验选择的扫描速率为0.05 v/s。

图6 扫描速度对循环伏安曲线(a)和电化学发光信噪比(b)的影响(略)

fig.6 effect of scan rate on cyclic voltammograms at carbon nanotube/nafion?ru(bpy)2+3 (a) and signal/noise of ecl(b)

1. 0.09 v/s; 2. 0.04 v/s.

3.6 分析特性

在上述的最佳实验条件下,激动素增敏的吡啶钌电化学发光强度值与激动素的浓度在5.0×10-8~4.0×10-5 g/l范围内呈线性关系,线性回归方程为i=28+0.142c(10-8 g/l),相关系数为0.9992,检出限为2.0×10-8 g/l,对5.0 ×10-6 g/l的激动素平行测定11次,相对标准偏差rsd为5.8 %。此结果说明:本实验所建立的电化学发光法测定激动素的方法具有高的灵敏度和稳定性。

3.7 干扰实验

在最佳实验条件下,考察了一些易与激动素共存的植物激素对激动素检测的干扰。以1.0×10-6g/l激动素溶液为空白溶液,与加有不同浓度的可能干扰物 (如赤霉素,吲哚乙酸等)的溶液进行对比测定,记录相应的发光信号和数据。如果加入某浓度干扰物质后,溶液的发光信号的改变程度大于或等于这种方法所允许的误差(5%),就认为所加入的物质已经产生了干扰。

相关数据如表1所示。实验表明:对于1.0×10-6 g/l激动素,10倍的吲哚乙酸,100倍的6?苄基腺嘌和等量的赤霉素,均不干扰其测定。结果表明,所建立的方法测定激动素有较高的选择性。本方法灵敏度高,线性范围宽,操作简便,有望帮助进一步了解激动素等植物激素在植物体内各个部分的作用方式,进而更好地利用它们。

表1 干扰实验(略)

table 1 reference experiments

【参考文献】

1 zhou shou?xiang (周守详). the applied technology of plant growth regulators(植物生长调节剂实用技术). beijing(北京): chinese literary history press(中国文史出版社), 1990: 163~164

2 wang chun?zheng(王春政). life world(生命世界), 2008, (3): 62~65

3 salisbury f b, ross c w. plant physiology, wadsworth, 1992: 382~393

4 miller c o, skoog f, okumura f s, von saltza m h, strong f m. j. am. chem. soc., 1955, 77(9): 2662~2663

5 barcelo j, nicolas g, sabater b, sanchez r. fisiolog?a vegetal, piramide s a, 1988: 487~502

6 ye zi?xin(叶自新). plant hormone and chemical control of vegetable(植物激素与蔬菜化学控制). beijing(北京): chinese agricultural science and technology press(中国农业科技出版社), 1988: 40~42

7 jin ming?xian(金明现), li qi?ren(李启任). plant physiology communications(植物生理学通讯), 1994, 30(1):11~14

8 ding yi?feng(丁义峰), liu ping(刘 萍), chang yun?xia(常云霞), zhao le(赵 乐), han de?guo(韩德果), xu ke?dong(徐克东). journal of henan agricultural sciences(河南农业科学), 2007, (1):80~83

9 zhang zhen?gang(张振纲), tian de?ying(田德英), zhou jian(周 健), ma xiao?jun(马小军), xu dong(许 东), huang yuan?cheng(黄元成), song pei?hui(宋佩辉). herald of medicine(医药导报), 2007, 26(1): 11~14

10 brenner m l. ann. rev. plant. physiol., 1981, 32: 511~538

11 takahasi n. chemistry of plant hormones, crc press, boca raton, fl, 1986

12 jiang zi?wei(江子伟), jiang tong?bo(姜彤波), ju chang?qing(琚常青), zhang jie(张 杰). chem. j. chinese universities(高等学校化学学报), 1994, 15(3): 356~359

13 blanco m h, del carmen quintana m, hernández l. electroanalysis, 2000, 12 (2): 147~154

14 huskova r, pechova d, kotoucek m, lemr k, dolezal k. chemické listy, 2000, 94 (1): 1004~1009

15 ballesteros y, gonzalez de la huebra m j, quintana m c, hernandez p, hernandez l. microchemical journal, 2003, 74(2): 193~202

16 liu feng(刘 锋), zhou tian?xiang(周天翔), tu yi?feng(屠一锋). chinese journal of spectroscopy laboratory(光谱实验室), 2007, 24(4): 519~524

17 greenway g m, nelstrop l j, port s n. anal. chim. acta, 2000, 405(1?2): 43~50

18 song hong?jie(宋红杰), zhang zhu?jun(章竹君). chinese journal of analysis laboratory(分析试验室), 2007, 26(2): 1~5

19 downey t m, nieman t a. anal. chem., 1992, 64(3): 261~268

动物激素的化学本质篇2

中图分类号:F124.5 文献标志码:A 文章编号:1673-291X(2013)03-0332-03

环境荷尔蒙,一类能进入人体内部、具有类似雌性激素的作用、危害人类正常激素分泌的化学物质,多数是人工合成并随着人类生产和生活排放到环境中的污染物[1]。因为此类物质能减少生物体量、导致生殖器官异常,所以对人类乃至全球的生物来说,它是一种致命的危险物质。这一问题引起了很多国家的高度重视,中国也不例外,国家自然科学基金委员会已于1997 年设立了有关环境荷尔蒙方面的基金项目。本文在对近年来国内外环境荷尔蒙研究的热点问题进行分析讨论的基础上,系统概述环境荷尔蒙的定义、种类和检测方法等方面的研究前沿工作并对未来的研究趋势进行展望。

一、环境荷尔蒙的种类和研究现状

1.环境荷尔蒙的定义和种类

那些干扰人体正常激素功能的外因性化学物质,具有与人和生物内分泌激素类似的作用,有时能引起生物内分泌紊乱,这一类物质即称环境荷尔蒙,又称内分泌扰乱物物质。这些物质能减少数量,降低质量,削弱生物免疫力,破坏生物神经系统等。

目前,人类使用了8万余种化学物质,其中仅有一小部分具有环境荷尔蒙效应。研究表明,具有雌激素作用的物质约有70种,农药类占60%左右,包括镉、铅、汞三种重金属离子,另有可疑性很高的化学物质如染料、涂料、香料、洗涤剂,去污剂、表面活性剂、塑料制品、药品和化妆品等等[2],近年来的研究表明,某些塑料添加剂具有一定的雌激素活性,而广泛使用的表面活性剂本身虽然没有雌激素活性,但其降解产物如4-壬基苯酚、4-辛基苯酚等则具有雌激素生物效应。这类物质广泛分布于环境水体中(见表1)。

2.环境荷尔蒙的研究现状

1972年,WHO(世界卫生组织)对“有激素作用的化学物质”进行了研究总结,指出了化学物质的激素作用,这次会议上发表的文斯普雷德宣言使激素问题引起了全球的关注,目前对环境激素的研究已经成为国际环境科学的热点问题之一。

美国、英国和日本等发达国家正在调查某些环境激素的影响,尤其是在地表水、地下水、海水、底泥、土壤、大气和食品中的污染现状,调查内容还包括环境激素的测定方法、环境激素污染控制标准以及野生动物和人类被污染的情况等。1995 年,美国政府设立了由环保局领导的14个部门组成的环境激素工作组,并于1996 年建立了食品中内环境激素的筛选方法。美国环保署根据这个方法开发调查农药和其他化学物质是否具有环境刺激作用。1998 年美国环保署分4 组对86 000种物质进行筛选,以进行影响分析[3]。1996年7月,日本通产省成立“外因性物质的激素作用的调查研究委员会”,接着厚生省着手研究环境激素问题,并对已有的化学物质进行筛选毒性测试[4]。

1998 年OECD(经济合作开发组织)提出今后工作的主要目的之一是开发检测环境激素物质的新的检测技术并协调各国的行动。主要将进行子宫增重重复实验、雄性性腺增重反应实验、28天投毒实验和鱼类、两栖类、鸟类的生态毒理实验。

总的来说,环境激素对生物影响的研究经历了一个由整体水平上判断在一定剂量条件下某种化学物质的毒性大小以及毒性的快慢等一个过程。此后,初期的毒理学研究从整体水平深入到系统和器官水平,对该化学物质的多个器官或系统终点如呼吸、神经、肝脏等进行毒性作用研究。20世纪末,相关学科的发展和科研技术工具的进步使环境激素研究进入了细胞分子水平,对化学物质的作用机制也提高到在分子水平进行研究。然而,生物体是一个复杂的、多层次的有机体,仅从一个水平上是不能够进行透彻全面的阐述的[5]。环境激素对动物和人类的影响是多方面的,可以肯定还有很多潜在的影响没有被发现。环境激素研究在中国仅是刚刚起步,对本领域的研究基础还很薄弱,尤其是污染现状的调查几乎没有开展。所以,这个问题应引起更多的关注并开始对其进行一系列相关的研究,同时根据国外研究进展采取有效的减少和防止污染的措施。

二、环境荷尔蒙的检测方法

环境荷尔蒙物质含量极微但却具有超常的显性内分泌效应,严重地危害到了人类和其他生物的健康和安全,要想把握环境质量现状并预测污染发展趋势,环境监测是唯一手段。而环境荷尔蒙类污染物种类繁多,数量庞大,含量较小(在环境中往往以ppb浓度级甚至ppt浓度级存在),因此对它们的检测就显得尤为重要。目前主要有以下几种检测方法。

1.化学分析方法

化学分析方法指的是使用色谱仪器分析相关物质的方法,主要包括气相色谱(GC)、液相色谱(LC)、电感耦合等离子发射光谱(ICP)及其相关的质谱(MS)联用分析方法。色谱分析技术对样品的预处理过程要求非常高,样品预处理有提取、净化、浓缩和衍生化等步骤,可以起到富集痕量组分、消除基体干扰、提高方法灵敏度的作用[6]。

环境样品中有机氯农药的检测,主要以GC法为主[7],GS-MS联用法则常用于多成分物质同时段的定性和定量检测,因为大部分的环境荷尔蒙物质是水溶性或具有水溶性官能团的化合物,这些物质需要高灵敏度检测仪器,在萃取过程中的高倍浓缩及净化必不可少,衍生化程序有时也极为重要。美国EPA和日本JIS系列标准分析方法中规定,检测来自自来水、废水中的绝大部分有机污染物,均采用GC或GC-MS联用法。

曾有学者用LC-API-MS法测定了环境中的荷尔蒙物质,因为使用LC-API-MS法无需衍生化处理,可直接用固相萃取法浓缩测定河水中的相关物质。这位学者报导了该方法的特性,在有机污染分析中以GC-MS法为首选[8],但用GC-MS法测定双酚A、2,4-4、2,4,5-T等氯化苯氧基乙酸类除草剂则十分困难,因为衍生经会使试样前处理复杂化。而使用LC-MS法则既可定性又可定量,已成为检测农药、除草剂等物质的首要方法,目前,LC-MS法的灵敏度约达1ug/L。高效液相色谱(HPLC)法则是针对不易挥发、热稳定性差的离子型化合物,在环境荷尔蒙物质的检测分析中也得到了较为广泛的应用,中国GB 13198-91早已公布了用HPLC荧光或紫外检测器测定六种多环芳烃的方法。

ICP-MS是目前最好的痕量无机污染物监测分析手段,其灵敏度高,检测限低。美国、日本等发达国家已把ICP-MS列为Cu,Pb,Cd测定标准方法,但因为该种检测方法需要一些在中国尚未普及的超大型仪器,所以中国在环境荷尔蒙的研究方面一直存在着定性和定量的困难。

