控制器设计论文合集12篇

时间:2023-02-27 11:12:24

控制器设计论文

控制器设计论文篇1

1变压器冷却控制系统控制模块的设计总体思想

本文所进行的就是对变压器冷却控制系统控制器模块进行设计,其中包括了可以对主变压器风扇投入与切除的温度范围进行自行设定,也可以按照用户的要求而变化。在传统控制方式中,风扇投切的温度限制值是不能改变的,此外,风扇电机的启动和停止温度有一余量,不像传统的控制方式中是一个定值,避免了频繁启动的缺陷,此外还有运行、故障保护及报警等信号的显示及其与控制中心或调度中心的通讯,上传这些信息,如变压器油温、风扇运行状态有无故障等。至于风扇的分组投切设置是为了节约电能,具有一定的经济意义,但这个分组数不宜过多,以免控制复杂,且散热效果不佳。

控制器主要由AT89CS1单片机、A/D转换器、键盘控制芯片,输出模块、通讯模块以及自动复位电路等组成,其中单片机是控制器的核心,AID转换器是把输入信号转换为数字信号。

2变压器风扇控制系统的硬件接线

基于以上的要求,我们设计的风扇控制器的硬件线路图如下页图1所示。变压器风扇控制中对控制模块进行改进是本文研究的重点,其中包括主要芯片的选用以及一些抗干扰元件的使用。所以在本章节中,我们重点将要介绍变压器风扇冷却控制模块中的主要硬件芯片的作用、选用以及它们之间的连接力一法。

(1)单片机AT89C51(如图1)。

AT89C51是Atmel公司生产的一种低功耗,高性能的8位单片机,具有8k的flash可编程只读存储器,它采用Atmel公司的高密度不易丢失的存储器技术,并且和工业标准的80c51和80c52的指令集合插脚引线兼容,其集成的flash允许可编程存储器可以在系统或者通用的非易失性的存储器编程中进行重新编程。AT89C51集成了一个8位的CPU,8K的flash。256字节的EDAM,32位的I/0总线。三个16字节的定时器/计数器,两级六中段结构,一个全双工的串行口,振荡器及时钟电路。AT89C51是完成系统的数据处理和系统控制的核心,所有其它器件都受其控制或为其服务。

在本文中,经过TLC1543A/D转换器后输出的数字量输入到AT89C51单片机中,同时在进行了温度参数的设置以后,进行它的输出控制,其中包括了变压器的温度显示、状态显示、以及声音报警设备等等,也就是我们所研究的变压器冷却控制系统的核心部分。

(2)变压器的温度采集及温度处理模块。在变压器的风扇冷却自动控制系统中,第一步进行的就是对变压器上层油温进行的温度采集工作。变压器的温度采集是由变压器的温度控制器来实现的,其中包括铂电极、传感器以及变送器。经过温度控制器输出的信号进入变送器,变送器送出一个4一20毫安的电流信号,然后将此电流信号通过控制芯片上的电阻元件实现电流电压信号的转换,转换后的电压是在0.4一2(伏特)之间,然后将此电压信号输入到TLC1543数模转换器,进行信号处理。变送器输出信号有电流和电压信号两种,考虑到变压器安装的位置(室外)距本控制装置(室内)有一定的距离,电流信号不易损失,故选择了4一20毫安的电流信号。(3)11通道10位串行A/D转换器丁LC1543。

TLC1543A/D转换器是美国TI公司生产的众多串行A/D转换器中的一种,它具有输入通道多、转换精度高、传输速度快、使用灵活和价格低廉等优点,是一种高性价的模数转换器。TLC1543是CMOS,10位开关电容逐次逼近模数转换器。它有三个输入端和一个3态输出端:片选(CS),输入/输出时钟(I/0CLOCK),地址输入和数据输出(DATAOUT)。这样通过一个直接的四线接口与卞处理器或的串行口通讯。片内还有14通道多路选择器可以选择11个输入中的任何一个三个内部自测试(self-test)电压中的一个。

(4)BC7281128段LED显示及64键键盘控制芯片。

BC7281是16位LED数码管显示器键盘接口专用控制芯片,通过外接移位寄存器(典型芯片如74HC164,74LS595等),最多可以控制16位数码管显示或128支独立的LED。BC7281的驱动输出极性及输出时序均为软件可控,从而可以和各种外部电路配合,适用于任何尺寸的数码管。

BC7281各位可独立按不同的译码方式译码或不译码显示,译码方式显示时小数点不受译码影响,使用方便;BC7281内部还有一闪烁速度控制寄存器,使用者可随时改变闪烁速度。

BC7281芯片可以连接最多64键C8*8)的键盘矩阵,内部具有去抖动功能。它的键盘具有两种工作模式,BC7281内部共有26个寄存器,包括16个显示寄存器和10个特殊(控制)寄存器,所有的操作均通过对这26个寄存器的访问完成。

BC7281采用高速二线接口与MCU进行通讯,只占用很少的I/O资源和主机时间。

BC7281在本系统中主要用于驱动变压器温度显示的LED以及显示风扇运行状态的指示灯。

前已提及,BC7281芯片内部共有26个寄存器,包括16个显示寄存器和10个特殊功能寄存器,共用一段连续的地址,其地址范围是OOH-19H,其中OOH-OFH为显示寄存器,其余为特殊寄存器。

(5)使用MAX232实现与PC机的通讯。

①MAX232芯片简介

MAX232芯片是1VIAX工M公司生产的低功耗、单电源双RS232发送/接收器,适用于各种E工A-232E和V.28;V.24的通信接口,1VIAX232芯片内部有一个电源电压变换器,可以把输入的+5V电源变换成RS-2320输出电平所需±10V电压,所以采用此芯片接口的串行通信系统只要单一的+5V电源就可以。

我们的设计电路中选用其中一路发送/接收,RlOUT接MCS一51的RXD,T1工N接MCS一51的TXD,TlOUT接PC机的RD,Rl工N接PC机的TD1。因为MAX232具有驱动能力,所以不需要外加驱动电路。

系统中使用了此技术之后就实现了变压器风扇冷却系统的远程控制,工作人员可以在控制室对冷却系统进行控制,可以达到方便、准确、快捷的日的,这也是我们对传统的风扇冷却控制系统而做的一个重要的改进。

②串行通讯

在此实现中,我们必须要对MCS-51串行接日和PC机串行接日的串行通讯要有一定的了解,串行通信是指通信的发送方和接收方之间数据信息的传输是在单根数据线上,以每次一个二进制位移动的,它的优点是只需一对传输线进行传送信息,囚此其成本低,适用于远即离通信;它的缺点是传送速度低;串行通信有异步通信和同步通信两种基本通信方一式,同步通信适用于传送速度高的情况,其硬件复杂;而异步通信应用于传送速度在50到19200波特之间,是比较常用的传送方式,本文中使用的就是异步通讯方式。

(6)“看门狗”电路DS1232

在系统运行的过程中,为了避免因干扰或其他意外出现的运行中的死机的情况,“看门狗电路”DS1232会自动进行复位,并且能够重读EEPROM中的设置,以保证系统可以安全正常的运行。

美国Dallas公司生产的“看门狗”(WATCHDOG)集成电路DS1232具有性能可靠、使用简单、价格低廉的特点,应用在单片机产品中能够很好的提高硬件的抗干扰能力。

DS1232具有以下特点:

①具有8脚DIP封装和16脚SOIC贴片封装两种形式,可以满足不同设计要求;

②在微处理器失控状态卜可以停止和重新启动微处理器;

③微处理器掉电或电源电压瞬变时可自动复位微处理器;

④精确的5%或10%电源供电监视;

在本变压器冷却控制系统中,DS1232作为一定时器来起到自动复位的作用,在DS1232内部集成有看门狗定时器,当DS1232的ST端在设置的周期时间内没有有效信号到来时,DS1232的RSR端将产生复位信号以强迫微处理器复位。这一功能对于防止由于干扰等原因造成的微处理器死机是非常有效的,因为看门狗定时器的定时时间由DS1232的TD引脚确定,在本设计中,我们将其TD引脚与地相接,所以定时时间一般取为150ms。

3结论

本装置实现了通过单片机自动控制冷却器的各种运行状态并能精确监测变压器的油温和冷却器的各种运行、故障状态,显示了比传统的控制模式的优越性。(1)能够对变压器油温进行监测与控制;(2)实现了变压器冷却器依据不同油温的分组投切,延长了冷却器的使用寿命,有较好的经济意义;(3)实现了冷却系统的各种状况,如油温、风扇投切和故障等信息的上传,便于值班员、调度员随时掌握情况。

由于固态继电器实现了变压器的无触点控制,解决了传统的控制回路的弊端,同时此控制装置具有电机回路断相与过载的保护功能。由于使用了单片机,因而具有一定的智能特征,实现了油温、风扇的投入、退出和故障等信号的显示以及上传等。通过实际运行表明,该装置的研制是比较成功的。但今后,我们还应该对固态继电器本身的保护进行一些研究,以免主回路因电流过大而造成固态继电器的损坏,以使变压器风扇冷却控制回路更加完善。

控制器设计论文篇2

USB2.0设备连接到主机后,主机给设备供电并发送复位信号复位设备,之后设备进入全速模式工作,由图2所示在fullspeed状态检测到SE0(linestate[1:0]=00)持续2.5μs后,高速握手开始,设备控制器进入sendchirp状态,设备向主机发送一个持续时间大于1ms的K(linestate[1:0]=01)信号以检测主机是否支持高速模式。设备进入recvchirp状态并准备接收来自主机的JK序列。主机支持高速并检测到K之后,向设备发送JKJKJK序列以检测设备是否支持高速模式。设备控制器在recvchirp状态成功检测到3对JK序列后高速握手成功,进入到highspeed模式工作;否则,设备以全速模式工作。

2设备挂起

根据USB2.0协议,为了减小功耗,当总线3ms没有动作时,设备需进入挂起(suspend)状态,设备在挂起状态只能消耗小于500μA的电流,并且进入挂起后设备需要保留原来的状态。(1)全速模式挂起:检测到总线状态为SE0达到3ms,设备从fullspeed状态进入suspend状态。(2)高速模式挂起:设备工作在高速模式时,由于高速复位和高速挂起都是发送一个大于3ms的总线空闲信号,因此设备需要区分这两个事件。如图2,处于highspeed状态时,设备检测到总线空闲(SE0)3ms,进入hsrevert状态。之后检测总线状态不为SE0,此后设备挂起。假如在hsrevert状态后还检测到SE0持续100μs,则判断为高速复位,clrtimer2=1。设备状态转换到sendchirp状态,开始设备的高速握手。

3挂起恢复

设备处于挂起状态时,在它的上行口接收到任何非空闲信号时可以使设备恢复工作[5]。(1)全速挂起恢复:设备从挂起状态起检测到的不是持续的J,则恢复到fullspeed状态,以全速模式工作。(2)高速挂起恢复:挂起时保留着高速连接状态,highspeed=1且hssupport=1,挂起恢复需要判断是由总线动作引起还是系统复位引起。设备中测到总线状态为SE0,说明是由复位引起的挂起恢复,设备状态进入sus-preset,然后检测到SE0持续2.5μs后,进入高速握手过程sendchirp状态;反之,检测到挂起恢复信号K,则设备从挂起恢复到高速模式。

4复位检测

集线器通过在端口驱动一个SE0状态向所连接的USB设备发出复位信号。复位操作可以通过USB系统软件驱动集线器端口发出复位信号,也可以在设备端RE-SET信号置1,进行硬件复位。(1)设备是从挂起状态复位:在suspend状态检测到SE0时,设备跳转到suspreset状态,检测总线状态为超过2.5μs的SE0后设备启动高速握手检测,即进入sendchirp状态。(2)设备从非挂起的全速状态复位:设备在检测到2.5μs<T<3.0ms的SE0状态后启动高速握手检测。硬件纵横HardwareTechnique(3)设备从非挂起的高速状态复位:设备在high-speed状态检测到总线上持续时间3.0ms的SE0后,设备状态转换到hsrevert,以移除高速终端并重连D+的上拉电阻,此时为全速连接状态;之后设备需要在100μs<T<875μs的时间内采样总线状态,检测到SE0持续2.5μs后,进入sendchirp状态,开始高速握手过程。

控制器设计论文篇3

随着社会的进步和为民生活水平的提高,为们出差、旅游和度假的机会日益增加。在宾馆、饭店等居住场所都需要一保险柜来保存贵重物品和易失物品,即便在家里,也往往需要有一个地方来保存一些单据等物品。传统的手段已不能满足人们对其安全性和灵活性要求,把应用愈来愈广泛的IC卡技术应用到保险柜上,可以充分满足这方面的需求。例如,根据客户要求,可以给每个房间配备一个带有IC卡电子门锁的保险柜供他们存放物品;待客人走后,可以灵活地对保险柜的密码进行重新设置,更换IC卡。下面对我们自行设计的加密型IC卡保险柜的核心部件--控制器件一详细的介绍。

一、控制器的硬件设计

本系统的主要任务是完成对IC卡的识别和控制,因此,首先介绍一下所选用的IC卡。

1.SLE4442加密IC卡简介

目前市场上的IC卡种类较多,比较有代表性的有ATMEL公司的AT系列和SIEMENS公司的SLE系列。我们根据用户的要求和市场的供给情况选用了SIEMENS公司设计的SLE4442卡。此卡的特点是:

(1)卡内有2K位的存储容量和完全独立的可编程逻辑代码存储器(PSC);

(2)多存储器结构,其中包括256×8位EEPROM,32×1位PROM的4×8位EEPROM型加密存储器;

(3)串行口满足ISO7816同步传递协议;

(4)每一字节的擦除/写入时间为2.5ms;

(5)存储器可擦除1000次以上,数据可保存10年以上。

SLE4442型IC卡的触点排列及功能如图1所示。

SLE4442芯片的传送协议包括4种模式。

(1)复位和复位响应

复位可在操作期间任何时候进行。在复位响应期间,任何开始和停止条件均被禁止。复位与复位响应时序如图2所示。

(2)命令方式

每个命令由起始条件、1个3字节长的命令和停止条件构成。命令方式时序如图3所示。

起始条件:CLK处于高状态H期间,I/O的下降沿。

停止条件:CLK处于高状态H期间,I/O的上升沿。

(3)输出数据方式

在这种试上,IC卡发送数据至接口设备IFD。在CLK上第一个下降沿后,I/O上第一位有辩效,最后一个数据位之后,需要一个额外的时钟脉冲,以设置I/O处于高状态,同时准备IC卡接收新的命令。在这种方式下,任何开始和停止条件均被禁止。输出数据方式时序如图4所示。

(4)处理方式

在第一个CLK的下降沿,将I/O线从高状态H切换至低状态L并开始处理,直到低状态L的I/O被设置成高状态H结束。在这种方式下,任何开始和停止条件均被禁止。处理方式时序如图5所示。

SLE4442卡共有7个命令,每个命令包括3个字节,其命令格式及功能如表1所列。

表1SLE4442命令

字节1控制字节字节2地址字节字节3数据字节操作

B7B6B5B4B3B2B1B0A7A0D7D0

00110000地址无效读/从给定的字节地址至用户存储器结束

00111000地址输入数据编程输入地址对应的用户存储区

00110100无效无效读保护存储器

00111100地址无效写保护存储器中的保护位

00110001地址无效读保密存储器

00111001地址输入数据写/编程输入址对应的保密存储器

00110011地址输入数据比较可编程密码PSC字节

这里只介绍比较可编程密码PSC命令的使用。比较过程由4个步骤组成:

①写错误计数器EC(至少1位)。地址0。密码比较结果将在错误计数器中反馈,3次密码出错IC卡被阻塞。

②比较PSC字节1,地址1。写完错误计数器之后,以不同的命令格式送入3个密码字节。密码比较成功,将通过刷新错误计数器来识别,然后施加上操作电压,就可以对所有存储器进行读写操作了。

③比较PSC字节2,地址2。

④比较PSC字节3,地址3。

芯片在出厂时可根据用户的专门要求将可编程加密代码(PSC)存储器中编入一个专用代码。这样在使用时,就必须合法地得到这个代码,从而防止非法窃用或伪造卡片。

2.系统组成及工作原理

本系统的硬件主要由单片机、串行EEPROM、电磁阀和IC卡读/写插座组成。具体电路如图6所示。

电路中的单片机AT89C2051是89C51的简化体。20引脚为DIP封装。片内有2K字节闪烁存储器,128字节RAM,15条I/O线,全双工串行口。P1.0、P1.1分别作为片内精确模拟电压比较器的正、负输入端;P1.2作为IC卡的复位端;P1.3、P1.4分别作为IC卡的时钟线与数据线;P3.7作为IC卡工作指示灯的控制端;P1.5作为非法操作的声音报警控制;P3.4作为电磁阀门SW1的控制端。图中的U5是串行EEPROM--AT24C01,它的作用是用来随机存储每个IC卡的密码等;U4为电压比较器,用来监测电源电压:如果电源电压下降至4.5V左右就会产生报警信号。为了使系统更可靠地工作,采用CD4060设计了单片机"看门狗"电路,由4060定时产生一个复位脉冲,对单片机进行复位操作。整个电路设计中,充分考虑了能源的节约问题,所以在IC卡插入前整个电路的大部分芯片没有供电,只有门电路U1工作;当IC卡插入后,由于IC卡座的开关接通,促使门电路U1触发翻转,由T1导通使其他芯片得到供电。如果在使用过程中客人忘记拔出IC卡,电路除了要产生报警信号外,还会在30s(秒)后自动停止供电。

二、控制器的软件设计

该软件包括三部分:

(1)IC卡信息的读取及AT24C01数据的读取;

(2)比较校验数据,修改存储器数据;