2.生物监测方法

生物检测方法,是一种建立在环境荷尔蒙物质在体内的作用机制以及产生的生物效应的基础之上的方法,具体操作是把生物活性材料以薄膜状固定在离子选择电极的敏感膜上,插入待测溶液,随着反应的逐步进行,生物分子和反应生成物的浓度发生变化,在转换件的作用下变为可测定的电信号,经过处理,得出反应物量的变化。该方法无需复杂的前处理过程,操作便捷、快速,已成为一种新兴的检测分析方法。

生物检测方法中的第一种是细胞增殖实验,它的基本原理是基于人体血清中存在着的一种能特异性抑制雌激素敏感细胞增殖的物质,雌激素可以通过中和此类物质,特异地清除其抑制效应,从而诱导细胞增殖,而不具有雌激素活性的类固醇激素和生长因子不能中和人血清中存在的抑制性物质[9],敏感细胞株中最为常见的有T47D细胞、人乳腺癌细胞MCF7、大鼠子宫原代细胞和大鼠垂体原代细胞等。实验的评价指标主要有两个,一是相对细胞增殖效应(PRE),即类雌激素能引起最大细胞增殖占雌二醇引起的最大细胞增殖百分比[10],二是相对细胞增殖力(RDP),即引起细胞最大增殖时的雌二醇浓度与产生相同增殖效应时外来雌激素的浓度的比值。

生物检测方法中的第二种是免疫分析方法,它的基本原理是基于抗原体特异性反应来测定环境荷尔蒙物质,具体可分为三种,即放射免疫分析(RIA)、免疫酶技术(ELISA)和发光免疫测定(CLIA)。因为环境荷尔蒙多为小分子物质,没有免疫原性,可以先将被测物偶联到大分子载体上,得到全抗原,再用全抗原免疫动物获得特异性很强的抗体、发光探针、鲁米诺标记等标记抗体,然后使其与环境中荷尔蒙进行抗体抗原反应,用高灵敏度的荧光仪和化学发光仪检测荷尔蒙抗体—抗原结合物,从而定量检测环境中的微量荷尔蒙;或者将酶化学的敏感性与免疫反应的特异性结合起来,把免疫酶交联在抗体上,利用酶标与底物反应并显色,然后定量测定[11]。

三、结语

环境荷尔蒙对人类和其他动物的影响是多方面的,肯定还有很多潜在的影响没有被发现。环境荷尔蒙的研究在中国刚刚起步,理论基础还很薄弱,对污染现状的调查也几乎没有开展。因此,这一问题应该引起更多的关注和一系列的相关研究,同时借鉴国外研究进展并采取有效的防范措施。

参考文献:

[1] 齐文启,孙宗光,汪志国,等.环境荷尔蒙研究的现状及其现状分析[J].现代科学仪器,2002,(4):32-39.

[2] 任仁.环境激素的种类和污染途径[J].大学化学,2001,(5):1.

[3] 李金花,庄惠生.环境荷尔蒙概述[J].云南环境科学,2003,(4).

[4] 詹秀环,王子云.环境激素的种类与危害[J].周口师范学院学报,2004,(2).

[5] 郭艳英,段昌群,杨良.环境激素研究进展探讨.云南环境科学,2004,(3):12-15.

[6] 戴树桂,张东梅,张仁江,等.固相萃取技术预富集环境水样中邻苯二甲酸酯[J].环境科学,2000,(2):66-69.

[7] 王正萍,周雯.环境有机污染物监测分析[M].北京:化学工业出版社,2002.

[8] U.S.EPA,Standard Methods of for the Examination of Water and Wastewater,19th Edition (1995).

动物激素的化学本质篇3

文章编号:1008-0546(2014)02-0031-03 中图分类号:G633.8 文献标识码:B

doi:10.3969/j.issn.1008-0546.2014.02.011

传统的元素化合物教学,主要是以教师为活动中心,采用“教师讲授—学生接受”的教学模式,以“结构-性质-制备-用途”为主线对单质及其化合物进行学习。在这种教学模式下,学生始终处于被动学习,对元素化合物知识的接受效率较低、应用能力较弱。在新课程背景下,作为中学化学教师,如何在新课程理念的指导下,充分发挥学生的主观能动性,激发学生学习的积极性,用科学的方法论去指导教学过程,让学生在轻松的氛围中达成教学的三维目标,是我们一直要不断探索的课题。本文通过“碳的多样性”一节的教学实例和大家一同探讨元素化合物的教学。

一、教材分析和教学要求

碳及其化合物广泛存在于自然界中,普遍应用于我们的生产、生活实际,自然界和生活中很多现象都与其性质息息相关。碳及其部分化合物的性质在初中化学已经有所涉及,本节教材在初中化学知识的基础上,进一步探讨碳及其化合物的多样性。通过介绍碳的三种同素异形体金刚石、石墨、C60的物理性质和微观结构,体现碳单质的多样性;通过介绍种类繁多的含碳化合物,重点探究碳酸钠、碳酸氢钠的性质,认识碳酸盐与碳酸氢盐性质的异同点,体现碳的化合物的多样性。福建省普通高中新课程教学要求·化学[1]提出本课题的教学目标是:了解同素异形体的概念,知道碳有三种同素异形体;了解碳酸钠、碳酸氢钠的物理性质和用途,能够对碳酸钠、碳酸氢钠的化学性质比较(与酸反应、热稳定性)。

二、教学环节及评析

本节课的教学设计试图基于新课程理念的指导,以学生为主体,充分发挥教师在教学过程中的主导地位,采用多种教学策略,激发学生学习的积极性,引导学生运用元素观和科学探究的基本方法对碳及其化合物展开知识构建,期间采用自主阅读、小组讨论、实验探究等多种方式展开教与学的活动,最终达成教学的三维目标。

1. 情景引入——从“美”字说起

教学设计思路:

【幻灯片】展示一组美丽的图片:美丽的珊瑚,精美的钻石,秀美的溶洞奇观,妍婉秀美的传世名帖《兰亭序》

【设置问题】上述展示的物质中都含有同一元素,该元素是?

评析:著名教育学家苏霍姆林斯基说:“如果教师不想办法使学生产生情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,给不动感情的脑力劳动带来疲劳。”中国也有一句俗话:“好的开始是成功的一半”,有效的课堂导入能在某种程度上决定整堂课是否能顺利进行。一节优秀的课例在刚开始就应该能够起到画龙点睛的作用,指明本节课的主题,迅速调动起学生学习的积极性,并且能够很自然过渡到教学的主体内容上去。课堂导入的方法有很多,例如:故事、新闻背景,视频、图片引入,复习回顾,开门见山等多种方式。本节课采用图片引入式,通过一组精美的图片,让学生享受视角的盛宴,激发学生学习的积极性;随后,设置的问题把学生引向本节课的学习主题,同时也激发了学生进一步学习的欲望,进而自然过渡到本节课的主题教学。

2. “碳元素的存在形式”教学——走进生活

教学设计思路:

【小组合作活动】主题:走进生活

请同学们以2人小组为单位,试着写出生活中常见的或自己熟悉的一些含碳物质。

【师生互动】各小组汇报合作成果,教师带领学生对相关物质从物质组成的角度进行归类、总结(按单质、氧化物、酸、盐、有机物等归类)。

评析:化学来源于生活,生活中处处有化学。高中化学新课程标准[2]在课程的基本理念中也提到“从学生已有的经验和将要经历的社会生活实际出发,帮助学生认识化学与人类生活的密切关系,关注人类面临的与化学相关的社会问题,培养学生的社会责任感、参与意识和决策能力”。在本节教学中,教师采用让学生从生活中去寻找含碳的相关物质,在此过程中让学生去体验碳及其化合物的多样性以及身边处处都是化学物质,从而意识到学好化学的重要性。具体的实施方法采用的是小组合作的方式。小组合作学习是新课程理念中所倡导的重要学习方式。在小组合作学习中,能够充分突出学生的主体地位,培养学生主动参与的意识,提高了学生的自学能力、合作能力、语言表达能力和竞争能力等,并且可以使学生在学习中体会成功的喜悦,增强学生的自信心。最后在教师的引导下,师生完成对生活中含碳物质的分类,按着“单质—氧化物——酸——盐”和“无机物——有机物”的思路进行归类,充分体现了化学教学中的元素观。通过元素观的渗透,让学生体会:物质是由元素组成的,一种元素可以组成多类物质,体现元素组成物质的多样性和统一性。让学生学会:研究一种元素时,可以从它的单质再到氧化物、酸、碱、盐这条主线开展下去,进而研究相应物质的物理和化学性质,再到它们之间的转化关系,促进学生对元素化合物知识的自主建构。

3. “碳酸钠和碳酸氢钠性质”教学——走进探究式实验

教学设计思路:

【知识回顾】研究物质性质的基本方法和基本程序。

【探究活动的开展】1.观察Na2CO3和NaHCO3的外观,学习碳酸钠和碳酸氢钠的物理性质。

2.预测Na2CO3和NaHCO3的化学性质。引导学生从物质组成的角度把两种物质归类,通过盐类的通性以及碳酸钙的性质去预测二者所具有的性质。

3.在教师指导下,制定探究实验方案(二者与盐酸、澄清石灰水、NaOH溶液、BaCl2溶液反应以及热稳定性),分小组开展实验探究。

4.在实验的基础上进行总结,分小组汇报实验成果,在教师的引导下,学生归纳总结Na2CO3和NaHCO3的化学性质。

【探究插曲】部分学生发现在NaHCO3溶液中加入BaCl2溶液也可以产生白色浑浊,和学生已有的认知产生冲突,教师首先对学生观察到的现象给予肯定,由于其原因的解释涉及到较多的反应原理知识,暂时还无法直接给予详细的解答。教师首先引导学生尊重实验事实,感兴趣的同学课后通过查阅书籍或网络先做简单的了解。

评析:法国著名生理学家贝尔纳曾深有体会地说:“良好的方法能使我们更好地发挥天赋的才能,而拙劣的方法则可能阻碍才能的发挥。”高中化学新课程标准在课程的内容标准中提到“初步掌握化学实验基本技能,体验和了解化学科学研究的一般过程和方法,认识实验在化学学习和研究中的重要作用。”传统的元素化合物知识教学仅能使学生短暂的获取相关知识,而不能激发学生学习的积极性。新课程中倡导学生利用科学的探究程序和方法去研究相关物质的性质,不仅学到了知识,也体验了科学探究的一般过程,更加激发了学生学习的积极性。本块内容首先在教师引导下通过学生回顾研究物质性质的基本程序和方法,进而在科学方法论的指导下展开对碳酸钠和碳酸氢钠性质的探究,采用实验、观察、分类、比较、小组合作等多种方法于一体,最后在教师引导下,各小组协作完成对碳酸钠和碳酸氢钠性质的归纳。在探究过程中,出现了和预测结果所不一样的实验现象,教师及时肯定学生的实验现象,培养学生尊重实验事实的科学态度,引导学生去自主探究、自主解决问题,让学生对科学探究的过程有了更为深刻的了解。

4. “多种多样的碳单质”教学——小组课外合作活动

教学设计思路:

【活动内容】同学们利用课下时间阅读课本相关内容,以4人小组为单位解决下列问题,下节课分小组进行汇报。

(1)碳的各种单质的物理性质?(2)碳的各种单质物理性质差异的原因?(3)碳的各种单质化学性质是否相同?(4)什么是同素异形体?