(3)各种控制功能的实现,包括门锁开启,声、光报警等操作。

限于篇幅,这里只给出了利用51汇编语言编写的加密IC卡SLE4442的读/写程序,并给出了主程序的流程图,如图7所示。

读子程序

READ:MOVR0,#30H;设置存放IC卡读入数据的首地址为30H

LCALLRESET;调IC卡复位子程序

MOVR2,#10H;读IC卡数据的个数送R2

LCALLSTART;调起始条件子程序

MOVR5,#00110000B;发送读的命令码

LCALLSPOUT;调发送一个字节子程序

MOVR5,#20H;发送IC卡的起始地址

LCALLSPOUT

MOVR5,#00H;将数据00H发送出去

LCALLSPUT

LCALLSTOP;调停止条件子程序

READ1:LCALLSPINC;调数据采集子程序

MOVA,R6

MOV@R0,A

INCR0

DJNZR2,READ1

LCALLPLUSE;调发送脉冲子程序

RET;读IC卡数据子程序结束

写子程序

WRT:LCALLRESET;写IC卡数据子程序开始,调IC卡复位子程序

MOVR2,#10H;写入IC卡的字节个数送R2

MOVR1,#40H;将40H为首地址的内容写入IC卡

MOVR4,#30H;R4中放的是写到IC卡起始地址30H

WRT1:LCALLSTART;调起始条件子程序

MOVR5,#00111000B;发送写的命令码

LCALLSPOUT

MOVA,R4;发出要写入的IC卡地址

MOVR5,A

LCALLSPOUT

MOVA,@R1;写入IC卡数据

MOVR5,A

LCALLSPOUT

LCALLSTOP;调停止条件子程序

LCALLPROCE;调一个编程过程子程序

INCR1;数据指针加1,直到数据写完

INCR4

DJNZR2,WRT1

RET;写子程序结束

PROCE:MOVR3,#0FFH;一个编程过程子程序

PROC1:SETBP1.2

NOP

CLRP1.2

DJNZE3,PROC1

RET

SPINC:MOVR3,#08H;数据采集子程序

SPIN1:CLRP1.2

MOVC,P1.4

MOVA,R6

RLCA

MOVR6,A;读出的一字节内容送R6

SETBP1.2

DJNZR3,SPIN1

RET

SPOUT:MOVR3,#08H;一字节发送子程序

MOVA,R5

SPTC1:CLRP1.2

RLCA

MOVP1.4,C

NOP

SETBP1.2

DJNZR3,SPTC1

RET

START:SETBP1.2;起始条件子程序

NOP

CLRP1.4

NOP

RET

STOP:CLRP1.2;停止条件子程序

NOP

CLRP1.4

NOP

SETBP1.2

CLRC

NOP

SETBP1.2

NOP

CLRP1.2

RET

RESET:SETBP1.3;复位IC卡子程序

NOP

CLRP1.3

NOP

RET

END

控制器设计论文篇4

1控制理论基础

1.1回路增益

对于一般负反馈控制系统,其闭环系统方框图如图1所示。闭环传递函数C(s)/R(s)=G(s)/[1+G(s)H(s)],其特征方程式为F(s)=1+G(s)H(s)=0,特征方程式的根即为系统的闭环极点。由此方程式可以看出G(s)H(s)项,其包含了所有关于闭环极点的信息,一般称G(s)H(s)为回路增益。实际应用中,可通过对回路增益Bode图的分析来设计系统的补偿网络,以达到闭环系统稳定性要求。

1.2Bode定理

Bode定理对于判定所谓最小相位系统的稳定性以及求取稳定裕量是十分有用的。其内容如下:

1)线性最小相位系统的幅相特性是一一对应的,具体地说,当给定整个频率区间上的对数幅频特性(精确特性)的斜率时,同一区间上的对数相频特性也就被唯一地确定了;同样地,当给定整个频率区间上的相频特性时,同一区间上的对数幅频特性也被唯一地确定了;

2)在某一频率(例如剪切频率ωc)上的相位移,主要决定于同一频率上的对数幅频特性的斜率;离该斜率越远,斜率对相位移的影响越小;某一频率上的相位移与同一频率上的对数幅频特性的斜率的大致对应关系是,±20ndB/dec的斜率对应于大约±n90°的相位移,n=0,1,2,…。

例如,如果在剪切频率ωc上的对数幅频特性的渐进线的斜率是-20dB/dec,那么ωc上的相位移就大约接近-90°;如果ωc上的幅频渐近线的斜率是-40dB/dec,那么该点上的相位移就接近-180°。在后一种情况下,闭环系统或者是不稳定的,或者只具有不大的稳定裕量。

在实际工程中,为了使系统具有相当的相位裕量,往往这样设计开环传递函数,即使幅频渐近线以-20dB/dec的斜率通过剪切点,并且至少在剪切频率的左右,从ωc/4到2ωc的这段频率范围内保持上述渐近线斜率不变。

2逆变器电压环传递函数(建模)

一个逆变器的直流输入电压24V,交流输出电压110V,频率400Hz,电路开关频率40kHz,功率500W。其控制至输出整个电压环的电路结构如图2所示。现求其回路增益。

2.1驱动信号d(s)至输出Vo?s)的传递函数

1)驱动信号d为SPWM脉冲调制波,加在IGBT管的栅极(G)上,而输入母线电压Vin加在管子的集电极(C)和发射极(E)两端,根据图2所示结构,输出电压Vd与驱动d之间相差一个比例系数,设为K1,则K1=。在具体的逆变器电路中,母线电压Vin为±200V,驱动信号为12V,代入可得K1=400/12=33.33。2)LC低通滤波网络传递函数推导可得=Vo(s)/Vo''''(s)=1/(s2LC+1),其中L=3mH,C=2μF。

综上,驱动信号d(s)至输出Vo(s)的传递函数为Vo(s)/d(s)=G1(s)=K1/(s2LC+1);

2.2输出Vo(s)至反馈信号B(s)的传递函数H(s)

1)输出电压采样变压器的传递函数为一个比例系数,即其变比,设为K2,即V''''o(s)/Vo(s)=K2,具体电路中,K2=18/110=0.164。

2)电阻电容分压网络如图2虚线框所示,其传递函数为=B(s)/V''''o(s)=1/(sR1C2+R1/R2+1),其中R1=820Ω,R2=5.1kΩ,C2=10nF。

综上,Vo(s)至B(s)的传递函数H(s)=B(s)/Vo(s)=K2/(sR1C2+R1/R2+1);

2.3脉宽调制器(PWM)传递函数Gd(s)

一般PWM调制器的传递函数为Gd(s)==,其中Vm为三角波最大振幅。在具体电路中,反馈信号与基准正弦波信号送入差动放大器,输出误差信号再与标准三角波比较,生成SPWM驱动信号。此处所用三角波的振幅为Vm=3V。

综上,在未加入补偿网络之前,整个回路增益为

G(s)=G1(s)H(s)Gd(s)

=K1/(s2LC+1)[K2/(sR1C2+R1/R2+1)(1/Vm)

=1.569/[(6×10-9s2+1)(7×10-6s+1)

绘制其幅频Bode图,如图3所示。

3补偿网络设计

由前述Bode定理,补偿网络加入后的回路增益应满足,幅频渐近线以-20dB/dec的斜率穿过剪切点(ωc点),并且至少在剪切频率左右从到2ωc的范围内保持此斜率不变。

由此要求,首先选择剪切频率。实际应用中,选fc=fs/5为宜,其中fs为逆变器工作频率或开关管开关频率。具体逆变器中,开关频率为40kHz,则fc=40/5=8kHz。

在未加补偿网络之前的回路增益Bode图如图3所示,在fc=8kHz处的增益为-20.17dB,由此,补偿网络应满足如下条件,即在fc=8kHz处的增益为+20.17dB,斜率为+20dB/dec,而且,此斜率在fc/4=2kHz与2fc=16kHz(取15kHz)的范围内保持不变。补偿网络的Bode图如图4所示(幅频)。

由图4可得:f1=2kHz处,G(ω)=20lg(2πf1)=8.129dB或者2.55(倍数)=AV1,f2=15kHz处,G(ω)=20lg(2πf2)=25.63dB或者19.12(倍数)=AV2,两个零值对应频率为fz1=fz2=2kHz,一个极值在fp1=15kHz处,另一个极值在fp2=20kHz处。考虑选用如图5所示补偿放大器时,其电阻电容参数值可计算如下:

取R3=5.1kΩ,R0=39kΩ,则R2=R3AV2=97.5kΩ,C2=1/(2πfp2R2)=81.6pF,C1==816pF,R1=1/(2πfp1R3)=39kΩ,C3=π=2040pF。

实际电路中,取R2=100kΩ,C2=100pF,C1=800pF,R1=39kΩ,C3=2200pF。

4实验结果

控制器设计论文篇5

2多轴运动控制器的方案设计

多轴运动控制器可以通过远程以太网通信的方式接收上位机的控制信号,向步进电机驱动器发送脉冲信号和方向信号以完成对电机的运动控制。采用ARM9处理器S3C2440搭建硬件平台,配有DM9000A以太网通信芯片使硬件平台具备远程通信的功能。在Linux操作平台上进行控制系统软件功能设计,并采用UDP通信协议实现上位机与运动控制器之间的远程通信[3]。

2.1多轴运动控制器硬件电路设计

本文采用ARM9处理器S3C2440设计了系统中运动控制器的硬件电路部分,并采用DM9000A网络接口控制器设计了运动控制器的以太网接口。运动控制器硬件整体框图如图2所示。运动控制器选用ARM9处理器作为运动控制器的核心芯片可以方便地嵌套Linux操作系统,在操作系统之上实现运动控制器的插补等多轴运动控制算法。选用DM9000A以太网控制芯片实现上位机LabVIEW与运动控制器之间的远程通信,进而实现超声检测的远程自动控制。为了解决步进电机驱动器与主控芯片信号匹配的问题,本文采用光耦器件设计了电压转换模块,负责把主控芯片输出的3.3V电压信号转换至5V电压信号后输入到步进电机驱动器中,同时负责把限位开关发出的24V限位信号转换至3.3V输入到主控芯片中。此外,电路中还搭载了用于存储数据的扩展存储器、以及用于调试的JTAG接口电路和RS232串口电路。