评析:小组课外合作活动是课堂教学的延伸和扩展。作为一种学习方式,和课内学习相比,它不受课堂时间和空间的限制,学生有更多的自主性和选择性。它是激发学生学科兴趣、提高学习积极性、培养学生自主学习能力和合作探究能力的一条重要途径。化学小组课外合作活动的形式可以采用课外阅读、化学制作(模型、标本等)、化学实验活动等。在这节课的教学中,由于碳单质的内容初中已经有所涉及且难度相对较小,在课堂教学时间相对紧张的情况下,笔者采取小组课外合作活动的形式让学生先自主合作学习,利用下节课时间以小组汇报的形式完成本块教学。这样的安排,既解决了本节课教学时间较为紧张,难以把全部知识当堂完成的问题,又充分锻炼了学生自学、合作、解决问题的能力。

三、教学总结

本节课的教学,笔者首先通过精美图片去创设问题情境引入本节课的主题同时激发学生继续学习的兴趣,再通过设置学生小组合作活动走进生活中去寻找含碳物质,让学生自主建构碳的元素线。由于本节课的重点是碳酸钠和碳酸氢钠的性质,故笔者在教学时对教材内容体系进行了适当的调整,把课堂的主体时间用来探究二者的性质。在碳酸钠和碳酸氢钠性质的学习上,笔者引导学生充分利用方法线,以研究物质性质的基本程序为线索,以分组探究实验为载体,采用多种科学研究方法于一体,对两种物质进行共性和特性的学习。对于碳单质的学习,灵活采用了小组课外合作活动的学习形式,作为课堂教学的有效补充。作为一节市级公开课,通过实际的教学效果来看,在整节课中学生有较高的学习积极性,整个教学过程能够充分体现“以学生为主体,教师为主导”的新课程理念,渗透学习元素化合物知识的科学学习方法,实现三维教学目标。结合本节课的教学以及对元素化合物教学的课堂实践,笔者在此谈三个方面的内容。

1. 学生学习积极性的激发

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”如果一个人对某事物有了强烈的兴趣,他就会积极主动的去关注、去认识、去研究,并在这个过程中产生愉快的情绪和体验,从而更好地去掌握相关知识。作为化学教师,我们要采用各种方法去激发学生对化学学科的热爱,提高他们学习化学的兴趣。例如:良好师生关系的建立,引人入胜的课堂教学(如:精彩的课堂引入,丰富多样小组活动和探究实验的开展,对学生适时的鼓励性评价等),形式多样的课外活动的开展等。总之,学习兴趣,它是主动学习的前提,参与探究活动的动力,也是培养学生创新精神的源泉,我们必须重视对学生兴趣的培养和科学引导。

2. 学生元素观的建立

正是因为人类对化学元素的认识,才使人类对物质世界形成了条理有序的认识。作为学生,如果没有建立起元素观,那么他对物质世界的认识则是零零散散和混乱无序的。当他接触到众多的单质、化合物时,他将力不从心、无所适从。新课程标准中提到让学生形成有关化学科学的基本观念。在教学中,教师要引导学生建立元素观:物质是由元素组成的,有限的元素组成了成千上万的化学物质,物质可以按照元素组成进行分类,每一类物质具有它们的通性,物质间的转化本质是元素原子间的重新组合。学生通过元素观的建立,能用元素的观点认识物质,建立起相应的元素家族,例如:金属元素—相应单质—氧化物—碱—盐;非金属元素—相应单质—氧化物—氢化物—含氧酸—盐。结合科学研究的基本方法对典型物质性质进行学习,就会很容易建立起家族内各类物质之间的转化关系,从而达到元素化合物知识由点到线再到面的系统建构。

3. 让学生掌握科学探究的基本方法

通过元素观的建立,学生理清了元素与物质之间的关系,学会了建立相应的元素家族。那么如何去研究物质的具体性质呢?这就需要方法论的指导。通过对研究物质性质的基本程序的学习,可以让学生掌握科学探究的一般顺序,指导学生该如何去做。分类的方法和价态的规律可以指导学生如何对物质的性质进行预测。运用分类的方法,分门别类地对物质及其变化进行研究,可以总结出各类物质的一般性质和特性。运用价态的规律我们可以预测物质可能具有的氧化和还原性,更好地认识同种元素不同价态物质之间的转化以及如何转化。通过实验和观察的方法,我们可以去验证我们的预测结果,探索物质未知的性质,进而得到物质所具有的物质通性、氧化还原性质和特性。通过比较的方法,认识物质性质之间的异同,有利于更好的对物质性质的理解。

学生一旦树立了元素观,掌握了科学探究的基本方法,对学生来讲,元素化合物知识的学习将是在教师的引导下,充分发挥自身的主观能动性,采用科学的探究方法,从被动学习变为主动学习,对元素化合物知识的一个自主建构过程,进而达成教学的三维目标。以上是本人对元素化合物教学的一些初浅认识,如何更好地落实元素化合物教学中的三维目标,还有待于老师们的不断探索和总结。

动物激素的化学本质篇4

【关键词】  激动素 电化学发光 修饰电极 吡啶钌

1  引言

   

植物激素是一类对植物生长有显著作用的微量有机分子。它们虽然分子量较小,结构较简单,但其生理效应却复杂多样。从影响细胞的分裂、伸长、分化到影响植物的发芽、生根、开花、结果、性别决定、休眠和脱落等[1]。所以,植物激素对植物的生长发育有重要的调控作用。目前植物激素主要包括九类[2],分别是生长素、赤霉素、细胞分裂素、脱落酸、乙烯、油菜素内酯、茉莉酸类、水杨酸及多胺类。这些激素各自有着独特的生理效应,或协调植物的生长发育,或调控植物应对各种逆境,而且九类激素还可以通过增效或拮抗的方式组成复杂的调控体系,使得对于植物生长发育或者应对外界环境的调控机制更加复杂和精细。激动素(又叫动力精),是第一个被发现的细胞分裂素[3]。在20世纪50年代初期,很多科学家开始从生物组织中获取化学物质并研究其各种性质。1954年,米勒发现青鱼精液dna中有一种微量物质,可以促进细胞浆的移动[4],这种物质被称为激动素。1955年,人们确定这种物质为6呋喃甲基腺嘌呤(分子式为c10h9n5o)。尽管激动素不是一种天然的细胞分裂素,但后来人们发现它和天然的细胞分裂素有类似的结构[5],即在c6位置都有一个取代的嘌呤环,改变该结构可以减弱或消除其细胞动力学活性。激动素的主要作用是促进细胞分裂,同时   还具有延缓离体叶片衰老、诱导花芽分化和增加气孔开度等作用[1,6]。此外,激动素对离体小麦叶片中蛋白质含量的下降有延缓作用[7];对菊花的花期具有延迟作用[8];对鼠的实验表明,它具有逆转肝纤维化的作用[9]。由此可见,激动素在农业及生物研究方面具有广阔的应用前景。目前,已报道的测定激动素的方法主要有离子交换法[10]、高效液相色谱法、气相色谱质谱法[11]、荧光[12]、电化学[13~15]等方法。这些方法存在一些不足,如仪器昂贵、操作复杂、灵敏度较低等。

   

电化学发光(ecl)是指通过电化学的方法在电极表面产生一些特殊的物质,这些物质之间或与体系中其它组分之间通过电子传递形成激发态,由激发态返回到基态产生发光现象,是电化学与化学发光方法相结合的产物。用光电倍增管等光学仪器测量电化学发光过程中发光光谱和强度,从而对痕量物质进行分析 [16]。该分析方法具有灵敏度高、线性范围宽、发光信号易于检测、易于控制和装置简单等特点。吡啶钌[ru(bpy)3]2+是发光效率较高的电化学发光活性物质,近年来它被广泛应用于有机酸,氨基酸和药物的测定[17]。但由于吡啶钌用于溶液相电化学发光体系时,昂贵试剂吡啶钌的不断消耗带来成本高、环境污染和实验装置复杂等问题,使它的应用受到限制。基于电化学发光反应中[ru(bpy)3]2+在电极表面循环使用的特点,把[ru(bpy)3]2+固定在电极表面不仅可以克服上述问题,还可以提高电化学发光强度[18]。 因此,人们提出了许多方法和材料,以将吡啶钌固定在电极表面。在所有的固定化方法中,nafion 是最常用的一种材料,基于nafion的离子交换特性,[ru(bpy)3]2+ 可以通过离子交换作用被固定于纯的nafion膜中[19]。而将[ru(bpy)3]2+固定在碳纳米管/nafion复合物膜修饰电极表面可以使[ru(bpy)3]2+在nafion膜上的电化学发光特性有较大的改善[20]。在这种固定化方法中,nafion充当膜材料、离子交换剂和碳纳米管的溶剂;而碳纳米管在nafion膜中起到吸附吡啶钌、改善膜结构及作为膜中的导电通道等作用。实验发现,激动素对碳纳米管/nafion[ru(bpy)3]2+修饰电极的电化学发光信号有强的增敏作用,基于此建立了一种高灵敏度测定激动素的电化学发光新方法。

2  实验部分

2.1  仪器和试剂

   

rec100型电化学分析工作站,rfl1型超微弱化学发光/生物发光检测仪,iffsa型多功能化学发光检测器(以上仪器均为西安瑞迈分析仪器有限公司生产);采用三电极体系:碳纳米管/nafion修饰的石墨电极为工作电极,缠绕铂丝为对电极,ag/agcl电极作参比电极。

   

1.0 g/l的激动素储备液:称取激动素(北京鼎国生物技术有限公司)25 mg,用0.1mol/l naoh溶解并用二次蒸馏水定容至25 ml棕色容量瓶中,于冰箱中4 ℃避光保存;吡啶钌(sigma 公司)储备溶液(浓度约为1.0×10-3mol/l): 量取适量吡啶钌,用二次蒸馏水溶解后,储于棕色瓶中避光保存;nafion(aldrich公司),用乙醇稀释成5.0g/l备用;多壁碳纳米管(深圳纳米技术进出口有限责任公司);水为二次蒸馏水,其余试剂均为分析纯试剂。

   

2.2  修饰电极的制备方法

   

将适量碳纳米管粉末超声分散在一定浓度的nafion溶液中,形成较稳定的悬浊液。移取10 μl上述悬浊液均匀滴涂在处理过的洗净石墨电极表面,在室温环境中放置电极至溶剂蒸发电极表面干燥,然后把该电极浸在1.0×10-4 mol/l吡啶钌溶液中约0.5 h,电极取出后用蒸馏水充分冲洗其表面,再在0.1 mol/l磷酸盐缓冲溶液中循环伏安扫描至电流稳定。

   

以上述准备好的修饰电极为工作电极进行相关电化学及电化学发光测试。

3  结果与讨论

3.1  吡啶钌的固定化

   

采用循环伏安法研究了固定在碳纳米管/nafion复合物膜修饰电极表面的吡啶钌的电化学行为。分别测定了裸石墨电极、纯nafion修饰电极和碳纳米管/nafion复合物膜修饰电极在含有1.0×10-4mol/l吡啶钌的磷酸盐缓冲溶液中的循环伏安行为。实验表明,吡啶钌在此3种电极上的循环伏安响应在形状上相似,这说明通过简单的复合物膜修饰电极浸入吡啶钌溶液中可以有效固定吡啶钌,并且固定在电极上的吡啶钌能保持其良好的电化学行为。但吡啶钌在此3种电极上的氧化还原峰电流值明显不同,裸电极上的电流强度最小,纯nafion修饰电极次之,复合物修饰电极的电流强度最大。另外,固定吡啶钌的修饰电极在磷酸盐缓冲溶液中连续多次扫描对吡啶钌的氧化还原电流值没有明显的影响,此结果表明,此修饰电极具有较高的稳定性。这些结果和文献[18]报道一致。

3.2  激动素的电化学行为

   

实验时,把裸石墨电极先后分别放入ph=9.0的磷酸盐缓冲溶液和含有一定浓度激动素的相同ph的磷酸盐缓冲溶液中,其循环伏安曲线如图1所示。结果说明,在不含激动素的缓冲溶液中得到的循环伏安图(a)上没有出现氧化还原峰,而含有激动素时所得的循环伏安图(b)在0.8~0.9 v位置处出现了明显的氧化峰。这表明在适当条件下激动素可以发生电化学氧化反应。同时,激动素的循环伏安图上只有氧化峰而无相应的还原峰,这说明激动素在石墨电极上的氧化反应为不可逆反应。此结果与文献[15]报道类似。