2.2多轴运动控制器软件设计

本课题所用的限位开关为位置可调的限位开关,每个轴有2个限位开关,在每次超声检测前,把每个限位开关调节到被测工件的边缘处,从而使探头移动的范围即为工件所在范围。故此设计运动控制器的软件时便可将限位开关做为边界条件,以此来设计探头的运动范围。其运动控制流程:首先系统初始化,通过上微机控制界面人工控制探头到被测工件的起点,然后X轴正向运动到X轴限位开关处,Y轴正向运动一个探头直径的长度,X轴再反向运动到X轴另一侧的限位开关处,之后Y轴继续正向运动一个探头直径的长度,如此往复运动直至探头到达Y轴的限位开关处,检测结束,探头复位。运动控制软件流程图如图3所示。

3多轴运动控制系统上位机软件设计

基于以太网的自动超声检测多轴运动控制系统的上位机软件是以LabVIEW开发平台为基础,使用图形G语言进行编写的,主要包括多轴运动控制软件和以太网通信软件。Lab-VIEW是一款上位机软件,其主要应用于仪器控制、数据采集和数据分析等领域,具有良好的人机交互界面[4]。LabVIEW软件中有专门的UDP通信函数提供给用户使用,用户无需过多考虑网络的底层实现,就可以直接调用UDP模块中已经的VI来完成通信软件的编写,因此编程者不必了解UDP的细节,而采用较少的代码就可以完成通信任务,以便快速的编写出具有远程通信功能的上位机控制软件[5]。上位机LabVIEW软件的远程通信模块、运动控制模块以及数据处理模块相互协调配合,共同构成了超声检测多轴运动控制系统的上位机软件。

3.1运动控制软件设计

运动控制系统软件部分主要由运动方式选择、探头位置坐标、运动控制等模块组成,可完成对系统运动方式的选择,运动参数、控制指令的设定以及探头位置信息读取等工作。运动方式选择模块可根据实际需要完成相对运动或是绝对运动两种运动方式的选择,并会依照选择的既定运动模式将X、Y、Z三轴的相应运动位置坐标输出在相应显示栏中,以便进行进一步的参数核对以及设定;运动控制模块可依照检测规则实现对整个系统运动过程的控制,包括:设定相对原点、运行、复位、以及退出等相关操作。相对原点设定可以将探头任意当前位置设为新的原点,并以原点作为下一个运动的起始点,即为探头位置坐标的相对零点,并将此刻相对原点的绝对位置坐标值在文本框中显示出来。运动控制系统软件流程图如图4所示。

3.2以太网通信软件设计

以太网通信模块采用无连接的UDP通信协议,通过定义多轴运动控制器与上位机LabVIEW的以太网通信协议,实现下位机与上位机之间的远程通信。具体设计如下:首先使用“UDPOpenConnection”打开UDP链接,使用“UDPWrite”节点向服务器端相应的端口发送命令信息,然后使用“UDPRead”节点读取服务器端发送来的有效回波数据,用于后期处理,最后应用“UDPCloseConnection”节点关闭连接[6]。以太网通信模块的程序框图如图5所示。

4实验及结果

实验平台由步进电机及其驱动器、上位机控制软件和自主研发的多轴运动控制器构成。在上位机的用户控制界面中,首先输入以太网的IP地址并选择运动方式,然后根据用户的检测需求设定运动速度和运动距离,点击运行后探头即按所设定运行。探头运动过程中还可以选择设定当前位置为原点,探头即按照新的原点重新开始运动。同时,在探头运动时会实时显示探头当前所在位置坐标。模拟开关发送选通超声探头信号并发送脉冲信号激励超声探头发射超声波,FPGA控制A/D转换电路对超声回波信号进行转换,并将数据存入双口RAM,存储完成后向ARM发送信号,ARM接收到采集完成信号将数据通过以太网向上位机发送。上位机的LabVIEW用户控制界面如图6所示。

控制器设计论文篇6

【分类号】:TP273

前言

近年来转子振动主动控制得到了广泛的研究,控制理论中的许多方法都应用到转子振动主动控制中,并取得了很多成果。实际转子系统的完整数学描述往往很复杂,阶次较高,作为被控对象的模型转子系统与实际转子系统总是存在着误差,同时转子系统的结构参数如质量、刚度等也存在着不确定性。由于误差的存在往往会降低控制系统的性能,有时还会破坏控制系统的稳定性。因此转子系统振动主动控制器应具有稳定鲁棒性及鲁棒性能[1]。

1.鲁棒控制的基本思想

鲁棒控制器设计问题,就是根据给定的标称模型∑0和不确定性集合∑的某一描述,基于鲁棒性分析得到的结果来设计一个控制器C,使得(∑0,∑)和C构成的系统都满足期望的要求。

2.H∞控制理论

所谓H∞控制,就是用H∞范数作为目标函数的最优或次优控制。通过对鲁棒控制理论的了解可知,许多鲁棒稳定或鲁棒性能准则均可以用适当的传递函数的H∞范数约束条件来描述。因此,对于线性系统来讲,许多鲁棒控制系统的设计问题,都可以转化为求使得闭环系统满足期望的H∞范数条件的控制器的问题[3]。

3.2转子系统鲁棒控制计算机仿真

利用本章所讲述的控制器设计方法,结合算例,分析控制方案,并利用MATLAB编程计算该单盘转子系统的状态方程和控制器状态方程。在左支承处增设可控锥形挤压油膜阻尼器,利用可控挤压油膜阻尼器轴承产生的非线性油膜力主动逼近线性转子系统的H∞控制力,从而实现用可控挤压油膜阻尼器轴承主动控制转子系统振动的目标。本文应用Simulink建立转子系统标准H∞控制仿真模型。

本文以H∞次优控制器的状态方程为依据建立的控制器仿真模型。对该系统结构参数存在扰动的情况下,引入内部反馈环的概念,进行扩阶后,形成新的结构参数不确定系统的状态方程。输入w 即为施加在m2上的不平衡力与传感器噪声之和。通过对质点m1振动幅度的期望值与输出的观测值y进行比较,重新进入反馈系统。以此使m1振动幅值最终达到期望值constant。

4结论

本文利用 控制理论对刚度参数扰动的转子支撑系统进行次优控制器设计。并结合MATLAB软件中的Simulink工具箱对本文设计的控制器进行仿真。并对本文所采用的单盘转子模型进行了鲁棒 控制仿真。模拟单盘转子在不平衡力的作用下,通过临界转速时的振动控制情况。在对受控前后的输出信号图像的比较后发现,受控后输出信号幅值比受控前的输出信号幅值小很多。

参考文献

[1]顾家柳. 转子系统振动主动控制的目的及对策.振动与冲击, 1993, 2: 1~ 7

[2]梅生伟,申铁龙,刘康志编著.现代鲁棒控制理论与应用.清华大学出版社.2003,9:61~64

控制器设计论文篇7

针对一类目标函数受预设性能函数限定的严格反馈极值搜索系统的控制问题,将极值搜索控制、预设性能控制、反演控制相结合,提出一种预设性能反演控制器设计方法.针对极值搜索系统的目标函数构造新型的性能函数;利用性能函数对系统进行函数变换,构建等效简单变换模型;基于变换模型,利用反演控制方法逐步递推选取适当的Lyapunov函数进行控制器设计,以实现在对目标函数搜索到极值的同时保证预设性能指标.最后通过数值仿真验证了所提出方法的有效性.

关键词:

严格反馈;极值搜索;预设性能;反演控制

许多实际系统的参考输入量与输出量之间存在着一定的极值关系,极值搜索控制方法可以在极值关系未知的情况下使目标函数取得极值[1].目前,极值搜索控制方法已被广泛地应用到生化反应系统[2]以及可变环境中极值功率输出控制系统[3]等诸多方面.非线性系统的跟踪控制问题一直是控制理论研究的热点和难点[4],文献[5]针对一类SISO系统提出了基于极值搜索控制的输出跟踪控制方法;文献[6]针对一类极值搜索系统提出了一种基于滑模极值搜索控制的输出跟踪控制方法.严格反馈非线性系统是一类很常见的非线性系统,具有重要的研究意义.20世纪90年代初,Krstic等[7]提出了反演(backstepping)控制方法,对于严格反馈非线性系统,反演控制器可以得到全局稳定或渐近收敛的结论[8],这便为本文的控制器设计提供了理论依据.预设性能控制是希腊学者Bechlioulis等[9]提出的一种新的控制器设计方法.所谓预设性能是指在保证跟踪误差收敛到一个预先设定的任意小的区域的同时,保证收敛速度及超调量满足预先设定的条件.文献[10]针对一类单输入单输出系统完成了预设性能自适应控制器设计;文献[11]进一步将对象推广到了多输入多输出反馈线性化系统,变换后的误差最终一致有界且闭环系统内所有信号有界;文献[12]对具有严格反馈形式的非线性系统的预设性能控制问题进行了讨论,在一定假设的基础上初步解决了该类系统的控制性能问题.本文则将极值搜索控制、预设性能控制、反演控制的方法相结合,针对目标函数受预设性能函数限定的严格反馈极值搜索系统的控制问题,受文献[10]的启发构建新的等效系统模型,应用反演控制方法逐步递推选取适当的Lyapunov函数进行控制器设计,使系统的目标函数在实现极值搜索,即实现跟踪期望轨迹的同时满足预设性能.