3.3  激动素对吡啶钌氧化过程的催化作用

   

实验考察了激动素对固定于碳纳米管/nafion复合物膜中的吡啶钌电化学行为的催化作用。图2表示碳纳米管/nafion吡啶钌修饰电极分别在0.1 mol/l磷酸盐缓冲溶液(ph=9)中的循环伏安曲线(b)和在含有一定浓度激动素的0.1 mol/l磷酸盐缓冲溶液(ph=9)中的循环伏安曲线(a)。由图2可以看出:加入激动素后所得的循环伏安曲线与没加激动素所得曲线相比,吡啶钌的氧化峰电流大大增强,而还原峰电流明显减小。这表明吡啶钌对激动素的电化学氧化反应有催化作用。此现象与三丙胺对吡啶钌电化学行为的催化作用类似,由此可知激动素对吡啶钌的电化学发光增敏作用与三丙胺一致。

 

图1  裸石墨电极分别在ph=9的磷酸盐缓冲溶液(a)和含有激动素的ph=9的磷酸盐缓冲溶液(b)中的循环伏安曲线.(扫速为0.05 v/s)(略)

fig.1  cyclic voltammograms of bare graphite electrode in phosphate buffer solution (ph=9) with (b) and without kinetin(a)(scan rate: 0.05 v/s) 

图2  碳纳米管/nafion吡啶钌修饰电极在含有激动素的磷酸盐缓冲溶液(a)和空白缓冲溶液(b)中的循环伏安曲线(ph=9)(略)

fig.2  cyclic voltammograms of carbon nanotube/nafionru(bpy)2+3 in phosphate buffer solution with (a) and without kinetin (b)(ph=9)

3.4  激动素对吡啶钌电化学发光的增敏作用

   

实验分别测定了吡啶钌修饰电极在ph=9的磷酸盐缓冲溶液和含有5×10-6g/l激动素的相同磷酸盐缓冲溶液中的电化学发光信号。结果表明:激动素的加入使吡啶钌弱的电化学发光信号大大增强,而且随着激动素加入量的增加,电化学发光信号持续增大,说明了激动素对吡啶钌的弱电化学发光具有明显的增敏作用。

3.5  实验条件的优化

3.5.1  ph的选择  本实验以0.1 mol/l k2hpo4/nah2po4缓冲溶液为介质,分别用裸石墨电极和固定有吡啶钌的修饰石墨电极考查了在各种ph时激动素自身的电化学行为、激动素对吡啶钌的电化学反应的催化程度、以及对吡啶钌电化学发光增敏程度的影响。结果发现,在酸性介质中时,几乎看不出激动素的氧化峰,而在偏碱性介质中时,激动素有明显的氧化峰(图3)。这表明激动素在碱性介质中才易于被氧化,这与文献 [15]报道一致。而此时吡啶钌的氧化峰电位也比酸性介质中的偏负,峰电流比酸性介质中大(图4),即碱性介质中激动素对吡啶钌的催化效果也更好。 

图3  裸石墨电极在含相同浓度激动素的不同ph的磷酸盐缓冲溶液中的循环伏安曲线(略)

fig.3  cyclic voltammograms of kinetin at bare graphite electrode in phosphate buffer solutions with different ph

扫速(scan rate): 0.05 v/s。

   

实验中同时考察了不同ph的介质对激动素增敏的吡啶钌电化学发光信号的影响。结果发现,当ph较小时,随着ph的增大,增敏的电化学发光信号逐渐增大;当ph=9.2时,激动素增敏的吡啶钌电化学发光信号达到最大;而随后随着ph的增大增敏的电化学信号开始下降(图5)。上述实验现象说明激动素对吡啶钌的电化学发光信号的增敏作用与其脱质子过程有关,这与文献[21]报道的三丙胺和吲哚乙酸对吡啶钌电化学发光信号的增敏作用类似。本实验选择ph 9.2的0.1 mol/l k2hpo4/nah2po4缓冲溶液为介质。

 

图4   碳纳米管/nafion吡啶钌修饰的石墨电极在含相同浓度激动素的不同ph的磷酸盐缓冲溶液中的循环伏安曲线(略)

fig.4  cyclic voltammograms of kinetin at carbon nanotube/nafion ru(bpy)2+3 modified graphite electrode in phosphate buffer solution with different ph

扫速(scan rate): 0.05 v/s. 1. ph 9.1; 2. ph 8.7; 3. ph 6.7; 4. ph 4.7.

 

图5  缓冲溶液质ph对电化学发光信噪比的影响(激动素: 5 ×10-6 g/l)(略)

fig.5  effect of ph on ecl signal/noise (kinetin: 5 ×10-6 g/l)

3.5.2  电解方式的选择  电化学发光的分析特性与激发信号的施加方式关系极为密切,其主要原因是电化学发光物质的产生速度在扩散层中的动态分布以及电化学反应与电化学发光反应相匹配的程度等步骤受电化学激发方式的调控[22]。本实验主要考察了循环伏安、线性扫描、恒电位和阶跃脉冲等电解方式对激动素增敏的吡啶钌电化学发光行为,结果发现循环伏安法呈现出更好的电化学发光分析特性,稳定性好,且信噪比较高,所以实验中采用循环伏安作为最佳电化学激发信号。

3.5.3  扫描速度的选择及电极反应过程  将碳纳米管/nafion吡啶钌修饰电极放入含5.0×10-6 g/l激动素的磷酸盐缓冲溶液(ph=9.2)中,记录不同扫描速率时的循环伏安曲线(图6a)。实验发现,随着扫描速率的增加,吡啶钌峰电位正移,峰电流增大,并且峰电流与扫描速率的平方根成正比。这些实验结果表明:吡啶钌体系的电极反应为扩散控制过程。实验同时考察了扫描速率分别为0.25、0.16、0.1、0.05和0.025 v/s时的电化学发光信号稳定性及信噪比(图6b),发现扫描速率较小时电化学发光信号更稳定,信噪比也更高。所以本实验选择的扫描速率为0.05 v/s。

图6  扫描速度对循环伏安曲线(a)和电化学发光信噪比(b)的影响(略)

fig.6  effect of scan rate on cyclic voltammograms at carbon nanotube/nafionru(bpy)2+3 (a) and signal/noise of ecl(b)

1. 0.09 v/s; 2. 0.04 v/s.

3.6  分析特性

   

在上述的最佳实验条件下,激动素增敏的吡啶钌电化学发光强度值与激动素的浓度在5.0×10-8~4.0×10-5 g/l范围内呈线性关系,线性回归方程为i=28+0.142c(10-8 g/l),相关系数为0.9992,检出限为2.0×10-8 g/l,对5.0 ×10-6 g/l的激动素平行测定11次,相对标准偏差rsd为5.8 %。此结果说明:本实验所建立的电化学发光法测定激动素的方法具有高的灵敏度和稳定性。

3.7  干扰实验

   

在最佳实验条件下,考察了一些易与激动素共存的植物激素对激动素检测的干扰。以1.0×10-6g/l激动素溶液为空白溶液,与加有不同浓度的可能干扰物 (如赤霉素,吲哚乙酸等)的溶液进行对比测定,记录相应的发光信号和数据。如果加入某浓度干扰物质后,溶液的发光信号的改变程度大于或等于这种方法所允许的误差(5%),就认为所加入的物质已经产生了干扰。

   

相关数据如表1所示。实验表明:对于1.0×10-6 g/l激动素,10倍的吲哚乙酸,100倍的6苄基腺嘌和等量的赤霉素,均不干扰其测定。结果表明,所建立的方法测定激动素有较高的选择性。本方法灵敏度高,线性范围宽,操作简便,有望帮助进一步了解激动素等植物激素在植物体内各个部分的作用方式,进而更好地利用它们。

表1  干扰实验(略)

table 1  reference experiments

【参考文献】

 

1 zhou shouxiang (周守详). the applied technology of plant growth regulators(植物生长调节剂实用技术). beijing(北京): chinese literary history press(中国文史出版社), 1990: 163~164

2 wang chunzheng(王春政). life world(生命世界), 2008, (3): 62~65

3 salisbury f b, ross c w. plant physiology, wadsworth, 1992: 382~393

4 miller c o, skoog f, okumura f s, von saltza m h, strong f m. j. am. chem. soc., 1955, 77(9): 2662~2663

5 barcelo j, nicolas g, sabater b, sanchez r. fisiologa vegetal, piramide s a, 1988: 487~502

6 ye zixin(叶自新). plant hormone and chemical control of vegetable(植物激素与蔬菜化学控制). beijing(北京): chinese agricultural science and technology press(中国农业科技出版社), 1988: 40~42

7 jin mingxian(金明现), li qiren(李启任). plant physiology communications(植物生理学通讯), 1994, 30(1):11~14

8 ding yifeng(丁义峰), liu ping(刘 萍), chang yunxia(常云霞), zhao le(赵 乐), han deguo(韩德果), xu kedong(徐克东). journal of henan agricultural sciences(河南农业科学), 2007, (1):80~83

9 zhang zhengang(张振纲), tian deying(田德英), zhou jian(周 健), ma xiaojun(马小军), xu dong(许 东), huang yuancheng(黄元成), song peihui(宋佩辉). herald of medicine(医药导报), 2007, 26(1): 11~14

10 brenner m l. ann. rev. plant. physiol., 1981, 32: 511~538

11 takahasi n. chemistry of plant hormones, crc press, boca raton, fl, 1986

12 jiang ziwei(江子伟), jiang tongbo(姜彤波), ju changqing(琚常青), zhang jie(张 杰). chem. j. chinese universities(高等学校化学学报), 1994, 15(3): 356~359

13 blanco m h, del carmen quintana m, hernández l. electroanalysis, 2000, 12 (2): 147~154

14 huskova r, pechova d, kotoucek m, lemr k, dolezal k. chemické listy, 2000, 94 (1): 1004~1009

15 ballesteros y, gonzalez de la huebra m j, quintana m c, hernandez p, hernandez l. microchemical journal, 2003, 74(2): 193~202

16 liu feng(刘 锋), zhou tianxiang(周天翔), tu yifeng(屠一锋). chinese journal of spectroscopy laboratory(光谱实验室), 2007, 24(4): 519~524

17 greenway g m, nelstrop l j, port s n. anal. chim. acta, 2000, 405(12): 43~50

18 song hongjie(宋红杰), zhang zhujun(章竹君). chinese journal of analysis laboratory(分析试验室), 2007, 26(2): 1~5

19 downey t m, nieman t a. anal. chem., 1992, 64(3): 261~268

动物激素的化学本质篇5

1.2激光生物学效应;由于激光具有能量和动量,激光作用于生物分子,就有可能使生物分子产生物理、化学或生物反应,这就是激光生物效应。激光生物热效应、激光生物光华效应、激光生物压力效应、激光生物电磁效应和激光生物刺激效应。生物组织内的天然色素颗粒,对近紫外、可见光和近红外光谱区的激光有选择吸收作用。激光生物效应,目前已经在激光医疗、激光育种方面得到广泛、有效的应用。

1.2.1激光生物热效应;激光照射生物组织时,激光的光子作用于生物分子,分子运动加剧,与其他分子的碰撞频率增加,由光转化为分子的动能后变成热能,可能会引起蛋白质变性,生物组织表面收缩、脱水、组织内部因水分蒸发而受到破坏,造成组织凝固坏死。当局部温度急剧上升达几百度甚至上千度时,可以造成照射部分碳化或汽化。在照射生物组织时,不同波长的激光产生热效应的机制也不尽同。红外激光的光子能量小,生物组织吸收后只能增加生物分子的热运动导致温度升高,所以它是直接生热可见光和紫外光的光子能量大,生物组织吸收了光子能量后引起生物分子电子态跃迁,在它从电子激发态回到基态的驰豫过程中释放能量,该能量可能引起光化反应,也可能转化为热量产生温度升高,所以它们是间接生热。激光热效应究竟应表现为哪种形式,在激光方面取决于其输出参数、作用时间,在生物组织方面则取决于其光学、热学特性等诸多因素。

热效应是激光致伤的最重要因素。激光损伤区与正常组织的界缘十分清楚,这是由于激光脉冲时程短,生物组织的导热性差,瞬间放热来不及扩散到受照射部位以外的缘故。辐照后,由于继变化,如炎症、出血、再生等,会使原初清楚的损伤界缘逐渐变得模糊。

1.2.2激光生物光华效应;当一个处于基态的分子吸收了能量足够大的光子以后,受激跃迁到激发态,在它从激发态返回到基态,但又不返回其原来分子能量状态的弛豫过程中,多出来的能量消耗在它自身的化学键断裂或形成新键上,其发生的化学反应即为原初光化学反应,在原初光化学反应过程中形成的产物,大多数极不稳定,它们继续进行化学反应直至形成稳定的产物,这种光化反应称为继发光化反应,前后两种反应组成了一个完整的光化反应过程,这一过程大致可分为光致分解、光致氧化、光致聚合及光致敏化四种主要类型,光致敏化效应又包括光动力作用和一般光敏化作用。生物的光华效应产生的根本是生物的而组织有一定的色度,能选择性地吸收300~1000nm光谱。生物体内的色素有黑色素和类黑色素、血红蛋白、胡萝卜素、铁质等,其中黑色素对激光能量的吸收最大。脱氧血红蛋白在556nm,氧合血红蛋白在415、542、575nm处有清楚的吸收带,胡萝卜素吸收带在480nm处,黑色素和类黑色素在400~450nm波段吸收最强。无论是正常细胞还是肿瘤细胞,在细胞质和细胞间有许多黑色素颗粒,它们吸收激光能量使能量在色素颗粒上积聚而成为一个热源,其能量向周围传导和扩散,从而引起周围组织细胞损伤。

1.2.3激光生物压力效应;由激光照射产生的机械作用可分为两部分:激光本身的辐射压力对生物组织产生的压强,即光压,称作一次压强;生物组织吸收强激光造成的热膨胀和相变以及超声波、冲击波、电致伸缩等引起的压强,叫二次压强。由激光导致的生物细胞的压强的变化可以改变生物细胞、组织的形状,使得生物细胞、组织内部或之间产生机械力,从而对生物细胞、组织产生巨大的影响。由这种作用产生的冲击波是激光致伤的另一原因。冲击波在组织中以超声速运动,在组织中产生空穴现象,引起组织破坏。戈尔德曼指出:脉冲时程50毫微秒的Q开关激光产生的冲击波压力,可大于10个大气压。实际上,激光热效应影响范围十分局限,而由压力效应引起的组织损伤,则可波及到远离受照区的部位。例如,用红宝石激光照射小鼠头部时,发现头皮轻度损伤,颅骨和大脑硬膜并无损伤,而大脑本身却大面积出血,甚至造成死亡。

2.激光与生物分子相互作用机理研究现状

动物激素的化学本质篇6

(一)要求学生比较系统地掌握关于细胞、生物的新陈代谢、生物的生殖和发育、生命活动的调节、遗传和变异等方面的基础知识,以及这些知识在农业、医药、工业、国防上的应用。

(二)通过生物学基础知识的学习,使学生受到辩证唯物主义和爱国主义思想的教育。

(三)要求学生掌握使用高倍显微镜,做简单的生理实验等的基本技能。

(四)培养学生自学生物学知识的能力,观察动植物的生活习性、形态结构、生殖发育的能力,分析和解释一些生物现象的初步能力。

二、确定教学内容的原则

(一)从学生今后进一步学习和参加社会主义现代化建设的需要出发,认真选取生物学基础知识:选取生物的结构和生理的知识。结构知识是理解生理知识的基础。生理知识是阐明生物的新陈代谢,生长、发育和生殖等的基础知识。因此,必须重视选取形态结构和生理的知识。

(二)选取生物学基础知识,必须做到理论密切联系实际。

1.选取生物学基础知识,要密切联系工农业生产实际。生物学是农业、畜牧业和医学等方面实践的理论基础,通过学习生物学知识,要使学生知道生物与生产的关系十分密切,应该利用和改造有益的生物,防除有害的生物。

2.要密切联系各地的自然实际。由于我国幅员广大,各地的生物种类有很大差别。因此,所选取的植物和动物,既要重视其典型性,又必须尽可能是各地比较常见的,以便学生可以直接观察到这些动植物和了解这些动植物的生活规律。

3.选取的生物学基础知识,要密切联系学生的日常生活实际,使学生加深对生物学知识的理解,同时更加深刻地认识学习生物学的意义。

(三)适当选取反映现代生物科学水平的生物学基础知识。

现代生物科学发展很快,生物课必须重视用现代生物科学的观点来阐述教学内容,并且适当地增加反映现代生物科学水平的知识内容,使学生对生物科学发展的现状有个初步的认识,为他们进一步学习现代生物科学知识和参加工农业生产打下必要的基础。

三、班级现状分析

本学期我任教高二(2)、(3)、(4)三个班级,三个班级人数分别为:46、45、46人,虽然通过班主任,我对个班的现状有了一点了解,但由于生物是从高二开始的起始课程,所以具体情况还不能下定论。

四、教学进度安排

高中阶段学习的生物学知识,是在初中生物教学内容的基础上进行的,学习生物的基本特征,侧重于生命活动的共同规律的内容。主要包括细胞、新陈代谢及其调节、生殖和发育、遗传和变异的知识。初中和高中两个阶段所学的生物学基础知识,既有所分工、又互相衔接,高中生物学是初中生物学知识的综合、概括和提高。

高中二年级开设的生物必修课(第一学期),每周2课时,共计34课时。讲述细胞、生物的新陈代谢、生物的生殖和发育、生命活动的调节、遗传和变异等生物学基础知识。

五、教学内容及其课时安排

高中生物必修课教学进度

单元

知 识

学生实验

课时

要 点

教学要求

项 目

绪论

生物的基本特征

生物科学的新进展

高中生物课学习的要求和方法

b

a

a

2

生命的物质基础

组成生物体的化学元素

组成生物体的化合物

b

c

实验:显微镜的结构和使用;生物组织中还原糖、脂肪、蛋白质的鉴定。

2+1+1

生命的基本单位-细胞

细胞主要的亚显微结构和功能

细胞周期

细胞分裂

b

c

a

实验:

1.颤藻和水绵细胞的比较观察

2.植物细胞的有丝分裂。

生物的新陈代谢

光合作用的发现,光合作用及其重要意义

根对水分的吸收和利用

植物的矿质营养

动物的营养

呼吸作用

a

b

b

b

b

实验:

1.叶绿体色素的提取和分离

2.植物细胞的质壁分离与复原。

2+5

应激性和生命活动的调节

植物生命活动的调节

高等动物的激素调节

高等动物的神经调节

a

a

b

1+1+2

生殖和发育

减数分裂和配子的形成

a

2

具体教学内容如下:

绪 论

生物的基本特征(细胞结构,新陈代谢,生长现象,应激性,生殖和发育,遗传和变异,生物与环境的相互影响)的概述。

生物学的研究对象和发展方向。学习生物学的重要意义。

说明:生物学的研究对象和发展方向,只要求学生作一般了解。

一、细胞

细胞的发现。细胞学说。原生质的概念。

细胞的化学成分:水,无机盐,糖类, 脂类,蛋白质,核酸;上述物质特别是蛋白质和核酸的重要作用,构成细胞的化学元素。

细胞的结构和功能:原核细胞和真核细胞的区别。真核细胞的亚显微结构——细胞膜,细胞质(其中含有线粒体、质体、内质网、核糖体、高尔基体、中心体等细胞器),细胞核(核膜、核仁、核液和染色质)。细胞各个组成部分的功能。一个细胞是一个有机的统一整体。细胞的分裂:无丝分裂。有丝分裂——细胞周期;细胞的分裂期分为前期、中期、后期、末期,各个分裂期的细胞核结构变化的特点。动物细胞和植物细胞的有丝分裂过程的异同。有丝分裂的重要意义。减数分裂是一种特殊方式的有丝分裂。

〔实验〕用高倍显微镜观察植物细胞的有丝分裂,初步学会使用高倍显微镜。

说明:在《细胞》中,以下内容只要求学生作一般了解。

1.细胞的发现,细胞学说,原生质的概念。

2.内质网、核糖体、高尔基体、中心体等细胞器。一个细胞是一个有机的统一整体。

3.无丝分裂。减数分裂是一种特殊方式有有丝分裂。

二、生物的新陈代谢

新陈代谢的概念。同化作用和异化作用的概念。

绿色植物的新陈代谢:水分代谢——细胞在形成液泡以前靠吸胀作用吸水;细胞在形成液泡以后主要靠渗透吸水。渗透吸水的原理。渗透作用的概念。质壁分离和质壁分离复原。水分散失的方式和意义。

矿质代谢——植物需要的元素(大量元素和微量元素)。根吸收矿质元素的过程——交换吸附。植物对离子的选择吸收。矿质元素的利用。

光合作用——光合作用的重要意义。高等植物叶绿体中的色素及其作用。光合作用的过程(光反应,暗反应)。atp(三磷酸腺苷)的简式,atp与adp(二磷酸腺苷)的相互转变。

呼吸作用——呼吸作用与光合作用的本质区别。呼吸作用的生理意义。呼吸作用的过程(有氧呼吸和无氧呼吸的过程)。有氧呼吸的过程与无氧呼吸的过程的异同。

动物的新陈代谢:体内细胞的物质交换——单细胞动物与外界环境直接进行物质交换;多细胞动物(如哺乳动物)的体内细胞通过内环境与外界环境间接进行物质交换。

物质代谢——食物的消化(单细胞动物、低等的多细胞动物、高等的多细胞动物消化食物的特点。哺乳动物的消化过程概述)。营养物质的吸收(小肠在形态结构上适于吸收的特点,营养物质的吸收过程)。物质代谢的过程(糖类代谢、蛋白质代谢的过程概述)。

能量代谢——气体交换(单细胞动物和多细胞高等动物进行气体交换的特点)。能量的释放、转移和利用。高等动物在缺氧状态下通过无氧呼吸获得能量。

新陈代谢的基本类型:同化作用的两种不同类型(自养型、异养型的概念和特点)。异化作用的两种不同类型(需氧型、厌氧型的概念和特点)。

〔实验〕(1)观察植物细胞的质壁分离和复原。

(2)观察根对矿质元素离子的交换吸附现象。

(3)叶绿体中色素的提取和分离。

说明:1.在《生物的新陈代谢》中,以下内容只要求学生作一般了解。

(1)细胞在形成液泡以前靠吸胀作用吸水。渗透吸水的原理。*渗透作用的概念。

(2)根吸收矿质元素的过程——交换吸附。

*(3)植物对离子的选择吸收。

(4)呼吸作用的过程(有氧呼吸和无氧呼吸的过程)。有氧呼吸的过程与无氧呼吸的过程的异同。

(5)单细胞动物与外界环境直接进行物质交换。

(6)单细胞动物、低等的多细胞动物、高等的多细胞动物消化食物的特点。

三、生命活动的调节(4∶0)

植物生命活动的调节:生长素的发现。植物的向光性和向光性形成的原因。生长素的生理作用及其在实践上的意义。

动物生命活动的调节:高等动物的激素调节(甲状腺激素、性激素、生长激素的分泌部位和生理作用)。昆虫的激素调节(内激素、外激素的分泌部位和生理作用,昆虫激素在生产上的应用)。神经调节(神经系统的调节功能)。≤第一范文 网整理该文章,版权归原作者、原出处所有≥