1系统描述与预备知识

通过构造损失函数形成极值搜索系统,从极值搜索角度实现预设性能控制问题,进行控制器设计.在设计之前先进行如下假设:在进行控制器设计时,直接对不等式约束(2)进行处理的难度非常大.为此,考虑将其变换为等式约束再进行处理,定义如下误差变换函数由系统(8)可知,该等效模型仅需对输出状态1进行变换,与已有方法的转换模型相比有了很大简化.

2预设性能反演控制器设计

采用反演设计方法,针对变换后的系统(8)进行控制器设计.首先,针对系统(8)的第1个子系统1构造Lyapunov函数1=1221,对时间求一阶导数后得到虚拟控制量2,进而得到新的误差状态量2=22.进一步构造新的Lyapunov函数2=1221+1222,对其求导后得到虚拟控制量3,进而得到新的误差状态量3=33.以此类推,通过构造最终Lyapunov函数可得到确保系统(8)稳定的控制输入的设计.为表达方便,省略系统(8)中的时间变量.考虑式(1)描述的严格反馈极值搜索系统,在假设1和假设2成立的前提下,采用所设计的虚拟控制器(10)、(13)、(16)、(18)和控制器(21),可以得到如下结论:1)目标函数()=(1)2=2()搜索到其极小值点便实现了对期望输出轨迹的有效跟踪,且满足预先设定的瞬态和稳态性能要求;2)闭环系统中的所有信号有界.

3数值仿真

由图2可以看出,系统状态1在短时间内便实现了对期望输出轨迹的稳定跟踪,跟踪效果良好;由图3可以看出,目标函数迅速搜索到了其极小值0处,满足了预设性能函数的约束要求;由图4可以看出,跟踪误差响应速度快,超调小且稳态误差始终保持在较小的范围内;图5给出了控制输入的变化情况,结合式(21)可知控制曲线平滑且有界,能够满足控制性能要求,确保了系统的稳定性,设计方法有效可行.

控制器设计论文篇8

0 引言

两缸两冲程小型发动机结构简单、体积小重量轻、并且升功率显著高于四冲程发动机,由于有着以上优点,被广泛应用于小型摩托车、航模甚至是小型的发电设备上。[1]本文对两缸两冲程小型发动机的控制原理、系统构成及系统设计要求进行了研究,在此之上提出了一种适用于该类发动机的控制策略,以及相应的控制单元ECU的设计方法。[2]

1 控制系统的基本结构和设计

控制系统由传感器、控制器ECU和执行器三个部分组成。空气经过节气门进入进气道,燃油经喷油嘴喷射进入进气道,跟新鲜空气混合后进入气缸。在气缸内经火花塞点火燃烧,废气由排气管排出发动机。[3-5]

1.1 传感器

本文设计的电控系统所用的传感器主要有:发动机曲轴位置传感器、节气门位置传感器、进气温度压力传感器和排气氧传感器。

1)发动机曲轴位置传感器

该传感器主要有磁电式和霍尔式两种,本文采用磁电式。曲轴前端安装有特定齿数的齿,齿的边缘安装传感器。当齿旋转时候,传感器端即可产生相应位置的脉冲信号,使用整形电路对该脉冲电路进行整形成为矩形波,当发动机转速高时,矩形波的波幅较窄,当发动机转速低时候,矩形波的波幅较宽。ECU依次来计算发动机的转速。

2)节气门位置传感器

节气门位置传感器向ECU提供进气道节气门的角度位置,该数据是计算发动机的进气量、负荷和驾驶意图的重要参数。

节气门通常分为电子式和拉线式两种,本文采用的是自行研究开发的主动驱动式电子节气门,图1是该节气门的结构示意图。[6]ECU通过CAN总线连接该节气门部件,控制电路获取信号后驱动直流电机转动,电机的扭矩通过齿轮组带动蝶阀转动。蝶阀轴顶端安装有霍尔传感器,当蝶阀转动时,该传感器会感应到该变化,转换成跟角度相应的模拟信号,并将该信号传递给控制单元ECU。

3)进气温度压力传感器

本文采用的是温度压力一体是传感器,具有体积小重量轻的优点,尤其适合小型发动机使用。该传感器安装在进气系统的过渡管路上。

4)氧传感器

氧传感器安装在发动机的排气管中,用于测量发动机尾气中的氧含量。使用该传感器进行喷油的闭环控制,可以精确控制喷油量达到理论空燃比。

1.2 电控单元ECU

发动机电子控制单元ECU是整个电控系统的核心部分,它在发动机运转过程中接收传感器信号,并进行处理计算后向执行器发出控制信号,执行器按照ECU的控制意图进行工作。

图2是本文使用的控制器的构成图,图中左侧是上文描述的传感器,其中曲轴位置传感器是整形后的矩形波,连接至ECU的Timer管脚,ECU通过边沿触发中断来进行信号分析和计算。其他三个传感器的信号均为AD信号。控制器的右侧是点火、喷油和氧传感器加热器这三个执行器。

1.3 执行器

本文的执行器主要有喷油器、点火线路和氧传感器加热器三个部分。

1)喷油器

喷油器是一种电磁开关装置,由发动机控制单元ECU发出PWM波形,经过放大后驱动电路来控制喷油器的开启和关闭,通过喷油脉宽即PWM波形的幅度来控制电磁阀的打开和关闭之间的时间,进而控制喷油量。通过喷油正时来控制电磁阀打开的时机,进而控制喷油提前角。

2)点火线路

点火线路由点火线圈和火花塞两个部分组成,控制单元ECU通过Timer管脚发出PWM波形,进而控制初级线圈导通,最终达到控制点火的提前角和和点火能量效果。

3)氧传感器加热器

本文选用的氧传感器LSU4.9的工作温度在750℃附近,偏离这一工作点,会直接导致测量偏差,进而引起喷油量计算的不正确,导致发动机工作异常。因此有必要对氧传感器进行温度控制。

图3是氧传感器的温度控制图,把传感器上的温度和要求温度一起导入ECU,经过PID计算计算后,输出PWM信号,该信号经放大电路放大后引入加热丝,进而引起氧传感器的稳定变化,达到闭环控制的效果。

2 控制策略研究

图4是本文所采用的系统控策略,整个控制系统分为7个计算模块,分别是转速计算、点火提前角计算、点火脉宽计算、喷油提前角计算、喷油脉宽计算、点火控制计算和喷油控制计算。以下分别加以叙述:

1)转速计算

该计算任务是中断任务,当ECU捕捉到脉冲边沿,发生中断任务,计算相邻的脉冲波形的间隔,加以滤波,即可获得当前发动机的转速。

2)点火提前角计算

该任务是定时任务,每隔10ms计算一次。点火提前角以发动机转速作为计算参数。当低转速时,输出较小的点火提前角,当高转速时输出较大的点火提前角。

3)点火脉宽计算

点火脉宽以进气温度和进气压力作为计算参数。当进气温度低进气压力高时,适当提高点火时间,当进气温度高进气压力低时,适当降低点火时间。

4)喷油提前角计算

喷油提前角以转速作为计算参数。当低转速时,输出较小的喷油提前角,当搞转速时,输出较大的喷油提前角。

5)喷油脉宽计算

喷油脉宽以废气氧含量、进气压力、发动机转速和节气门位置为计算参数。其中进气压力和发动机转速设计为一张三维表,进气压力越高转速越高,说明发动机负荷越高,此时应加大喷油脉宽,进气压力越低转速越低,说明发动机负荷越低,此时应减小喷油脉宽。废气氧含量对以上计算结果进行修正,让空燃比保持在理论空燃比附近,达到节能减排的效果。节气门位置对以上计算结果进行二次修正,以达到较好的操纵性能。

6)点火控制任务

该任务是实时中断任务,发生在上止点时刻。当ECU通过曲轴相位传感器的信号判断出发动机处于上止点时,发生该任务。在该任务中,ECU把点火提前角的计算结果进行转化设置在Timer寄存器中开始计时,以达到在点火提前角达到的达到的时刻计时完成,发生点火中断,继而发出指定点火脉宽的PWM波形。该波形经放大后驱动点火线路打火。

7)喷油控制任务

该任务跟点火控制任务基本类似。

3 结论

本文主要介绍了两缸两冲程活塞小型发动机电控系统的控制器ECU和控制策略的设计方法。依次方法设计出了一款满足该领域使用要求的高度集成化的控制器,该控制器层次简洁、清晰,模块之间相互独立,提高了系统的可靠性。经试验验证,完全达到了对该类型小型发动机的实时性和精度的控制要求。

【参考文献】

[1]黄建,曹占国.小型二冲程航空汽油机电控系统研究[J].小型内燃机与摩托车,2012,2.

[2]马二林.FAI二冲程缸内直接喷射航空用打洞机的研究[D].天津大学,2013.

[3]姜学敏.某型发动机电控燃油喷射技术研究[D].南京:南京航空航天大学,2013.