说明:在《生命活动的调节》中,以下内容只要求学生作一般了解。

*1.生长素的发现。

*2.昆虫的激素调节。

四、生物的生殖和发育(9∶0)

生物的生殖。生殖的概念。

生殖的种类:无性生殖(分裂生殖,孢子生殖,出芽生殖,营养生殖);有性生殖(配子生殖中的卵式生殖)。这些生殖方式的特点和概念。

减数分裂与有性生殖细胞的成熟:减数分裂的概念和意义。的形成过程。卵细胞的形成过程。受精作用的概念和意义。

生物的发育。发育的概念。

植物的个体发育(以荠菜为例):胚的发育过程,胚乳的发育过程。

动物的个体发育(以蛙为例):胚的发育过程(包括卵裂、囊胚、原肠胚各期),各种组织、器官和系统的形成。胚后发育。胚的发育与环境的关系。

说明:在《生物的生殖和发育》中,以下内容只要求学生作一般了解。

*1.生殖的种类。

*2.无性生殖和有性生殖方式的特点和概念。

*3.植物的个体发育(以荠菜为例)。

1.在高中二年级学习高中生物知识的基础上,以下内容要求掌握:

(一)生命的基础

细胞的化学成分——水,无机盐,糖类,脂类,蛋白质,核酸;上述物质特别是蛋白质和核酸的重要作用,构成细胞的化学元素。

原核细胞和真核细胞的区别。真核细胞的亚显微结构——细胞膜,细胞质(其中含有线粒体、质体),细胞核(核膜、核仁、核液和染色质)。细胞各个组成部分的功能。

有丝分裂——细胞周期;细胞的分裂期分为前期、中期、后期、末期,各个分裂期的细胞核结构变化的特点。动物细胞和植物细胞的有丝分裂过程的异同。有丝分裂的重要意义。

2.在高中二年级生物课中作为一般了解的以下教学内容,要求达到掌握:

内质网、核糖体、高尔基体、中心体等细胞器。一个细胞是一个有机的统一整体。

无丝分裂。减数分裂是一种特殊方式的有丝分裂。

3.〔实验〕用高倍显微镜观察植物细胞的有丝分裂,学会使用高倍显微镜。

(二)生物的新陈代谢(5∶2)

1.在高中二年级学习高中生物知识的基础上,以下内容要求掌握:

新陈代谢的概念。同化作用和异化作用的概念。

细胞在形成液泡以后主要靠渗透吸水。质壁分离和质壁分离复原。水分散失的方式和意义。植物需要的元素(大量元素和微量元素)。矿质元素的利用。

光合作用的重要意义。高等植物叶绿体中的色素及其作用。光合作用的过程(光反应、暗反应)。atp(三磷酸腺苷)的简式,atp与adp(二磷酸腺苷)的相互转变。

呼吸作用与光合作用的本质区别。呼吸作用的生理意义。

多细胞动物(如哺乳动物)的体内细胞通过内环境与外界环境间接进行物质交换。

哺乳动物的消化过程概述。营养物质的吸收(小肠在形态结构上适于吸收的特点,营养物质的吸收过程)。物质代谢的过程(糖类代谢、蛋白质代谢的过程概述)。

气体交换(单细胞动物和多细胞高等动物进行气体交换的特点)。能量的释放、转移和利用。高等动物在缺氧状态下通过无氧呼吸获得能量。

3.在高中二年级生物课中作为一般了解的以下教学内容,要求达到掌握:

细胞在形成液泡以前靠吸胀作用吸水。渗透吸水的原理。

根吸收矿质元素的过程——交换吸附。

呼吸作用的过程(有氧呼吸和无氧呼吸的过程)。有氧呼吸的过程与无氧呼吸的过程的异同。单细胞动物与外界环境直接进行物质交换。

单细胞动物、低等的多细胞动物、高等的多细胞动物消化食物的特点。

4.〔实验〕(1)观察植物细胞的质壁分离和复原。

(2)观察根对矿质元素离子的交换吸附现象。

(3)叶绿体中色素的提取和分离。

(三)生命活动的调节(2∶0)

在高中二年级学习高中生物知识的基础上,以下内容要求掌握:

动物激素的化学本质篇7

2、囊胚和胚囊。囊胚:动物胚胎发育的一个时期,此时期细胞已开始分化,形成内细胞团和滋养层细胞;胚囊:植物子房中胚珠内的结构,即胚珠珠被内的囊状结构,内含卵细胞、极核等。主要区别:部位不同。

3、原生质层和原生质体。原生质层:细胞膜和液泡膜以及两层膜之间的细胞质;原生质体:植物细胞除细胞壁外,细胞膜及内部的所有结构;一个动物就相当于一个原生质体。主要区别:结构不同、范围不同。

4、终止子和终止密码。终止子:DNA(基因)上的脱氧核苷酸序列,相当于一盏红色信号灯,使转录在所需要的地方停止下来;终止密码:mRNA上的核苷酸序列,能使翻译过程终止的密码子。主要区别:位置不同、作用不同、基本单位不同。

5、启动子和起始密码。启动子:位于基因的首端(在DNA上),是与RNA聚合酶识别和结合的部位;起始密码:mRNA上开始翻译蛋白质的密码子。主要区别:位置不同、作用不同、基本单位不同。

6、单倍体和一倍体。单倍体是由某一物种配子直接发育成的个体(含有本物种配子染色体数目的个体),不一定只含有一个染色体组;一倍体:只含有一个染色体组的单倍体。主要区别:单倍体范围大,包含一倍体。

7、赤道板和细胞板。赤道板:是指在有丝分裂中期染色体的着丝点整齐排列的一个平面,是一个虚拟的结构;细胞板:是在植物细胞有丝分裂末期,在原来赤道板的位置上形成的将来要向四周扩散构建成熟细胞壁的结构,是有形成的,实实在在的,其形成与高尔基体活动有关。主要区别:作用不同、含义不同。

8、细胞质和细胞质基质。细胞质:是指在细胞膜以内,细胞核以外的全部原生质,包括细胞质基质、内含物和各种细胞器;细胞质基质:是细胞质中除了细胞器外的液态(胶质)部分,内含水、无机盐、离子、脂类、糖类、氨基酸和核苷酸等,是活细胞进行新陈代谢的主要场所。主要区别:范围不同、细胞质基质属于细胞质的一部分。

9、肾上腺激素和肾上腺素。肾上腺激素:是肾上腺所分泌激素的总称,包括肾上腺髓质和肾上腺皮质激素。肾上腺髓质激素又包括肾上腺素和去甲肾上腺素,肾上腺皮质激素又包括糖皮质激素和少量的性激素;肾上腺素:由肾上腺髓质分泌的一种儿茶酚胺激素。在应激状态、内脏神经刺激和低血糖等情况下,释放入血液循环,促进糖原分解并升高血糖,促进脂肪分解,引起心跳加快。主要区别:肾上腺素只是肾上腺激素的一种,两者并不是同一概念。

10、呼吸作用、呼吸运动和呼吸。呼吸作用:生物体内的有机物在细胞内经过一系列的氧化分解,最终生成CO2或其他产物,并且释放出能量的总过程;呼吸运动:指由于呼吸肌(膈肌、肋间肌等)的收缩和舒张而使胸腔有节律地扩大和缩小,从而引起的吸气和呼气的运动;呼吸:是在呼吸运动的基础上所进行的宏观气体交换过程。主要区别:含义不同、作用不同。

11、间作、轮作和套作。间作:在同一块田地上,同时期按一定行数的比例间隔种植两种或两种以上作物。间作往往是高茎植物和矮茎植物相互间作,可充分利用光能和CO2,达到增产的目的;轮作:在同一块天地上,按照一定年限或在一年内按一定的季节,轮换栽培几种植物。轮作可合理利用土壤肥力,减轻病虫害,提高生产率;套作:在一种作物生长的后期,种上另一种作物,其共同生长的时间较短。套作可以相对缩短某些农作物的生长周期。主要区别:含义不同、使用目的不同、作用效果不同。

动物激素的化学本质篇8

从概念的基本构成上看,关键词或核心语是支持概念的骨架。但生物学中的某些概念是抽象晦涩难懂的,学生学习有一定的难度。可以尝试通过将概念中需要理解的关键词或抽出其内涵的组成要素,进行一系列“分述性”的设问,引导学生经由领悟在概念中出现的核心词、关键点或组成要素来建构概念。

如特异性免疫概念对人体的获得性免疫原理作了精确而本质的阐述,但其基本内涵要素涉及有免疫、抗原、抗体等,要学生准确构建此概念可以设置以下一组与内涵要素有关的分述性问题:(1)特异性免疫是什么阶段获得的?(2)特异性免疫中人体在什么情况下能产生?(3)抗体是什么?(4)抗原是什么?(5)特异性免疫的方式有哪些?怎么样进行?通过在教学过程中让学生回答这些与内涵要素相关的问题,将概念中的本质加以清晰化、具体化、明确化,可帮助学生更好地构建概念。如“生态系统的结构”“生长素的两重性”等一类的概念,可通过设问“分述性”问题的做法引导学生学习。

对于像“特异性免疫”这些较抽象的概念,在教学中以“分述性”问题加以引导,有利于学生理解概念的内涵和外延,并由此而构建正确的概念。

二、创设“对比性”问题,有效分辨相近概念

概念辨析是高中生物新课标中需要学生掌握达成的一个目标。生物学概念中,有不少概念不管是文字上还是所包含的内容上都有一定的相似性,学生往往容易混淆,对于这些概念的教学,我们在通过一定的教学方法让学生理解了各自概念的要点后,如能进一步创设一些“对比性”问题让学生去分析,将更有利于学生深入理解、把握这些概念的实质。

动物激素的化学本质篇9

中图分类号:Q-49 文献标识码:E

信息传递可发生在同一细胞内、不同细胞以及不同的生物体之间。信息传递物有蛋白质、离子和激素等化学因子,也有声波、光粒子等物理因子和生物因子。通过信息传递,催促生物体顺利实现生命活动,使生命个体、群体及生命系统处于相对稳定的状态。

1.细胞内的信息传递

1.1以分泌蛋白为递质

动物细胞和植物细胞都具有分泌某些化学物质的能力。分泌出的化学物质有的是结构蛋白质,有的是功能蛋白质。属于功能蛋白质的如细胞外酶、某些蛋白质类激素等;属于结构蛋白质如生长因子、血清蛋白和细胞外基质蛋白等。

1975年,Blobel和Dobberstein根据对信号作用的研究,正式提出了信号假说,其要点是:①分泌蛋白的合成始于细胞质中的游离的核糖体;②合成的N端信号序列露出核糖体后,靠自由碰撞与内质网膜接触,然后靠N端信号序列的疏水性插入内质网的膜;③蛋白质继续合成,并以袢环形式穿过内质网的膜;④如果合成的是分泌蛋白,除了信号被信号肽酶切除外,全部进入内质网的腔;若是膜蛋白,则由一个或多个停止转移信号将蛋白质锚定在内质网膜上。之后信号假说得到了许多实验的支持。在核糖体上,以mRNA的遗传密码为直接模板,将一个个氨基酸装配成为多肽链,多肽链再通过内质网的修饰和加工后进入高尔基体,在高尔基体内经进一步的加工和分装,使之成为具有一定生命活力的蛋白质。这些分泌蛋白以具膜小泡的形式,向细胞膜逐渐推进,有的通过细胞膜的胞吐作用排出细胞外,在细胞外发挥作用。分泌蛋白的行走路线为:(核糖体)分泌蛋白内质网高尔基体细胞膜细胞外。

1.2以电子流为递质

1.2.1叶绿体类囊体膜上的电子传递:光能电能

在叶绿体的类囊体膜上进行着能量转换。其大致过程是:叶绿体类囊体膜上有2类色素:一类是常态的叶绿素a、叶绿素b、胡萝卜素和叶黄素;另一类是少数处于特殊状态的叶绿素a,它既能吸收光能也能转换光能。在光的照射下,具有吸收和传递光能的色素将吸收的光能传递给少数处于特殊状态的叶绿素a,使这些叶绿素a被激发而失去电子。脱离叶绿素a的电子,经过一系列的传递,最后传递给一种带正电荷的NADP+。失去电子的叶绿素a变成一种强氧化剂,从水中夺得电子,使水分子氧化成为O2和H+,叶绿素a由于获得电子而恢复了稳定。因此在光的照射下,少数处于特殊状态的叶绿素a,连续不断地丢失电子和获得电子,这样就形成了电子流,使得光能转换成为电能。

1.2.2线粒体内膜上的电子传递

电子传递链存在于线粒体内膜中,由3种蛋白质复合体组成,每种复合体中又有一种以上的电子传递体。还原型辅酶NADH中的氢离子和电子被电子传递体所接受。电子传递体将电子进一步地传递到末端。高能电子经过一系列的电子传递体时,能量不断地减少。这些减少的能量用于合成ATP。电子传递的最后一站是氢与氧结合形成水:2H++2e+1/2O2H2O。

1.2.3神经纤维上动作电位的传递

当神经纤维在未受到刺激时,细胞膜内外的电位表现为膜外正电位、膜内负电位。当神经纤维的某一部位受到刺激产生兴奋时,兴奋部位的膜就发生一次很快的电位变化,膜外由正电位变为负电位,膜内由负电位变为正电位。但相邻的未兴奋部位仍然是膜外正电位、膜内负电位。这样在细胞膜外的兴奋部位与邻近的未兴奋部位之间形成了电位差,也有了电荷的移动,就形成了局部电流。该电流在膜外由未兴奋部位流向兴奋部位,在膜内则由兴奋部位流向未兴奋部位,从而形成了局部电流回路。这种局部电流又刺激相邻的未兴奋部位发生上述同样的电位变化,又产生了局部电流。如此依次进行下去,兴奋不断地向前传导,已经兴奋的部位又不断地恢复到原先的电位。神经冲动就是以这样的方式沿着神经纤维向前传导,神经纤维膜内的电流走向决定了兴奋传导的方向。

2.细胞间的信息传递(细胞间通信)

2.1以蛋白质及氨基酸的衍生物为递质:神经分泌细胞靶细胞

较典型的实例是:下丘脑垂体甲状腺靶细胞轴系反馈性调节。

下丘脑的神经分泌细胞分泌的甲状腺激素释放激素,进入血液循环后,作用于腺垂体,促使腺垂体分泌促甲状腺激素,促甲状腺激素又通过血液的传递作用于甲状腺,使甲状腺合成并分泌甲状腺素和三碘甲腺原氨酸。这些激素又通过血液的携带作用于靶细胞,以促使靶细胞内的物质氧化分解。当然这种信息传递链又表现为一定的可逆性。即当血液中的甲状腺激素的含量增加到一定程度时,就会抑制下丘脑和垂体的活动,使促甲状腺激素释放激素和促甲状腺激素的合成和分泌减少,从而使血液中甲状腺激素的含量不致过多;当血液中甲状腺激素的含量降低时,对下丘脑和垂体的抑制作用就减弱,使促甲状腺激素释放激素和促甲状腺激素的合成和分泌增加,从而使血液中的甲状腺激素不致过少(图1)。

2.2以电信号和化学信号为递质

神经细胞之间多数通过化学突触联系。从神经元传来的神经冲动作用于突触小体,促使突触小泡释放化学递质,化学递质作用于突触前膜,之后利用突触前膜的流动性而进入突触间隙,通过突触间隙作用于突触后膜,造成突触后膜产生动作电位,再将信息传递下去,使下一个神经元产生一定的反应。

3.种群间的信息传递

3.1以“直效型”信息激素为递质

“直效型”外激素是指作用于接受者的中枢神经系统,对其行为立即产生影响作用的激素。目前发现的昆虫激素有20余种,一般说来昆虫激素只作用于特定的靶器官。按分泌器官的不同可将昆虫激素分为外激素和内激素。昆虫外激素又叫信息激素,种群中的个体之间是通过信息激素来通讯的,它能调节诱导同种个体的特殊行为。昆虫的信息激素一般有:性外激素、追踪激素、聚集激素和告警激素。性外激素的作用是引诱异性个体的交尾,如雌蛾的性外激素,在空气流动时,可分布到几百米甚至几千米远的空间。一只雌蛾平均含有0.1mg的性外激素,在1km外的雄蛾对稀释10000个分子的性外激素就会引起反应,它们所嗅到的分子数只有几百个甚至更少。性外激素的种类很多,但化学性质清楚的却很少,如雌蚕蛾性外激素的化学本质是10,12-十六二烯-1-醇。

3.2以“引发型”外激素为递质

所谓“引发型”外激素,是指可引发接受者在生理上产生较长时间的改变,进而改变动物对刺激所应具有的行为。例如,在蜜蜂的社会中,蜂皇上颚腺分泌一种叫做蜂王物质的外激素——反-9-氧-二-葵酸,这种物质可以引诱雄蜂与之。这种外激素的作用方式是“直效型”。但后蜂皇返回蜂巢,这种物质被某些雄蜂所沾染,在进食时又将该物质传给其他工蜂。每只工蜂吞食一点蜂王物质后,工蜂卵巢的发育就受到了抑制,同时也不能在蜂巢中建筑能够发育新蜂皇的王台。这种方式就属于“引发型”了。若蜂皇由巢中移去,蜂王物质消失,或蜂群扩大蜂王物质不够分吃时,某些工蜂卵巢就发育起来,就有可能变成成熟的雌性——蜂皇。一旦工蜂开始拥立另外蜂皇时,就可能导致大战,其结果是两只蜂皇必有一死。但在大多数情况下,蜜蜂是分群生活,通常是老的蜂皇带部分工蜂另起炉灶。因此,“引发型”外激素决定着昆虫的社会地位和种群的密度。

3.3以“肢体语言”为递质

蜜蜂的通讯可以依赖于听觉、视觉、触觉以及化学信号。这里仅以蜜蜂的“摆尾舞”为例,来说明蜜蜂通过肢体语言使其他同种个体产生反应的状况。1944年,弗里奇做了一个实验:将2个装有糖水的碟子,一个放在距离蜂巢10m处,另一个放在距离蜂巢300m处,并且每一个碟子中都放有薰衣草油。然后他在距离蜂巢10m处碟子里喂了一只蜜蜂,不久就发现大量的蜜蜂在碟子里出现,而仅有少数的蜜蜂在远处碟子里出现。当他重复这个实验时,在距离300m处的碟子里喂了一只找食的蜜蜂,其他就会大量地出现在这个碟子的附近,而只有少数蜜蜂在距离较近的那个碟子周围出现。道理很清楚,距离是以某一种方式被蜜蜂表达出来了。当弗里奇观察从这两只碟子附近返回找食蜜蜂时,立即看到它们的行为是完全不同的:从距离蜂巢10m处碟子飞回的蜜蜂跳的是圆形舞,而从300m处碟子返回的蜜蜂跳的是摆尾舞,也就是蜜蜂在直线上飞了一个短距离,同时迅速地摇动其腹部,然后行半个弧圈再走一段直线,腹部继续摆动,最后在另一边再走行半个弧圈,多次重复这种舞蹈。弗里奇发现,每分钟跳舞的次数就是在告知其他蜜蜂食物来源的距离。如蜜源离巢335m时每分钟就跳30次,如果超过670m仅跳22次。摆尾的快慢、摆动弧圈的大小都与蜜源距离有关。

3.4以染色体携带的遗传物质为递质

这是在亲代与子代之间发生的遗传信息传递。1944年由于艾弗里及其同事的工作,被争论了几十年的“遗传物质是什么”这个难题终于有了答案,即遗传物质是DNA。大量的事实表明,DNA分子中储藏着大量遗传信息。DNA的基本功能有2个:通过复制在生物的传种接代过程中传递遗传信息;使遗传信息在后代的个体发育过程中,正确表达,即使遗传信息反映到蛋白质的分子结构上,使子代与亲代在性状上表现相似。

4.生态系统中的物理信息传递

4.1以光粒子为递质

动物激素的化学本质篇10

1环境激素物质的致毒性

环境激素物质中多数是人工合成的随着人类生产和生活排放到环境中的污染物。自20世纪90年代以来,英、法等发达国家男性在减少,女性乳腺癌、子宫癌等生殖器官恶性肿瘤的人数迅速增加。发展中国家如印度亦有此报道。因此,环境保护事关国计民生的大计,是人类能否继续在我们的地球家园长久生存的重大问题。

环境激素物质主要引起乳腺癌、子宫内膜病变、精巢肿瘤、前列腺癌等。使生殖器官异常,男性生殖能力下降、下垂体甲亢腺亢进、免疫系统障碍、神经行为异常等。

暴露低剂量时主要引起内分泌紊乱,表现在:

(1)和雌激素受体(简称ER)相结合,显示出雌激素亢进;

(2)与ER结合,产生雌激素的拮抗作用;

(3)与ER以外的AhR、AR等结合产生不良影响;

(4)与受体结合后使传输过程异常;

(5)导致激素合成异常;

(6)导致激素贮存、释放、传输及空留量异常;

(7)化学物质对神经系统、免疫系统毒害,造成生殖、发育系统致毒。

2生活和环境中的激素物质

(1)生活中的激素物质

环境激素物质无处不在,如金属罐头内部的金属防腐膜、盛食品或饮料的塑料容器、合成洗涤剂、化妆品等都含有这类物质。在生活中常用的塑料制品也含有环境激素物质,如用PC为原料的婴儿用奶瓶及餐具,会分解出双酚A;氯化塑料制作的儿童玩具;聚苯乙烯方便饭盒中含苯乙烯。研究证明,把95℃的开水注入新奶瓶后,会有3.15~5.5μg/L的双酚A溶于水中。

(2)环境中的激素物质

有机氯农药、除草剂、杀虫剂中曾被广泛使用的DDT等,塑料中常使用的增塑粒及原料、洗涤剂及表明活性剂等都被列入环境技术类物质。

日本在1998年对于自来水中的环境激素物质进行了监测和调查,其中有以下八类物质;

(1)二甲酸(钛酸)类;(2)己二酸-2-乙基己烷;(3)酚类;(4)苯乙烯二聚体、苯乙烯三聚体类;(5)17β-雌二醇;(6)氯化乙烯单体;(7)苯乙烯单体;(8)环氧氯丙烷。

调查结果表明:壬酚的检出率为76%、双酚A为68%、4-叔-辛酚为62%、苯二甲酸二乙基己烷为55%。家禽家畜排泄物中17β-雌二醇亦有61%的检出率。

(3)其他环境激素物质

日常接触到的环境激素物质还存在于以下物质中:

(1)医药、医疗品;

(2)食品、食品添加剂;

(3)农药及其降解产物;

(4)化学工业品;

(5)其他化学工业品;

(6)重金属;

(7)二次污染物,这些物质在环境中本来并不存在,主要是由于人类的生活和生产活动排放于环境中,如多氯二苯并二噁英、多氯二苯并呋喃、苯并芘等。

3监测分析

全球环境问题和化学物质这两大环境问题是世界各国普遍关注的,全球环境问题主要包括温室效应、臭氧层破坏、酸雨等;化学物质产生的环境问题,目前主要集中在二噁英类和环境激素物质的研究和监测分析方法的开发研究。