控制器设计论文篇9

概况

迄今为止,相当多的模糊神经网络都是结合控制问题,特别是倒摆控制问题提出的。随着倒立摆系统的控制研究的不断深入,倒立摆系统的种类也由单级倒立摆发展为多种形式的倒立摆。随着控制理论的不断向前发展,越来越多的理论被成功运用于倒立摆系统的控制:如线性控制方法、基于神经网络理论以及模糊逻辑与神经网络相结合的控制方法等等。

模糊控制原理概述

模糊控制系统的组成:

模糊控制属于计算机数字控制的一种形式,因此,模糊控制系统的组成类似于一般的数字控制系统,其框图如下:

模糊控制器的结构设计:

模糊控制器的结构设计是指确定模糊控制器的输入变量和输出变量。究竟选择哪些变量作为模糊控制器的信息量,还必须深入研究手动控制中,人如何获取、输出信息,因为模糊控制器的控制规则归根到底还是模拟人脑的思维方式。

目前广泛设计和应用的二维模糊控制器,本论文采用二维控制器。

倒立摆系统的简单模型

复杂系统的模型往往要经过一些简化或是提取才能运用现代的理论和工具进行分析、设计。倒立摆是比较复杂的系统,在此只对其理想情况的简化模型进行研究。

图3中给出了一个简化的倒立摆系统,滑车可以沿轨道运动。

图3 小车控制及运动示意图

其中:M—小车的质量;m—倒立摆的质量;F—加给小车的外力;

2l—倒立摆的长度; —摆与垂直线的交角。

倒立摆系统的分析设计与实现:

由于小车倒立摆系统具有高阶次、不稳定、非线性、强耦合的特点,只有采取有效的控制方式才能稳定控制,因此本文采用一种典型的模糊控制中的推理方法——Takagi-Sugeno模糊推理方法(简称T-S)。此倒摆系统为非线性系统,为了运用线性系统理论和模糊控制中的Takagi-Sugeno模型进行控制器的分析和设计,可以考虑将其先进行局部线性化,使之成为若干子系统,再将这若干子系统进行模糊综合。

实验的仿真结果:

根据设计的模糊逻辑控制系统,在控制程序中,分别实现了用于倒立摆建模的T-S模糊系统“model.fis”及用于控制的T-S型模糊控制器“tc.fis”,通过运用matlab软件工具得出仿真结果如图4所示:

图4 摆角的状态响应

从上面的仿真结果可以看出倒立摆的摆角和角速度在较短的时间就趋于零平衡点,控制器的输出在较短的时间趋于零达到平衡,说明设计的模糊控制器能很好地实现倒立摆系统控制的要求。

倒立摆系统作为典型的非线性、多变量、不稳定系统,是研究控制理论的理想实验手段。本文围绕倒立摆系统,采用模糊控制理论研究了倒立摆系统的控制问题,并用MATLAB进行了倒立摆的模糊控制系统的仿真研究。仿真结果表明倒立摆控制系统稳定、动态跟踪能力很好,成功实现了倒立摆实物系统的模糊控制。

(作者单位:哈尔滨石油学院)

[1]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2004

[2]章卫国.模糊控制理论与应用[M].西安:西北工业大学出版社,2004

控制器设计论文篇10

中图分类号TP13 文献标识码A 文章编号 1674-6708(2013)88-0235-02

0 引言

本文从改善电力系统稳定性的角度出发,将模糊控制理论应用于电力系统发电机励磁设备附件(PSS)控制上,建立用于研究低频振荡的电力系统模型;分析PSS抑制电力系统低频振荡的原理;将模糊控制理论应用于电力系统稳定器设计,设计了典型的模糊性电力系统稳定器Mamdani型模糊稳定器;应用MATLAB软件建立单机无穷大系统,对于设计的模糊性电力系统稳定器进行计算机仿真,检验其在不同运行方式下的控制效果;应用MATLAB软件搭建GUI界面,更加充分展示模糊控制的电力系统稳定器的控制效果。

1 电力系统动态分析模型及PSS作用机理

ke和kec构成“量化因子”模块;ku是“比例因子”模块。这两个模块对模糊控制器输入、输出的清晰值信号具有比例缩放作用,是模糊控制器的输入、输出接口,它们除了使其前后模块匹配外,还有改善模糊控制器某些性能的作用。

“模糊控制器核心”框内的D/F模块完成清晰量转换成模糊量的运算、完成根据输入模糊量A*进行近似推理运算,得出模糊量U,F/D模块完成把模糊量U转换成清晰量的运算。

3 模糊电力系统稳定器(FPSS)的MATLAB实现及仿真

3.1 MATLAB下传统模糊稳定器CPSS的实现与仿真

从MATLAB的Simulink模块和PSB模块拖入发电机模型、励磁系统模型、发电机测量模型、变压器模型、负载模型、线路故障模型,无穷大电源模型,增益模型,示波器模型,常数模型,阶跃模型。搭建好单机无穷大系统并设置好相关参数并初始化后,只需从MATLAB PSB中拖入自带的PSS即本文称为CPSS,参数使用默认值,CPSS的输入信号使用发电机转速偏差,输出信号接入励磁系统的Vstab。

仿真一为发电机输入有功功率增大控制效果仿真,此时线路故障设置为无,通过使用阶跃模块在发电机正常运行1s后,使输入的有功功率增加25%,观察发电机的励磁电压,转速偏差,有功功率,功角情况;仿真二为线路在2s时发生三相短路,0.2s后故障切除,观察发电机的励磁电压,转速偏差,有功功率,功角情况。

安装电力系统稳定器(PSS)的单机无穷大系统,无论是在发电机有功功率增加或者线路发生三相短路时,PSS都能够提高系统的动态响应性能,使系统尽早恢复稳定,仿真其他情况与此类似,但是传统的电力系统稳定器的控制效果并不是最优,系统最后仍然存在小的波动。

3.2 Mamdani型模糊电力系统稳定器设计

设计的Mamdani型模糊电力系统稳定器是二维的,输入量依次是转速偏差信号和转速偏差信号的偏差,输出信号为PSS的输出。在MATLAB下运用模糊工具箱设计Mamdani型模糊电力系统稳定器设计步骤如下:

1)对于仿真的电力系统,确定,,的大致范围。可在仿真时给系统加大扰动,把扰动后,的变化范围作为输入量的论域;由此,可确定量化因子和比例因子。

2)通过不断仿真试验,在MATLAB模糊工具箱下:

、和都取七级模糊变量语言即可满足控制要求。依次设为负大NB,负中NM,负小NS,零Z,正大PB,正中PM,正小PS。

模糊控制规则的按如下思想制定:当为Z,为Z时,说明系统是稳定的,的输出为Z;当为Z,为PS时,说明系统有正加速度的趋势,的输出为PS来迅速抑制偏差增大的趋势,使系统保持稳定;当为Z,为NS时,说明系统有负加速度的趋势,的输出为NS来迅速抑制偏差为负的趋势,使系统保持稳定。

在MATLAB模糊工具箱下单击,弹出输出量曲面观测窗,设计的Mamdani型模糊电力系统稳定器的输入量与输出量的空间曲面的光滑,表明输出近乎连续,不会存在对应一个输如,没有输出的现象。

3.3 Mamdani型和CPSS型模糊电力系统稳定器仿真

设计好的模糊稳定器的控制效果如何,本文通过在MATLAB Simulink 模块拖入一个微分模块,对转速偏差信号进行微分作为模糊控制器的输入信号,把设计的模糊控制器接入单机无穷大系统。

仿真一为发电机输入有功功率增大控制效果仿真,此时线路故障设置为无,通过使用阶跃模块在发电机正常运行1s后,使输入的有功功率增加25%,观察发电机的励磁电压,转速偏差,有功功率,功角偏差情况;仿真二为线路在2s时发生三相短路,0.2s后故障切除,观察发电机的励磁电压,转速偏差,有功功率,功角偏差情况。

安装模糊电力系统稳定器(FPSS)的单机无穷大系统与传统电力系统稳定器(CPSS),无论是在发电机有功功率增加或者线路发生三相短路时,FPSS都能够大幅度提高系统的动态响应性能,使系统尽早恢复稳定,仿真其他情况与此类似,充分说明模糊电力系统稳定器(FPSS)控制效果的智能型,鲁棒性更强。FPSS的控制效果优于CPSS。

4电力系统稳定器GUI设计实现

在本文设计的GUI界面里,播放背景音乐与停止背景音乐按钮可以实现背景音乐的播放与停止,当不选择任何稳定器时,点击开始仿真,程序会提示你至少选择一种稳定器;当选择了稳定器,没有选择仿真情形时,点击开始仿真按钮, 程序也会提示你选择一种仿真情形,选择两种仿真情形时,点击开始仿真按钮,程序同样提示你选择一种仿真情形,当稳定器和仿真情形选择正确时,点击开始仿真,程序就会开始运行,并会显示仿真情形,仿真曲线条数,结束后显示四种观测曲线。

5 结论

同时,模糊规则及隶属函数的选取,量化因子,比例因子对模糊控制的控制效果影响很大。本论文采用的是二维模糊控制,选取的是偏差信号及其它的导数,同时本文的量化因子和比例因子选取的是常数,通过阅读相关文献,如果能够动态的修改量化因子和比例因子能够取得更好的控制效果,这也是本论文设计模糊稳定器值得改进的地方。

控制器设计论文篇11

中图分类号:TP13文献标识码:A

1引言

Keel和Bhattacharyya在文献[1]中指出控制器中参数的小扰动有时会破坏闭环系统的稳定性,因此有必要考虑所设计的控制器能承受这种参数增益变化。 Keel 和Bhattacharyya称这种能承受参数增益变化的控制器为非脆弱控制器(a non-fragile controller)。关于线性系统的非脆弱控制问题已经很多研究[2,3,7,8]。为了解决线性系统的非脆弱H∞控制问 题,人们已经研究出了一些重要的方法来设计H∞控制器[2,3,4]。但是, 到目前为止,还 没有关于非线性时滞系统的非脆弱H∞控制器设计方法的研究。本文研究一类具有分 离变量的 非线性时滞系统的非脆弱H∞控制问题,并给出了状态反馈和时滞状态反馈的H ∞控制器的设计 方法。假定反馈增益中存在参数变化,获得了一些用线性矩阵不等式表示的与时滞无关的充 分条件。最后,数值例子阐述了控制器的设计过程和方法的有效性。

2问题描述

考虑如下的具有分离变量的不确定非线性时滞系统:

这里x(t)=(x1(t),x2(t),…,xn(t))T∈Rn是系统 的状态向量,u(t)∈Rm是控制输入,ω(t)∈Rq是外部扰动信号,且ω(t )∈L2[0,+∞),z(t)∈Rp是控制输出向量,G(x(t))=(g1 (x1(t)),g2(x2(t)),…,gn(xn(t)))T∈Rn是已知的非 线性向量值函数,A,Ah,B,Bω,C,Ch和D为具有适当维数的实常数矩阵 ,(t)为连续的向量值初始函数,且t∈[-h,0],h>0为系统的时滞常数, ΔA(t),ΔAh(t),ΔC(t)和ΔCh(t)为未知的实矩阵函数,表示时 变参数不确定性,且具有以下形式:

这里M1,M2,N1和N2为适当维数的实常数矩阵,F(t)为Lebesgue可 测的未知时变实矩阵且满足

FT(t)F(t)≤I,t(3)

其中I是具有适当维数的单位矩阵。

计算技术与自动化2007年3月 第26卷第1期刘碧玉等:具有分离变量的不确定非线性时滞系统的鲁棒非脆弱H∞控制具有分离变量的非线性系统能够模拟一些物理过程,比如连续时间的Hopfield型神经网络 [ 5],而且许多非线性系统能够转化成这种具有分离变量的非线性系统。例如,利用一些 线性变换可以将Lurie直接控制系统转化成这种非线性系统[6,11]。

注1当非线性函数gi(xi)=xi时,非线性系统(1)就退化为线性系统。也 就是说,系统(1)是线性系统的自然推广。

全文的讨论基于以下假定:

假定1

本文的目的是解决下面问题:

鲁棒非脆弱控制H∞问题 已知常数γ>0,设计具有增益变化的非线性状态反馈控制器

其中K∈Rm×n为状态反馈增益,ΔK是增益变化,且满足如下的范数有界条件

H和E是具有适当维数的实常数矩阵,且满足

使得闭环系统在ω(t)0时是大范围渐近稳定,同时系统在零初始条件下对任意 非零ω(t)∈L2[0,∞)和任意满足( 6)式的F1(t)具有H∞性能,即满足z(t)2

注2以上特性的非脆弱控制问题类似于文献[2,7,8]中所讨论的非脆弱控制问题,只是 本文所讨论的控制器(4)是非线性的状态反馈,而且还有控制器增益变化。

为了处理参数的不确定性,我们引入下列引理。

引理1[9]设U,V,W,P和F是适当维数的实矩阵,P>0,FTF≤I, 则有下列结论成立:

3主要结果

3.1H∞性能分析

首先考虑系统∑在未控情形下(即u(t)=0时)的H∞性能。即考虑如下系统:

∑1∶

类似于上一节的讨论,如果系统∑1在ω(t)0时是大范围渐近稳定的,同时在零初 始值条件下,对任意非零的ω(t)∈L2[0,∞)满足z(t)2

下面的定理给出了系统∑1具有鲁棒H∞性能的充分条件。

定理1在假定1的条件下,对给定的常量γ>0,如果存在标量ε1>0,ε2>0,矩 阵Λ=dig{α1,α2,…,αn}>0和Q>0使得下式成立,其中

那么系统∑1具有鲁棒H∞性能。

证明对给定标量γ>0,考虑如下的性能指标:

选取如下形式的Lyapunov-Krasovskii泛函V(xt)

其中,xt=x(t+θ),θ∈[-h,0]。由假定1和定理1的条件,我们可以判 定 函数V(xt)是正定的。下面先证明系统∑1在ω(t)=0时是渐近稳定的。V( xt)沿系统(7)的解在ω(t)=0时的时间导数为:

再根据(2)式和引理1中的结论(Ⅰ),对任意标量ε1>0,有

从而,

另一方面,由(8)式很容易得到

由Schur补可知,不等式(14)等价于

所以,

又由Schur补可知,此不等式成立就意味着Φ

再证系统在零初始值条件下,对任意非零的ω(t)∈L2[0,∞)满足z(t) 2

这里的V(xt)即为(11)式所选取的函数。因为在零初始值条件下V(xt)| t=0=0,V(xt)|t=∞>0,所以对任意非零的ω(t)∈L2 [0,∞),有

Jzω≤∫∞0[zT(t)z(t)-γ2ωT(t)ω(t)+(xt)]dt(15)

由(8)式很容易得到

ε2I-MT2M2>0

从而由引理1的结论(Ⅱ),可以得到

同时应用(12)式和(16)式,可得到Jzω的上界为其中,

Φ是由(13)式给定的。

由Schur补,线性矩阵不等式(8)式成立就保证了Ξ

3.2非脆弱H∞控制器设计

这里,我们将给出非脆弱H∞控制问题解存在的充分条件。将(4),(5),(6)式代入 系统∑中,我们得到闭环系统∑c如下:

∑c∶

定理2在假定1的条件下,对给定的常量γ>0,如果存在标量ε1>0,ε2>0, 矩阵X=dig{β1,β2,其中,Ψ11=AX+XAT+BY+YTBT+Z,Ψ12 =AhX+BY。则系统∑是非脆弱H∞可控 的,且非脆弱H∞控制器为u(t)=(YX-1+ΔK)[G(x(t))+G (x(t-h))]。

证明由闭环系统(17)和定理1,可以证明定理2。

注3定理2给出了具有分离变量的不确定非线性时滞系统的鲁棒非脆弱H∞控制器的一种 设计方 法,而且此控制器的设计是通过求解一个LIM得到的。值得一提的是,虽然(18)式中 的线 性矩阵不等式中有几个参数和待定矩阵,但仍然能有效地求解,而且不需要进行参数调整。 由于鲁棒非脆弱H∞控制器考虑了状态时滞,所以比以前的方法具有较小的保守性。

4数值例子

在这一节,我们用一个例子来说明上一节的非脆弱控制器的设计方法。

例1 在系统(1)中,设非线性方程为fi(xi)=x3i,i=1,2,其 中,系数分别为:

满足(2)式和(3)式的不确定矩阵为

目的是设计一个非线性的有记忆状态反馈控制器,并使闭环系统是渐近稳定的,且在零初始 条件下,对给定常数γ=0.5满足z(t)2

H=[0.01,0.02],E=0.30.2

0.40.5.

为了解决非脆弱控制问题,我们利用MATLAB中的LMI工具箱求解线性矩阵不等式(18), 得到如下结果:

因此,由定理2,我们可以得到非线性非脆弱控制器的反馈增益为

K=YX-1=[-0.289968,-0.13622]。

显然,增益变化受到已知矩阵H和E的限制。

控制器设计论文篇12

一、测控技术与仪器专业创新型人才培养目标

随着信息技术的飞速发展,仪器仪表的内涵发生了很大改变,无论其自身结构还是功能用途都体现出综合化、系统化特征,微型化、集成化、远程化和虚拟化成为以计算机为核心的现代测控技术的一个发展趋势。

南京邮电大学测控技术与仪器专业始建于1977年,专业名初始设立为电信仪表,1978年更名为电子测量与仪器专业,1999年根据教指委指导意见,更名为测控技术与仪器专业。我们根据社会、经济发展和创新型国家建设目标对人才培养培养提出的要求,按照南京邮电大学提出的“将学校建设成特色鲜明,在信息科学和技术领域国内一流、国际有影响的教学研究型大学”的建设目标,在对比研究国内外一流大学“测控技术与仪器”专业建设的特点和经验的基础上,将人才培养目标定位在培养“高层次、复合型、创新性、多样化”的创新人才,培养学生德、智、体、美全面发展,知识、能力相互协调,具有较好的人文社会科学背景、扎实的自然科学基础、知识面广、较强的实践能力与创新意识,掌握检测与过程控制及相关学科领域的基础知识和基本技能,具备以电子信息技术及计算机应用技术为基础,从事仪器与测控系统设计等方面的专业能力,为国民经济、国防建设、教育科研等部门服务的应用型高级工程技术人才[1]。