尽管从科学角度来看环境激素物质还有大量需要深入研究的领域,但从子孙后代的繁衍生息、生态系统的保护来看,世界各国已达成共识。这一环境问题的提出,从人类自身保护的角度出发,必须从ppm级的监测向ppb级的监测发展。环境监测仪器与技术的发展动向也是如此。

为了防止环境污染事故的再度发生,以急性毒性的环境污染物质作为监测分析对象,这是解决ppm级浓度的仪器设备和技术问题,目前世界各国正在实施。为了防患于未然,对于慢性毒性物质,致癌性、致畸性、致突变性“三致”物质的监测,则需要解决ppb级甚至ppt级浓度的监测仪器和技术问题。在发达国家和我国少部分地区已能做到。

最近国际上环境科学的热门课题二噁英类和环境激素物质则是以ppt级浓度甚至ppq级浓度存在,给环境监测分析提出了更高的要求。日本;美国已经实施,我国正在起步阶段,超微量环境监测技术的开发和研究是摆在我国环境科学工作者面前的主要任务。

环境污染物的超微量监测分析仪器GC-MS在我国部分发达地区已投入使用,但GC-MS能够测定的有机污染物只占全部有机污染物的约5%~10%。今后必须在农药类、除草剂、灭菌剂、急性有机化合物和多环芳烃类等污染物的监测分析方面扩展。这样HPLC-MS必须有较大的发展,才能把握各种有机污染物的污染时态。在超微量有机物定性分析方面MS(质谱检测器)也能发挥更大的作用,痕量无机污染物的监测分析ICP-MS是目前最好的手段。因此常把GC-MS、HPLC-MS和ICP-MS称为“MS三兄弟”

4发展趋势

(1)解决监测信息的代表性

在环境监测中最为重要的是监测数据的代表性问题。其中以试样采集和前处理最为关键,监测分析结果是否具有代表性70-80%决定于采样。

因此自动采样技术的研究与相关仪器设备的研制是目前最为突出的问题。例如地表水和废水中污染成分的实时测量、在采样时间内的平均浓度变化、对于自动采样系统的精度要求、采样频次、时间、点位和采水深度的合理性等等,都需要深入探讨。

此外,空气和废气中有毒物质的实时监测主要使用高速气相色谱、飞行时间质谱、傅里叶红外和开放式紫外等手段,而不同手段对于在线采样和样品处理都具有不同的特殊要求,都需要深入探讨。

(2)多重污染成分同时监测技术

动物激素的化学本质篇11

在西方国家的企业管理中首先应用了人本管理思想,获得了较为良好的管理效果,同时还对管理理念与思想的深入变革起到一定的促进作用。医疗行业是一个关乎国家经济与人民生活的重要行业。近年来,医疗行业随着不断发展的社会经济而逐渐地推进,医院人员各方面的需求也在不断地增长。然而,将医院人员各方面的需求进行满足的方法是对其进行激励,并将其工作积极性进行充分地调动,才能大幅度地提高医院人员的整体服务水平。本文从以下三个方面浅谈医院人员工作激励因素与激励措施,望能作为参考。

一、分析医院人员的激励因素

有实践数据显示,在诸多工作激励因素中,收入情况与奖金福利为医院人员选择最多的两项因素,其余依次是工作安全感、公平性、管理方式、学习培训、发展机会、工作环境、赏识认可、工作成就、人际关系、领导关怀、思想工作以及荣誉感。大多数的医院人员均选择收入情况与奖金福利为其工作的激励因素,可见,大部分人员对物质待遇的重视度较高。

根据医院人员的性别分析其工作激励因素,在男性员工中,收入、奖金以及工作安全感为其主要的激励因素,这一方面在女性员工中也如此;而在学习培训、发展机会、管理方式等方面,男性员工的需求比女性员工较多;在学习培训、公平性、管理方式等方面,女性员工的需求比男性员工较多。

根据医院人员的年龄分析其工作的激励因素,收入、奖金以及工作安全感为所有年龄层医院人员的激励因素;工作环境、学习培训以及发展机会为21~30岁医院人员的主要激励因素;公平性为31~40岁医院人员的主要激励因素;管理方式为41~50岁医院人员的主要激励因素,而人际关系为51岁以上医院人员的主要激励因素。

二、建立激励机制的重要作用

1.建立激励机制是医院对员工的关心

由于人民群众的物质生活随着改革开放而不断地提升,而且,大部分的医院员工对物质激励已经不再心动,因此,为了使医院人员在更高层次的需求上产生更为强烈的欲望,应在医院中建立精神方面的激励机制。有实践证明,当医院人员的物质需求得到满足后,他们则会追求更高层次的发展。激励机制的建立使医院对员工的关心得到充分地体现。在医院的日常工作中,激励机制的作用已经得到体现,而对医院人员进行激励能够在一定程度上促进我国社会经济发展。

2.建立激励机制使医院人员的文化发展得到充分体现

激励机制中的精神激励在现代医院文化中已成为员工的发展方向。医院人员在工作中需要被信赖与尊重,因此医院管理者也应将看待医院人员的眼光与思想进行改变。在医院建立激励机制时,若只注重对人员低层次的物质激励,而忽视对其情感、精神方面的激励,其工作的积极性则不能进行根本地调动。因此,在对医院人员进行物质激励的基础上,再实施精神激励,不仅能够使医院员工工作的积极性得到激发,而且还能够使人们将建立激励机制的作用进行充分地理解,并使医院人员的文化发展得到充分体现。

3.建立激励机制能够调动医院人员的创造性

当员工的基本需求得到满足后对其进行精神激励,可以将员工之间的情感交流进行加强,并使员工得到尊重,还能使员工间良好的人际关系得到创造,从而使员工在医院的日常工作中将其愉悦心情进行保持,其工作积极性也得到更好地调动。经过建立激励机制并对医院人员进行精神激励,其工作的创造性也得到激发。

三、实施适当的激励措施

1.提高对医院大部分人员物质需求的重视度

由于大部分医院人员的激励因素为收入、奖金,说明了基本的物质需求仍是大部分医院人员所追求的目标。因此,医院应提高对医院大部分人员物质需求的重视度,并适当地将这些人员的收入进行增加,将其奖励进行提高,这样能够在一定程度上激励大部分医院人员。但是,应谨遵按劳分配的原则分配物质利益,才能将正确的劳动观念进行树立。

2.制定具有针对性的激励措施

在对医院人员激励因素的调查中,不同的人员具有不同的需求,除了基本物质需求外,部分人员对赏识认可、工作成就、发展机会等方面有着更高层次的需求。因此,应制定具有针对性的激励措施,对医院人员的岗位、职称、学历、年龄、性别等各种因素进行综合地考虑,并根据每个员工特别的情况实施适当的激励措施,才能将激励机制的应用效果进行保证。

3.注意对精神激励措施进行改进并加强

虽然选择思想工作、荣誉感等方面激励因素的人数较少,但是在今后对医院人员进行激励时不能将其进行忽视。另外,还需避免只利用物质刺激法对医院员工积极性进行调动,物质与精神激励必须进行结合,才能使激励目标得到更好地完成。

4.增加对员工需求变化的关注度

由于部分医院人员在满足物质需求后会产生更高层次的需求,因此,在对激励机制、政策进行制定时,应时刻关注医院人员需求的变化,并将激励机制随着人员需求的变化而进行变化,这样可以将激励措施的效益进行提高。

综上所述,分析医院人员的激励因素、采取适当的激励措施、在医院建立激励机制不但可以将医院人员工作的主动性与积极性进行充分地调动,而且可以使医院留住更多的人才,并将医院的综合竞争力进行提升。医院的管理人员不仅要重视医院人员的激励因素、激励机制在医院中的重要作用,而且要通过相应的激励措施确保医院人员的激励工作能够顺利地展开,从而使医院能够健康、持续地发展。

参考文献

[1]李海亮,周峰.激励机制在医院人力资源管理中的应用[J].经营管理者,2015(4):201

[2]李楠.试析医院人力资源激励机制[J].人力资源管理,2016(3):182-183

动物激素的化学本质篇12

中职生物学概念较多,是中职生物学教学的重点、难点。正确的生物学概念,既是生物学知识的组成部分,又可为获得更系统的生物学知识奠定基础。传统的概念教学就是教师讲、学生背的过程。新型的概念教学不仅仅是让学生学习、掌握了某个概念,更重要的是通过概念的学习,培养和提高学生的学习能力。在教学过程中,教师可以根据不同的教学内容以及学生的不同认知情况,采取不同的教学组织方式来实现概念教学。

一、抓住关键字、词,理解概念的内涵和外延

生物概念是用简练的语言高度概括出来的,其中每一个字、词,每一句话、每一个注释都是经过认真推敲并有其特定的意义,以保证概念的完整性和科学性。在教学概念时,教师可指导学生自己分析概念,并从关键性字词入手学习。这样的学习过程学生不仅强化了概念,有利于加深对概念的理解,而且提高了学生对文字的处理和分析能力。如学习光合作用的概念时,书上给出的定义是:光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。教师可以先让学生讨论,找出关键字词,从中概括出进行光合作用的场所、条件、原料、产物。再引导学生进一步了解光合作用的探究历程和具体的两个阶段。

又如,酶的概念:酶是活细胞产生的具有催化作用的有机物,其中绝大多数的酶是蛋白质,少数的酶是RNA。“活细胞产生”“催化作用”“有机物”是酶概念的内涵,体现了酶的本质属性:只有活细胞(又指全体活细胞)能产生与无机化学催化剂功能相同的有机物。“蛋白质”“RNA”从化学成分上界定了酶的范围(酶一般为蛋白质,RNA也能起到酶的作用),这是概念的外延。一个基本概念一般由“内涵”和 “外延”两个部分组成。在这样的概念讨论学习中,教师不但让学生自己建立清晰的概念,同时也引导学生理解掌握概念的内涵和外延,也适时地培养了学生的分析、思维能力,提高学生的学习能力。

二、重视相似概念的辨析、比较,把握概念之间的本质区别

在学习过程中,我们会遇到很多概念,致使我们在学习时易混淆不清,在运用时产生错误的理解,或把一个概念的某些属性运用到另一个概念中去。因此,在学习时要运用辨析、比较的方法区别易混淆的概念,通过列表格等方式对相关概念进行比较和联系,找出概念之间的本质属性,区别概念之间的差异以达到对概念的正确理解和区别。由于表达概念的词语基本相同(如生长素与生长激素),或内容上有共同的因素(如半透膜与选择透过性膜)。例如:生长素与生长激素,可从它们产生的部位、化学本质以及生理功能等方面进行比较,生长激素是由动物的脑垂体前叶分泌的一种动物激素,其化学本质是蛋白质,具有促进生长的作用,主要是促进蛋白质的合成和骨的生长;生长素是由植物体的特定部位产生的一种植物激素,其化学本质是吲哚乙酸,具有促进和抑制植物生长的双重作用。又如:半透膜与选择透过性膜进行概念教学时,半透膜是指一些物质可以透过,另一些物质不能透过的多孔性薄膜,如猪肠衣、鸡卵的卵壳膜、离体的膀胱膜、蚕豆种皮、青蛙皮等。根据半透膜是否具有生命现象可分为生物膜和非生物膜。选择性透过膜是具有活性的生物膜,它对物质的通过既具有半透膜的物理性质,还具有主动的选择性,如细胞膜。因此,具有选择透过性的膜必然具有半透性,而具有半透性的膜不一定具有选择性透过,活性的生物膜才具有选择透过性,从而使这两个概念的区别一目了然。在生物学中,还有很多概念属于这种情况,如反射和应激性、先天性疾病和遗传病、性激素和性外激素等等,均可用比较法进行学习、巩固。

三、运用归纳、整理法,构建知识体系