南京邮电大学测控技术与仪器专业具有合理健全的师资队伍,一直致力于教学、科研综合实力的提高,不断更新教学硬件,完善实验教学环境。长期以来,本专业立足于自身特点,依托南京邮电大学通信与信息学科平台,经过30多年的发展,已经发展成为具有信息、通信与网络特点的测控技术与仪器特色学科专业,并已成为江苏省品牌专业,经过品牌专业建设,已经形成“网络测控技术”、“智能仪器仪表与自动化装置”与“网络机器人”等专业特色。

二、测控技术与仪器专业本科毕业设计的特点及存在的问题

本科毕业设计是本科学习阶段的总结, 既是培训体系中重要的一环, 又是对培训体系效果的检验。根据测控技术与仪器专业创新型人才培养目标,其教育学生的最终任务是使学生成为合格的工程技术人才,使学生毕业后具有解决实际工程问题、设计研发新产品的能力。鉴于该专业的上述培养目标和任务,其本科毕业设计有如下主要特点:

(1)培养学生综合运用知识的能力

测控技术与仪器专业本科毕业设计同其它专业毕业设计一样,作为本科教学中的最后一个环节,不能局限于某一门或某几门专业课程,它是对以前所学知识的综合应用,其涉及到的知识涵盖了本科阶段所学习的通识教育、专业教育、综合教育等。对该专业的学生来说,要做好毕设课题,学生必须熟练掌握电子电路、传感器、嵌入式系统、光学、机械等方面的知识,并具有灵活运用上述专业知识的能力[2][3]。

(2)强化学生动手实践的能力

测控技术与仪器专业是一门对学生动手实践能力有较高要求的专业,特别是随着电子信息技术的发展,该专业不仅要求学生具有扎实的理论基础知识,还需具备较强的动手解决实际问题的能力。该专业对学生动手实践能力的培养贯穿于整个本科阶段学习的各个环节,包括工科基础实践能力、学科基础实践能力、专业基础实践能力和专业工程实践能力等[2]。毕业设计作为学生在校期间最后一个重要的综合性实践教学环节,特别是对于测控技术与仪器专业的学生来讲,其毕业设计的课题大多为硬件和软件相结合的项目,同日常生活实践结合较为紧密,在完成毕设课题的过程中,需要学生进行硬件制作、软件编程和软硬件联调,因此,学生的动手实践能力可在毕业设计完成的过程中得到进一步地强化和提高。

(3)培养学生创新应用的能力

创新技能是反映创新主题行为技巧的动作能力,主要包括对创新主题的信息加工能力、动手和操作能力、创新成果的表达能力以及物化能力等[4]。它是创新思想获得表现的载体,因而是创新人才培养的关键,亦是我国高等教育的根本任务和灵魂。测控技术与仪器专业本科毕业设计除了培养学生综合运用知识和动手实践能力外,最重要的一点就是培养学生的创新应用技能。特别是在当今竞争日益激烈的社会,用人单位对毕业生独立工作和创新能力的要求日益增强的形式下,非常有必要通过最后的实践环节加强学生科技创新能力的培养,进一步完善学生的知识结构和素质结构,以适应社会发展的需要[4]。

根据测控技术与仪器专业创新型人才培养目标以及该专业本科毕业设计的主要特点,剖析我校测控技术与仪器专业本科毕业设计实际,仍存在以下主要问题:

① 学生对本科毕业设计认识和重视程度不够。尽管学校对教育部的文件和学校制定的管理文件进行宣传,但受各种因素的影响和制约,学生对于本科毕业设计的重要性和目的没有明确的认识,致使一部分学生对于本科毕业设计的完成流于形式,没有深入研究和认真对待。

② 毕业设计过程中学生对课题资料分析不够仔细深入,其工科基础实践能力、学科基础实践能力、专业基础实践能力和专业工程实践能力等有待进一步提高。

③ 受毕业设计指导教师队伍规模、毕业设计实验设备、经费和管理评价机制等多方面因素的影响,学生毕业设计题目过于陈旧,重复率较高,严重影响到学生创新实践能力的提高。

三、改革实践与探索

为提高我校测控技术与仪器专业本科毕业生的创新实践能力,近年来,我们以测控技术与仪器专业江苏省高等学校品牌专业建设点建设为契机,针对测控技术与仪器专业本科毕业设计过程中存在的问题,从毕业设计选题和方案制定、毕业设计过程指导和监督、论文答辩和质量评价体系等方面进行了一系列的改革和探索:

(1)在毕业设计选题和方案制定方面,主要从两个方面展开。

首先,在本专业学生进入本科毕业设计阶段之前,加强对学生创新性和实践性的培养,积极鼓励学有余力的学生参加课外创新实践活动和教师科研项目,指派优秀教师指导学生开展实践和创新活动,对于具有一定创新性和实践性的项目和学生给予资助;此外,经过创新实践项目锻炼和培训,积极鼓励学生参加国际、国家和省各类科技竞赛。对已经成功申请到国家或省级课外实践创新的项目,可考虑直接作为学生本科毕业设计项目,并进行滚动资助。

其次,对指导教师给出的本科毕设课题进行查新,确保教师给出的毕设课题具有一定创新型和实践性,对于那些陈旧、创新性和实践性结合不紧密的课题一律不予立项。初步筛选完指导教师给出的毕设课题之后,由系所相关部门对拟立项的本专业毕设课题及其任务书进行汇总并制定测控技术与仪器专业本科毕业设计课题选题指南,应在指南中明确课题的软、硬件性质及对选题学生的基本软、硬件素质要求。学生应根据选题指南选择适合自身特点的毕设题目,并就课题研究目标、研究内容和研究方案进行一定时间的前期准备;在毕业设计正式开始前,应进行本专业学生的毕设开题答辩工作,对毕设过程中可能出现和应注意的问题提出进一步的要求,力争做到毕设立题科学新颖、避免重题、学生选题恰当,拟定方案切实可行,努力实现指导教师和学生之间双赢。

(2)在毕业设计过程指导和监督方面,首先,加强科研毕设,培养学生自主学习和创新实践能力。为加强和培养学生的自主学习和创兴能力,亦为加强对学生毕设过程的指导和监督,积极鼓励指导教师把学生的毕业设计实践同自己的科学研究结合起来。在进行毕业设计过程中,让学生参加一些与自己毕设题目相关的课题团队的科研工作,使其接受创实践新意识的熏陶和激励,这样既可以使学生学到必要的科研方法,培养学生主动学习、科学思考问题、勇于实践、勇于创新的能力,还可以加强对学生毕设过程的指导和监督,对于毕设过程中出现的问题能得到及时有效地处理。

其次,鼓励团队毕业设计,在充分利用现有的专业实验室和创新实践基地的基础上,合理增加硬件实验设备和经费,培养学生动手实践能力和团队协作精神。测控技术与仪器专业本科毕业设计对学生的软件设计、硬件实践能力都有较高的要求,鉴于该专业的专业实践特点,在毕设过程中鼓励学生进行团队毕业设计,团队成员至少3人以上,这样指导教师可以根据项目要求将课题划分成不同的子课题,团队内不同学生根据子课题功能要求分别进行相应模块的软、硬件设计。这种团队毕业设计的做法,不仅可以更好地培养学生的创新动手实践能力,还有助于培养学生的团队协作精神,团队内成员为完成总的毕设任务,按各自分工的不同,彼此之间可以相互协商和帮助。此外,通过团队毕业设计,实验室设备、经费及其它的资源可以更为有效地整合和利用。

(3)在论文答辩和质量评价体系方面,进一步健全毕业设计( 论文) 质量监督机制和质量评价体系。建立规范的毕业设计( 论文) 组织管理和操作程序,规范毕业设计论文选题、开题、中期检查、论文撰写、指导教师评阅和毕业答辩等组织程序和进度管理。建立以检查和评优为动力的质量监控机制, 根据毕业设计( 论文) 进程进行阶段性检查,研究制定质量标准,实施质量控制;对于阶段性检查不合格的学生,给出相应的管理办法;建立科学的毕业设计( 论文) 考核办法,制订毕业设计( 论文) 成绩评定标准,从论文质量、平时表现和答辩成绩等方面进行全面考核。在论文答辩方面,实行三级管理,具体分为:非团队毕业设计的学生参与系所组织的论文答辩;团队毕业设计的学生直接参与学院组织的论文答辩;对于参加系所和学院论文答辩且成绩为优秀的学生,进一步推荐至学校,参加由学校组织的论文答辩。

四、结束语

本科毕业设计是学生本科学习过程的重要阶段,是对本科阶段所学知识的综合运用和提高。论文根据测控技术及仪器专业创新实践型人才培养目标及该专业本科毕业设计的主要特点, 针对南京邮电大学测控技术与仪器专业本科毕业设计实践过程中存在的问题进行了一系列改革和探索,实践证明上述改革措施在一定程度上提高了学生的创新实践能力。

基金项目:南京邮电大学教改项目(JG00511J80,JG00511J79,JG00511J78),江苏省研究生双语授课教学试点项目,南京邮电大学通达学院教改项目(TD00511JG11)

[参考文献]

[1] 南京邮电大学2010级测控技术与仪器专业本科生培养方案,2010:136-142

[2]冯旭哲, 陈建云, 明德祥. 测控技术与仪器专业本科毕业设计研究与实践[J].高等教育研究学报,2011,34(1):86-88